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Introduction

Gastric cancer (GC) is the fourth most common cancer 
and the second leading cause of cancer-related deaths 
worldwide (McLean and El-Omar, 2014). The incidence 
of GC in young patients declined from 6.34% of all 
patients with GC 20 years ago to 4.49% in the most recent 
decade (Kitamura et al., 1996). The overall incidence of 
early-onset GC in Korea is estimated to be 3.55% (Korea 
Central Cancer Registry, 2014). The incidence of advanced 
GC in young patients is higher than that in the general 
patient population (Lee et al., 2016). As GC is usually 
detected at an advanced stage, improved surveillance and 
chemotherapy strategies are needed (Lee et al., 2016). 

It is postulated that genetic factors may be more 
important in young patients with early-onset GC than in 
older patients with GC as the patients with early-onset GC 
are less exposed to environmental carcinogens (Correa and 
Shiao, 1994). The different clinicopathological profiles 
of early-onset GC compared to those of conventional 
gastric carcinomas suggest that early-onset GC represents 
a separate entity within gastric carcinogenesis (Milne et 
al., 2007). It is known that microsatellite instability, which 
usually occurs at a frequency of 15% in older patients 
with gastric carcinomas, is consistently absent in young 
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patients (Hayden et al., 1997; Lim et al., 2003; Carvalho 
and Kanaar, 2014). Approximately 10% of young GC 
patients have a positive family history (Kokkola and 
Sipponen, 2001).

Regarding familial GC, truly hereditary cases are 
thought to account for 1–3% of global GC cases and 
includes at least three main syndromes: hereditary diffuse 
GC (HDGC), gastric adenocarcinoma and proximal 
polyposis of the stomach, and familial intestinal GC. 
A genetic basis has been found in only around 40% 
of families affected by HDGC (Oliveira et al., 2015). 
In early-onset GC, alterations in E-cadherin-mediated 
adhesion proteins are common whereas microsatellite 
instability is not (Hayden et al., 1997; Lim et al., 2003). 
Recently, germline mutations in PALB2, BRCA1, and 
RAD51C have been identified in patients with HDGC, 
indicating that defects in homologous recombination (HR) 
increase the GC risk (Sahasrabudhe et al., 2017). However, 
specific susceptibility genes in early-onset or familial GC 
have not been identified. 

The DNA damage response (DDR) is a collective term 
for the plethora of intra- and intercellular signaling events 
and enzyme activities that result from the induction and 
cellular detection of DNA damage. These include events 
that lead to cell-cycle arrest, regulation of DNA replication, 
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and repair or bypass of DNA damage (O’Connor, 2015). 
Tumor cells harboring mutations in genes involved in 

HR, such as BRCA1, BRCA2, and MRE11, are particularly 
vulnerable to DNA damage (Vilar et al., 2011). A deficiency 
in DNA damage repair is a fundamental etiological factor 
in various human cancers. Germline mutations in a single 
copy of either BRCA1 or BRCA2 can cause hereditary 
breast and ovarian cancer syndrome, characterized by 
early-onset breast cancer, as well as increased risks of 
ovarian, pancreatic, stomach, laryngeal, fallopian tube, 
and prostate cancer. BRCA1 and BRCA2 expression 
patterns and their prognostic significance in digestive 
system cancers have been described to be associated with 
more advanced tumor stage (Wang et al., 2018).

RAD51C is a paralog of RAD51, with an important 
role in the DDR (Min et al., 2013). RAD51C-deficient 
cancer cells are highly sensitive to the PARP inhibitor 
olaparib (Min et al., 2013). In non-small cell lung cancer, 
increased expression of RAD51C has been suggested to 
confer resistance to chemotherapy and/or radiotherapy 
(Chen et al., 2016).

Meiotic recombination 11 (MRE11), DNA repair 
protein Rad50 (RAD50), and Nijmegen breakage syndrome 
1 (NBS1) form the MRN complex, which is required 
for the maintenance of genomic instability (Carvalho 
and Kanaar, 2014). This complex, in combination with 
ataxia telangiectasia mutated (ATM), coordinates the 
cellular detection and repair of DNA double-strand 
breaks (DSBs) (Altan et al., 2016). High expression of 
MRE11–RAD50–NBS1 is associated with poor prognosis 
and chemoresistance in GC (Altan et al., 2016) as well as 
poor response to neoadjuvant radiotherapy and prognosis 
in rectal cancer (Ho et al., 2018). The MRN complex is 
frequently not detected in low-grade epithelial ovarian 
cancer, suggesting high sensitivity to the PARP inhibitor 
(Brandt et al., 2017).

The formation of γH2AX foci is commonly used to 
quantitatively analyze DSB induction and repair. Analyses 
of γH2AX revealed deficiencies in nonhomologous 
end-joining, the dominant DSB repair pathway in 
mammalian cells (Rogakou, 1998; Rothkamm, 2003). 
Phosphorylated H2AX, designated as γH2AX, is 
visualized by immunofluorescence microscopy as 
discrete nuclear foci, reflecting sites of DSBs. γH2AX is 
significantly associated with a shorter survival in patients 
with gastric carcinoma (Hussein et al., 2018). 

We compared the immunohistochemical profiles of 
four DDR markers and one pharmacodynamic biomarker, 
γH2AX, between early-onset or familial GC and sporadic 
GC tissues. 

Materials and Methods

Patients
Early-onset GC is defined as GC diagnosed before 

age 40 (Lai et al., 2008; Takatsu et al., 2016). Patients 
were selected from January 1993 to December 1999 at 
Seoul National University Hospital. Of 4123 patients 
who underwent gastrectomy for GC, 54 patients were 
40 years old or younger. To determine clinical outcomes, 
each patient was followed up from the date of surgery. 

The mean follow-up time was 42 months (range 1–60 
months). The 59 familial cases included in this study were 
individuals who had GC with at least two first-degree 
relatives with GC, including at least one patient diagnosed 
before the age of 50 years. As a sporadic GC cohort, the 
files of 337 patients with surgically resected primary 
gastric carcinoma of 40 years or older examined at the 
Department of Pathology, Seoul National University 
Hospital in 2004 were analyzed. This study was approved 
by the Institutional Review Board/Independent Ethics 
Committee of Seoul National University Hospital (H-
1010-065-336).

Tissue arrays and immunohistochemistry (IHC)
Four-micrometer tissue microarray sections were 

subjected to immunohistochemical staining by the 
standard streptavidin-biotin complex method. Sectioning 
was performed after the specimens were de-paraffinized 
and rinsed in phosphate-buffered saline. Antigen retrieval 
was performed using rehydrated sections. The primary 
antibodies used were as follows: anti-BRCA1 (MS110; 
mouse monoclonal; 1:200; Abcam, Cambridge, UK), 
anti-BRCA2 (MAB2476; mouse monoclonal; 1:500; 
R&D Systems, Inc. Minneapolis, MN, USA), anti-Mre11 
(ab214; mouse monoclonal; 1:100; Abcam, Cambridge, 
UK), anti-RAD51C (NBP1-19647; rabbit polyclonal; 1 
: 300; Novus biologicals, Littleton CO, USA), and anti-
phospho-Histone H2A.X (Ser139) (clone JBW300; mouse 
monoclonal; 1 : 300; Upstate, NY, USA).

Immunohistochemical assessment
Immunohistochemical results for BRCA1, BRCA2, 

MRE11, and RAD51C were scored according to nuclear 
staining. If fewer than 10% of nuclei were positive, 
the result was considered negative. Otherwise, the 
result was considered positive (Kim et al., 2013). 
Immunohistochemical staining was performed to detect 
nuclear γH2AX. The staining intensity was scored on a 
scale of zero to three (0, no staining; 1, weak staining; 2, 
intermediate staining; 3, strong staining). The staining 
area was scored on a scale of zero to five (0, no stained 
cells; 1, 1% of the cells were positive; 2, 2–10% of the 
cells were positive; 3, 11–33% of the cells were positive; 
4, 34–66% of the cells were positive; 5, 67–100% of the 
cells were positive). The sum of the scores ranged from 
zero to eight. Subsequently, the summed scores for the 
nuclear expression of γH2AX were grouped as positive 
or negative in the receiver operating characteristic curve 
analysis using the highest positive likelihood ratio for the 
prediction of GC-related death (Park et al., 2015; Hussein 
et al., 2018). 

Statistical analysis
Statistical analyses were performed using SPSS 17.0. 

Univariate and multivariate analyses were performed by 
chi-squared and Log-rank tests. Kaplan and Meier (1958) 
plots were used to visualize the survival distribution of 
patient subgroups, with differences in survival estimated 
using Log-rank tests. A value of p < 0.05 (two-tailed) was 
considered significant.
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(p < 0.001); 85.4% of early-onset and familial tumors were 
poorly differentiated compared with 49.9% of the sporadic 
cancers. Similarly, diffuse type early-onset and familial 
tumors were significantly more frequent than diffuse 
type sporadic cancers (p < 0.001); 80.9% of early-onset 
cancers were poorly differentiated compared with 37.1% 
of the sporadic cancers. Higher T stage, presence of lymph 
node metastasis, and higher TNM stage were significantly 
associated with early-onset or familial cancers (p<0.001, 
p=0.002, and p<0.001, respectively). 

There were no significant differences in BRCA1 
and BRCA2 protein expression between early-onset or 
familial GC and sporadic GC cases. In a comparison of 
DDR-related protein expression frequencies among the 
GC cohorts, RAD51C positivity was significantly higher 
in early-onset or familial GC (84.9%) than in sporadic GC 
(54.0%) (p < 0.001). γH2AX was more frequently positive 
in early-onset or familial GC (73.8%) than in sporadic GC 
(35.9%) (p<0.001) (Table 1). 

Results

DNA damage response (DDR) -related protein expression
The expression levels of BRCA1, BRCA2, MRE11, 

RAD51C, and γH2AX were determined by IHC. 
Representative results of IHC staining are shown in 
Figure 1. For comparative analysis of the IHC results, we 
grouped the samples into early-onset, familial, early-onset 
or familial, and sporadic GC according to previously 
established criteria (Lai et al., 2008; Oliveira et al., 2015; 
Takatsu et al., 2016). 

Comparison of clinicopathological and IHC parameters 
in early-onset or familial and sporadic GCs

Histological parameters were compared among 
sporadic, early-onset, and familial GC, as summarized in 
Table 1. The ratio of males to females was significantly 
higher for sporadic GC than for early-onset or familial 
GC (p<0.001). Significantly more early-onset and familial 
tumors were poorly differentiated than sporadic cancers 

Figure 2. Kaplan–Meier Analyses of Overall Survival According to BRCA1 and MRE11 Expression in Early-Onset 
or Familial and Sporadic Gastric Cancers. A, BRCA1 in early-onset or familial gastric cancer; B, BRCA1 in sporadic 
gastric cancer; C, MRE11 in early-onset or familial gastric cancer; D, MRE11 in sporadic gastric cancer. Dotted line, 
negative expression of protein; solid line, positive expression of protein

Figure 1. Immunohistochemical Analysis of DNA Damage Response Proteins in Gastric Cancer Tissues. A, BRCA1 
negative; B, BRCA1 positive; C, BRCA2 negative; D, BRCA2 positive; E, MRE11 negative; F, MRE11 positive; G, 
RAD51C negative; H, RAD51C positive; I, γH2AX negative; D, γH2AX positive (x200).
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Expression of DDR markers in early-onset or familial 
GC and sporadic GC

Clinicopathological features were not correlated 
with BRCA1, BRCA2, MRE11, and γH2AX expression. 
RAD51C expression was significantly associated with 
the presence of lymph node metastasis (p = 0.032) and 
higher TNM stage (p = 0.044) in early-onset or familial 
GC (Table 2). 

In contrast, these DDR markers were significant 
correlated with clinicopathological variables in 
sporadic GC. Thus, BRCA1 negativity correlated with 
poor differentiation (p = 0.016), advanced T stage 
(p = 0.001), and positive lymph node metastasis (p 
< 0.001); BRCA2 negativity correlated with poor 
differentiation (p < 0.001); and RAD51C negativity 
correlated with poor differentiation (p < 0.001) (Table 3). 

Early-onset or familial cancer and patient outcomes
A Kaplan–Meier analysis of overall survival showed 

slightly higher survival rates for sporadic GC than for 
early-onset or familial GC, but the difference was not 
significant. In a univariate survival analysis according 
to DDR expression, BRCA1 negativity was associated 
with a decreased overall survival only in sporadic 
GC (p = 0.002), and MRE11 negativity was associated 
with a decreased overall survival only in sporadic GC 
(p = 0.012) (Figure 2).

Multivariate analyses showed that the DDR is not 
correlated with survival in early-onset or familial and 
sporadic GC (data not shown).

Discussion

GC is classified into sporadic and familial forms; 
although most GC cases are sporadic, aggregation within 
families accounts for roughly 10% of cases. Mutations 
in CDH1 and CTNNA1 are associated with familial 
GC risk (Oliveira et al., 2015). Molecular expression 
profiles of early-onset GC and conventional GC have been 
found to differ. Early-onset GC less frequently expresses 
cyclooxygenase-2 (COX-2) and Trefoil Factor-1 (TFF-1) 
(Milne et al., 2006) and more frequently aberrantly 
expresses E-Cadherin regardless of the histological type 
(Lim et al., 2003).

Our results showed that early-onset or familial GC 
is substantially more aggressive than sporadic GC. 
These results are concordant with those of previous 
studies reporting greater aggressiveness and lethality for 
early-onset GC compared to that in the general population 
(Smith and Stabile, 2009; Kong et al., 2012; Lee et al., 
2016). 

We detected differences in the expression profiles of 
RAD51C and γH2AX between early-onset or familial 
GC and sporadic GC. DDR has been implicated in 
tumorigenesis and progression in human cancers. The 
impairment of DDR causes genetic instability and may 
affect prognosis and susceptibility to chemotherapy in GC 
(Bartkova et al., 2005). In GC, elevated levels of γH2AX 
and pATM are adverse factors for progression-free and 
overall survival (Ronchetti et al., 2017). Additionally, the 
expression of the MRN complex is associated with a poor 

prognosis and negatively associated with the expression 
of the DNA damage marker γH2AX in the nucleus (Altan 
et al., 2016).

DSB repair is mediated by two principal mechanisms: 
non-homologous end-joining and HR (Jackson and 
Bartek, 2009). In mammals, the core of the HR pathway 
includes the MRE11-RAD50-NBS1 complex and 
RAD51 and RAD51 paralogs (Carvalho and Kanaar, 
2014). HR-defective tumors are more sensitive to 
DNA-damaging agents, such as cisplatin and IR. 
Mutations in HR-associated genes, such as BRCA1 and 
BRCA2, are responsible for approximately 40% of the 
genetic predisposition to familial breast and ovarian 
cancers (Somyajit et al., 2010). HR-defective tumors may 
be more sensitive to chemoradiotherapeutic strategies 
that promote DNA damage. PARP inhibitors targeting 
DDR pathways exhibit potent anticancer activity in 
preclinical models and clinical studies of GC, especially 
in those with low ATM or RAD51 expression (Kim et 
al., 2013). RAD51C-deficient cancer cells are highly 
sensitive to the poly(ADP-ribose) polymerase (PARP) 
inhibitor olaparib (Min et al., 2013). RAD51C has been 
characterized as a cancer susceptibility gene (Somyajit 
et al., 2010). Biallelic mutations in RAD51C lead to 
Fanconi anemia-like disorder, and monoallelic mutations 
in RAD51C are associated with an increased risk of breast 
and ovarian cancer (Somyajit et al., 2010).

Our study is a retrospective clinical study using 
IHC and tissue microarray. Intratumoral heterogeneity 
has become an important issue in cancer therapeutics 
(Gerlinger et al., 2012). For clinical application of the 
DDR-related proteins identified in this study as tumor 
biomarkers, further investigation regarding intratumoral 
heterogeneity would be required.

Our results showed that early-onset or familial GC and 
sporadic GC have significantly different clinicopathologic 
characteristics and DDR marker expression patterns, 
especially with respect to RAD51C and γH2AX. In 
particular, early-onset or familial GC is significantly 
associated with RAD51C and γH2AX. The observation 
that early-onset or familial GC has higher rates of DDR 
deficiency could contribute to the prediction of the 
response to chemotherapy. These results suggest that 
early-onset or familial GC might have a higher degree 
of deregulation of DDR, raising the possibility that this 
form of GC has higher chemotherapy sensitivity than 
sporadic GC. 
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