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Anti-synthetase syndrome (ASSD) is an autoimmune disease characterized by the
presence of autoantibodies targeting one of several aminoacyl t-RNA synthetases
(aaRSs) along with clinical features including interstitial lung disease, myositis,
Raynaud’s phenomenon, arthritis, mechanic’s hands, and fever. The family of aaRSs
consists of highly conserved cytoplasmic and mitochondrial enzymes, one for each amino
acid, which are essential for the RNA translation machinery and protein synthesis. Along
with their main functions, aaRSs are involved in the development of immune responses,
regulation of transcription, and gene-specific silencing of translation. During the last
decade, these proteins have been associated with cancer, neurological disorders,
infectious responses, and autoimmune diseases including ASSD. To date, several
aaRSs have been described to be possible autoantigens in different diseases. The
most commonly described are histidyl (HisRS), threonyl (ThrRS), alanyl (AlaRS), glycyl
(GlyRS), isoleucyl (IleRS), asparaginyl (AsnRS), phenylalanyl (PheRS), tyrosyl (TyrRS), lysyl
(LysRS), glutaminyl (GlnRS), tryptophanyl (TrpRS), and seryl (SerRS) tRNA synthetases.
Autoantibodies against the first eight autoantigens listed above have been associated with
ASSD while the rest have been associated with other diseases. This review will address
what is known about the function of the aaRSs with a focus on their autoantigenic
properties. We will also describe the anti-aaRSs autoantibodies and their association to
specific clinical manifestations, and discuss their potential contribution to the
pathogenesis of ASSD.

Keywords: Anti-synthetase syndrome (ASSD), aminoacyl-tRNA synthetase, interstitial lung disease, myositis,
autoantibodies, autoantigens, autoimmunity
INTRODUCTION

Anti-synthetase syndrome (ASSD) is an autoimmune condition characterized by the presence of
autoantibodies directed against an aminoacyl transfer RNA synthetase (aaRS) along with clinical
features that include interstitial lung disease (ILD), myositis, Raynaud’s phenomenon, fever,
mechanic’s hands, and arthritis (1, 2). ILD is the primary cause of morbidity and mortality in
patients with ASSD (3–5).
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Aminoacyl-tRNA synthetases (aaRSs) are a family of enzymes
that catalyze the charging of amino acids onto their cognate tRNAs
for protein synthesis (6). Twentymembers are included in the aaRS
family in most species with some exceptions (7). In humans, there
are two sets of aaRSs for their actions in cytosol or mitochondria,
respectively. In total, 37 aaRSs genes are encoded, which include 18
for cytoplasmic subunits (2 genes coding for separate subunitsof the
same aaRSs, and one gene for two fused aaRSs), 17 for
mitochondrial subunits, and 2 for both sites (8). The discovery of
autoantibodies against eight of these aaRS represented the first
connection between aaRSs and human diseases (9).

The discovery of anti-aminoacyl-tRNA synthetase
autoantibodies has allowed for the characterization of ASSD.
The first detected autoantibody against an aaRS was reported in
1980 in patients with idiopathic inflammatory myopathies (IIM)
(10). In 1983, Mathews et al. identified the target of Jo-1
autoantibody to be tRNAHis by immunoprecipitation (9).
Afterwards, autoantibodies associated with similar clinical
manifestations were identified against seven other aaRSs,
including ThrRS, AlaRS, GlyRS, IleRS, AsnRS, PheRS, and
TyrRS and were named anti-PL-7, anti-PL-12, anti-EJ, anti-OJ,
anti-KS, anti-Zo, and anti-HA, respectively (11–17). At the time
of discovery, it was thought that these autoantibodies identified
subtypes of myositis. In 1991, Love et al. were the first that
grouped patients representing distinctive clinical features with
aaRSs antibodies as a unique syndrome, and in 1992, Targoff
proposed to name this syndrome as ASSD (18, 19).

This review will address what is known about the function of
the aaRSs and their potential autoantigenic properties. We will
also describe the anti-aaRSs autoantibodies together with the
associations to specific clinical manifestations and discuss their
possible contribution to the pathogenesis of ASSD.
AMINOACYL-tRNA SYNTHETASES

The history of aaRSs dates back to 1950s, when it was found that
ATP was needed for the incorporation of amino acids to a
polypeptide in vitro (20). Later in the mid-50s, Francis Crick
introduced the adaptor hypothesis in which he proposed that
each aaRS is synthesized by a unique amino acid specific enzyme
(21). According to Crick, the minimum number of adaptors
should be 20, one for each amino acid (22). Subsequently these
adaptors were identified and are now known as tRNA molecules.
The first complete tRNA sequence was published in 1965 and the
structure of tRNAPhe was determined in 1974 (23) (Figure 1).

The aaRSs are grouped into two classes: class I and class II based
on distinct features of the reactions they catalyze. Class I aaRSs
approach the 3’-end of their cognate tRNA with their Rossmann
nucleotide binding fold-based catalytic domain (CD), whereas class
II aaRSs approach their cognate tRNAs from the major groove side
with anti-parallel b-sheet and flanking a-helices (24, 25). In
mammals, aaRSs can also be classified as free and complex-bound
forms. In fact, eight of the aaRSs (LeuRS, IleuRS, EPRS, MetRS,
GluRS, ArgRS, LysRS, and AspRS) do not function as single
proteins as they are part of a multi-tRNA synthetase complex
(MSC) together with 3 scaffold proteins called aaRS-interacting
Frontiers in Immunology | www.frontiersin.org 2
multi-functional proteins (AIMPs) (26, 27). TheMSC is thought to
contribute to the cellular homeostasis maintenance in higher
eukaryotes (28–30). The AIMPs also exert diverse functions other
than protein synthesis, encompassing induction of synthesis of
various pro-inflammatory cytokines and chemokines, angiogenesis
suppression, andprevention of hyperproliferation of lung cells (29).
The canonical functions of aaRSs, which include charging of tRNA
synthesis, aminoacylation, and editing, are highly conserved
between species. However, during the evolution from prokaryotes
to vertebrates, some aaRSs acquired additional domains with
characteristic structures that were not required for the canonical
functions. These evolved domains,mostly found on the amino (N-)
or carboxy (C-) terminus, were indicated for non-canonical
activities, including translation control, transcriptional regulation,
signal transduction, cell migration, angiogenesis, inflammation,
and tumorigenesis (31). Evidence from recent studies suggest that
either canonical or non-canonical functions of aaRSs are associated
with human diseases (32).

This review will focus on the contribution of the 20
cytoplasmic aaRSs to ASSD and other diseases. To date,
autoantibodies against eight of these aaRSs have been reported
to be associated with ASSD. They can be listed based on the
prevalence of autoantibodies against them: HisRS, ThrRS, AlaRS,
GlyRS, IleRS, AsnRS, PheRS, and TyrRS (Table 1). Additional
aaRSs that have been linked to other diseases are LysRS, GlnRS,
TrpRS, and SerRS. Autoantibodies against TrpRS and SerRS have
also been found in patients with other autoimmune diseases;
however, the clinical features were more associated with
rheumatoid arthritis (RA) or systemic lupus erythematosus
(SLE) and not ASSD or myositis (33–36). We will also discuss
what is known about the remaining eight aaRSs, since even
though they have not yet been indicated to play a role in the
pathogenesis of diseases, mutations in their encoding genes have
been associated with different pathological conditions.
OVERVIEW OF CLINICAL
MANIFESTATIONS IN ASSD

According to Connors criteria, diagnosis of ASSD ismade when an
individual is positive for one of the eight described anti-aaRS
autoantibodies (anti-Jo-1, PL-12, PL-7, EJ, OJ, KS, Ha, or Zo) and
presents with at least one clinical manifestation among myositis,
ILD, arthritis, Raynaud’s phenomenon, mechanic’s hands, or fever
(Table 2) (2). The clinical spectrum of ASSD associated with the
different anti-aaRSs autoantibodies is not identical but rather
heterogeneous, whereby isolated or combined features are
possible (46, 47). Anti-Jo-1 antibodies are found in 20%–30% of
patientswith IIMwhile those targetingother aaRSare less common,
each with a prevalence below 5% (47).

ILD often dominates the clinical picture of patients with
ASSD without anti-Jo-1 autoantibodies, being the initial
manifestation especially in patients with anti-PL-7, PL-12, and
EJ autoantibodies (48). Severity range of ILD in patients with
ASSD is broad, going from asymptomatic cases to acute distress
respiratory syndrome. Within ILD patterns in patients with
ASSD, non-specific interstitial pneumonia (NSIP) is the most
May 2022 | Volume 13 | Article 866087
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frequent, followed by organizing pneumonia (OP) and usual
interstitial pneumonia (UIP). Diffuse alveolar damage (DAD)
has been reported in anti-EJ patients (49). Cumulative survival
seems to be higher in anti-aaRS-positive patients with ILD
compared to those with idiopathic pulmonary fibrosis (IPF)
(50). Within patients with ASSD, rapid progressive ILD has
been observed in individuals with anti-PL-7 or anti-EJ antibodies
(51). Several longitudinal cohort studies have shown that anti-
PL-12 and anti-PL-7 autoantibodies are associated with more
prevalent and severe ILD compared to anti-Jo-1 patients (4, 37,
38, 48, 52–54), with a lower frequency or absence of myositis (40,
55). The ILD could lead to a secondary increase in the
intrathoracic pressure or lower esophageal involvement
manifested by increased gastrointestinal manifestations (37,
52). The overall outcome of ILD in the group of anti-PL-7/PL-
12 is worse when compared to anti-Jo-1 patients, with a higher
Frontiers in Immunology | www.frontiersin.org 3
death rate associated with lung complications (37). This lower
survival rate has been associated with a delay in diagnosis, since
up to 50% of the non-Jo-1 anti-synthetase patients were initially
diagnosed with an overlap disorder with minimal or no evidence
of myositis (38, 56). However, this mortality rate might vary as
suggested by another longitudinal cohort study where, despite
finding more severe lung involvement in anti-PL-7 and anti-PL-
12 autoantibody-positive patients than in those with anti-Jo-1,
there were no significant mortality differences between the
autoantibody groups. Possible explanations for differences
among the studies might be due to characteristics of the
populations and disease duration before diagnosis (52).

Myositis occurs more frequently in anti-Jo-1-positive patients
than non anti-Jo-1 (49). Clinically, muscle involvement may be
consistent with both polymyositis and dermatomyositis, while
histologically, perifascicular atrophy, a characteristic feature of
TABLE 1 | Information on aaRSs groups based on their contribution to diseases.

Contribution to
disease

Target Annotation Class* Protein name Clinical Name HGNC** name Non-Translational functions

ASSD associated 1. Histidyl-tRNA Class II HisRS Jo-1 HARS Immune Regulation, Neuronal
2. Threonyl-tRNA Class II ThrRS PL-7 TARS Immune Regulation
3. Alanyl-tRNA Class II AlaRS PL-12 AARS Immune Regulation, Neuronal
4. Glycyl-tRNA Class II GlyRS EJ GARS Immune Regulation, Neuronal, Tumorigenesis
5. Isoleucyl-tRNA Class II IleRS OJ IARS Immune Regulation
6. Asparaginyl-tRNA Class II AsnRS KS NARS Immune Regulation
7. Phenylalanyl-tRNA Class II PheRS Zo FARS Immune Regulation, Tumorigenesis
8. Tyrosyl-tRNA Class I TyrRS YRS/Ha YARS Immune Regulation, Angiogenesis, Neuronal

Other 9-Lysyl-tRNA Class I–II LysRS KRS/SC KARS Immune Regulation, Neuronal, Infection, Inflammation
10. Tryptophanyl-tRNA Class I TrpRS WRS WARS Angiogenesis, Inflammation
11. Seryl-tRNA Class II SerRS SARS Development
12. Glutaminyl-tRNA Class I GlnRS JS QARS Anti-Apoptosis
13. Glutamyl-tRNA Class I LeuRS EARS/EPRS Inflammation
14. Leucyl-tRNA Class I MetRS LARS Metabolism
15. Methionyl-tRNA Class I ProRS MARS Tumorigenesis
16. Prolyl-tRNA Class II ProRS PARS
17. Aspartyl-tRNA Class II AspRS DARS
18. Arginyl-tRNA Class I ArgRS RARS
19. Cysteinyl-tRNA Class I CysRS CARS
20. Valyl-tRNA Class I ValRS VARS
*Class I aaRSs possess a conserved amino acid sequence His-Ile-Gly-His (HIGH motif) in the amino-terminal region and a sequence Lys-Met-Ser-Lys-Ser (KMSKS or SK motif) in the
carboxy-terminal region whereas Class II aaRSs do not contain specific sequence motifs (33). **HGNC, The Hugo Gene Nomenclature Committee.
FIGURE 1 | The history of aaRSs and discovery of antibodies against eight aaRSs. Anti-Jo-1; HisRS, anti-PL-7; ThrRS, anti-PL-12; AlaRS, anti-OJ; IleRS, anti-EJ;
GlyRS, anti-KS; AsnRS anti-Ha; TyrRS, and anti-Zo; PheRS.
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dermatomyositis, althoughwith perifascicular necrosis, seems to be
characteristic for the ASSD group. In addition, electron
microscopy-based nuclear actin aggregation has been seen in
ASSD muscle biopsies but not in other IIM subgroups (58–60).
Anti-PL-12 antibodies have also been reported in patients with
immune-mediated necrotizingmyopathy (61). Esophagealmuscles
with subsequent dysphagia are affected in one-third of patients with
ASSD (62). Arthritis usually occurs at the onset of ASSD, more
frequently in anti-Jo-1 compared to other ASSD autoantibody
groups. The arthritis spectrum in ASSD is non-erosive
rheumatoid arthritis-like with smaller joints more often involved
than the larger joints, especially in case of co-occurrence of anti-
aaRS and ACPA antibodies (5-14% of ASSD cases) (48, 49).
Mechanic’s hands, described as erythematous and fissured
hyperkeratosis of the palmar or lateral edges of the fingers, highly
correlatewithASSDdiagnosis, although they have been reported in
other overlapmyositis, especially in the presence of anti Pm-Scl and
Frontiers in Immunology | www.frontiersin.org 4
anti-MDA5 autoantibodies. Mechanic’s hands have not been
reported as an isolated initial manifestation (63, 64). Other skin
lesions such as Gottron’s papules/sign, heliotrope rash, shawl,
holster, or V sign, typically seen in DM, have also been described
in patients with ASSD (65, 66). Raynaud’s phenomenon has more
frequently been observed in patients with anti-PL-12 and anti-PL-7
than in patients with other anti-aaRS autoantibodies (49, 67).
Relapsing-remitting fever is one of the symptoms in 20%–60% of
ASSD patients (49).

Increased risk of cancer in myositis especially in
dermatomyositis has been extensively studied and reported.
However, there are some discrepancies in the literature
concerning prevalence of cancer in ASSD due to the varying
definitions of cancer-associated myositis, the timing of
malignancies, insufficient number of patients, and referral bias.
Some studies show that the presence of ASSD autoantibodies, in
particular anti-Jo1 and -EJ, have been associated with a lower
TABLE 2 | Common antisynthetase autoantibodies in ASSD.

Autoantibody Protein name tRNA
synthetase

Prevalence in IIM Clinical Manifestation ILD* Myositis

Jo-1 HisRS Histidyl 15–30% ILD (50–90%), fever (27–70%)
Arthritis (58–75%), myositis
(57%), muscle weakness (59–
78%), mechanic’s hands (20–
56%), Gottron’s sign (44%), RP
(19–60%) (37–39).

++NSIP, OP, UIP ++

PL-7 ThrRS Threonyl 5–15% ILD (55–76%), fever (34%),
myositis (48%), muscle
weakness (40–52%), arthritis
(31%), Gottron’s sign (41%), RP
(38%) (38–40).

++UIP, NSIP, DAD +

PL-12 AlaRS Alanyl 5–10% ILD (69–89%), fever (36–44%),
pulmonary hypertension,
esophageal involvement (20%),
myositis (36%), muscle
weakness (17%), arthritis (22–
35%), Gottron’s sign (33%), RP
(44%)
(38–41).

++UIP, NSIP +

EJ GlyRS Glycl <5% ILD (73–84%), fever (39–60%),
arthritis (24%), myositis (40%),
muscle weakness (39–55%),
Gottron’s sign (45%), RP (13%)
(38, 39, 42).

+NSIP, OP,
UIP, DAD

+

OJ IleRS Isoleucyl <5% ILD (44–>90%), fever (13%),
myositis (40–80%), muscle
weakness (25%), arthritis (13–
60%), mechanic’s hands (40%),
Gottron’s sign (13–30%), RP
(13%) (38, 39, 43).

++OP, UIP,
NSIP

+/++

KS AsnRS Asparaginyl 1–8% ILD (>90%), fever (5–8%),
arthritis (26–31%), mechanic
mands (30%), muscle weakness
(7%), Gottron’s sign (8%), RP
(31%) (14, 39, 44)

++NSIP, UIP +

Zo PheRS Phenylalanyl 1% ILD (77%), myositis (77%),
Arthritis (66%) (44, 45) £.

+NSIP, UIP
OP

++

YRS/Ha TyrRS Tyrosyl <1% ILD (62%), HP, Rash, arthritis
(17, 45) €.

+UIP, NSIP +
May
 2022 | Volume 13 | Articl
*Patterns of ILD observed in ASSD (NSIP, Nonspecific interstitial pneumonia; UIP, usual interstitial pneumonia;OP, organizing pneumonia; DAD, diffuse alveolar damage); HP;
hypersensitivity pneumonitis.£ Obtained from a cohort of n = 9 cases. €Obtained from n = 24 cases.
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risk of cancer (68–72), whereas some other studies and case
reports describe an increased risk of cancer in anti-Jo-1-positive
patients (37, 73, 74). On the other hand, a retrospective study
including a small cohort showed that being male, over the age of
60, and the coexistence of anti-SSA/Ro autoantibodies along with
ASSD were risk factors for the development of neoplasm (51).
Hence, larger studies with proper age-matched controls are
required to determine if there is an association between cancer
and ASSD. Moreover, systematic reviews and meta-analysis
recommend careful cancer screening in PM/DM patients with
ILD, especially those with multiple risk factors for malignancy (75).
AUTOANTIGENIC aaRSs IN ANTI-
SYNTHETASE SYNDROME AND
CLINICAL ASSOCIATIONS

There are eight yet identified aaRSs that have become targets of
the immune system with the development of autoantibodies and
the clinical ASSD. The pathogenic mechanisms for this
syndrome are not clear. The individual aaRSs have somewhat
Frontiers in Immunology | www.frontiersin.org 5
different properties and functions within the cells and
extracellular functions. Here, we give an overview of these
eight aaRSs and detailed clinical associations to the
corresponding autoantibodies (Table 3).

Histidyl-tRNA Synthetase
Histidyl tRNA synthetase (HisRS) is a homodimeric enzyme,
whose location is mainly cytoplasmic. HisRS is responsible for
the incorporation of histidine into a growing peptide (95–97).
The N-terminal fragment or CD includes the residues 1–320 and
is responsible for the specific aminoacylation of tRNA (98). The
C-terminal fragment is essential for the dimeric structure of the
enzyme. Additionally, at least two HisRS-splice variants (SV)
have been identified lacking the CD (Figure 2). Besides the
intracellular cytoplasmic location of HisRS, this enzyme can also
be found in the extracellular compartment (98), although its
extracellular functions have not been fully clarified. Both in vitro
and animal studies have suggested that HisRS is involved in
several regulatory mechanisms of cell metabolism and the
regulation of immune responses. Howard et al. have
demonstrated that the N-terminal domain serves as a
TABLE 3 | tRNA synthetases, epitopes and immune activities.

Autoantigen Immune modulatorydomains of the protein Immune activities

1.HisRS GrB B cleavage site: LGPD48-E
Immunogenic peptide: VKLQGERVRGLKQ
Immunogenic region: N-terminal 151 amino acids
Immunogenic site: N-terminal domain, WHEP Domain

T-cell proliferation (76).
N-terminal domain: chemoattracts lymphocytes and immature dendritic cells trough
interaction with CCR5 (77, 78).
VKLQGERVRGLKQ peptide: CD40L upregulation in CD4+T cells, with cytokine production
of IFNg, IL-2, IL-17 (78).

2.ThrRS Secreted ThRS has autocrine and possibly paracrine
functions

Stimulate endothelial cell migration and angiogenesis. Activation and maturation of DC,
Upregulation of CD4+ and CD8+ T cells, and increased IFN-g secretion (79, 80).

3.AlaRS Nine-base region of the anticodon loop
Immunoreactive region: amino acids 730-951

Astrocyte IL-6 release, hMSC differentiation (81)
Human AlaRS shows substantial mischarging activity, which can generate mistranslated
proteins that can potentially participate in cellular stress responses and adaptations (82–84).

4.GlyRS N-terminal domain Secretion from macrophages in response to Fas-L from tumour cells (85, 86).

5.IleRS GrB B cleavage site:VTPD983-Q
Quaternary interactions in the MSC

Promote cell migration /o cytokine release (57, 87).

6.AsnRS GrB B cleavage site: VAPD632-R Activation via CCR3+ CCR5+ chemokine receptors (87).

7.PheRS a subunit Stimulates cell proliferation,cell differentiation (88).

8.TyrRS N- and C-terminal domain
Truncated mini-TyRS: Met1-AsP343

PMN elastase cleavage site: Pro344-Ser528

C-terminal domain: migration of monocytes and stimulation of TNFa. Includes the amino
acid sequence Pro344-Ser528 associated with MP and PMN chemotaxis.
Truncated mini-TyRS Met1-AsP343: chemoattractant only for PMN.
N-terminal: migration of PMNs in a dose dependent manner. Possible functional correlation
with IL-8. Can be present in platelets, playin a role in monocyte/macrophage differentiation
during bacterial infection (42).

9.TrpRS N-terminal domain is cleaved under the catalysis of
Mmp7/Mmp8, generating the peptide 1-47WRS, unable
of activating TLR2/TLR4

IFN-g induces the secretion of TrpRS by macrophages, endothelial cells and fibroblasts.
High expression in CD4T cells can resist IDO-mediated immunosuppresion from DC in
Grave's disease (89).
Secretion by monocytes upon infection. Interacts with TLR2/TLR4 leading to the secretion of
TNFa and IL-8, neutrophil infiltration and phagocytic abilities (90–92).

10. LysRS N- and C-terminal domain Presence of phosphorylated KRS in activated mast cells (93).
Caspase-8 mediated the release of LysRS from tumor cells and the released KRS induced
macrophage migration. Secretion via exosomes or exosomes-like extracellular vesicles (94).
GrB, granzyme B; DC, dendritic cell, MSC, multienzyme synthetase complex; hMSC, human mesenchymal stem cells; IDO: indoleamine 2,3-dioxygensase; PMN: polymorphonuclear
cells; MN, mononuclear phagocytes; Mmps, matrix metalloproteinases.
May 2022 | Volume 13 | Article 866087
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chemoattractant for naïve lymphocytes and immature dendritic
cells (DCs) through interaction with CCR5 (77). The N-terminal
has also been considered to be the immunodominant epitope,
specifically the 1–60 amino acid fragment (100). In particular, in
vitro studies performed in myositis samples showed that T-cell
stimulation assays using a 13-mer peptide from the HisRS N-
terminal domain elicited an inflammatory response in blood and
bronchoalveolar lavage fluid (BALF) T cells (78). Interestingly, in
vivo the levels of extracellular HisRS were higher in sera of anti-
Jo-1-negative patients compared to healthy individuals and were
almost undetectable in patients with Jo-1 antibodies. This
observation suggested that another possible immune
mechanism could be involved, such as the formation of
immune complexes of autoantibodies with the protein, but this
still needs to be confirmed.

Anti-HisRS autoantibodies (anti-Jo-1) were initially identified
in 1983 by Mathews M. and Bernstein R (9). Anti-Jo-1
autoantibodies are the most common among the myositis-
specific autoantibodies (MSAs) with frequencies between 20%
and 30% in patients with IIM (101–103).

Worldwide epidemiological studies have shown that patients
presenting with anti-Jo-1 autoantibodies can develop ILD in up
to 90% of the cases (38, 41, 104). In the American and European
Network of Antisynthetase Syndrome (AENEAS) cohort study of
anti-Jo-1-positive patients, ILD was present in 50% at disease
onset and in 84% after 80-month follow-up (67).

Threonyl-tRNA Synthetase
Threonyl-tRNA synthetase, ThrRS, also referred to as TRS and
the target of anti-PL-7 autoantibodies, is an aminoacyl-tRNA
synthetase that catalyzes the aminoacylation of tRNA by
transferring threonine. Besides its essential function of
catalyzing aminoacylation, ThrRS can be secreted into the
extracellular compartment where it can have other non-
canonical functions (105). In particular, the extracellular
secretion of ThrRS has been associated with the exposure of
vascular endothelial cells with proinflammatory cytokines such
as tumor necrosis factor-a (TNF-a) or vascular endothelial
growth factor (VEGF). Additionally, in vitro and in vivo assays
have shown that ThrRS stimulates endothelial cell migration and
Frontiers in Immunology | www.frontiersin.org 6
angiogenesis, indicating that ThrRS can acts as an angiogenic
pro-migratory extracellular signalling molecule (79).

A recent study showed that ThrRS can induce maturation and
activation of DCs with a Th1 response in vitro and in vivo,
upregulation of CD4+ and CD8+ T cells, increased IFN-gamma
secretion associated with viral clearance in influenza virus
(H1N1)-infected mice, and increased IL-12 production by the
MAPK/NF-kB pathways. Interestingly, CD4+IFNg+ and
CD8+IFNg+ T cells and IFNg levels of ThrRS-DC immunized
mice were significantly upregulated in BALF compared with the
control group (80).

In the muscle, ThrRS may play a role as negative regulator in
myogenic differentiation, by inhibiting Axin1, through the kinase
c-Jun N-terminal (JNK), a downstream target of ThrRS. In
particular, the presence of UNE-T or TGS domains was
necessary for ThrRS myogenic function (106). Further studies
analyzing the role of this protein in the innate and immune
response as well as the ThrRS expression in muscular diseases are
still needed to further understand the role of this aaRS in
the disease.

There are few reports on clinical presentations of patients
specifically with anti-PL-7 autoantibodies. In a European
multicenter study, the frequency of anti-PL7 was 1.87% (18/
964) (107), whereas a single-center retrospective cohort from
China reported that anti-PL-7 autoantibodies had the same
frequency (27% 30/108) as anti-Jo-1 autoantibodies (30.5% 33/
108) (108). In Asian studies, the most common ILD pattern
observed in anti-PL-7-positive patients was NSIP (15%), which
was in line with an earlier study that reported mainly NSIP
patterns (50%) followed by OP (41.7%) (109). In this study, UIP
was only observed in the anti-PL7-positive group (4%) and was
associated with a low response to therapy (108). In addition, the
presence of this autoantibody predicted the long-term
deterioration in ILD (110).

Alanyl-tRNA Synthetase
In contrast to most aaRS, alanyl-tRNA synthetase (AlaRS), the
target of anti-PL-12 autoantibodies, recognizes its substrate in an
anticodon-dependent manner with recognition of a single G3:
U70 wobble base pair, which is the dominant identity
A BA B

FIGURE 2 | (A) HisRS structure visualized using PDB ID: 4G84 and 2LW7 (98). (B) Schematic figure of HisRS constructs, adapted from Notarnicola et al. (99).
HisRS-FL, HisRS-full length; WHEP, WHEP domain; CD, catalytic domain; ABD, anti-codon binding domain; SV, splice variant.
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determinant for tRNA aminoacylation (82). This simplified
mechanism increases the likelihood of mischarging by AlaRS
and has been associated with neurodegenerative disorders such
as Charcot-Marie-Tooth disease (CMT) type 2, which is
characterized by axonal peripheral neuropathy with muscle
weakness , wast ing, and impaired sensat ion in the
extremities (82).

Autoantibodies against alanyl-tRNA synthetase, also known
as anti-PL-12, was the third myositis-specific autoantibody
identified in 1986 by Bunn et al. (12). Unlike anti-Jo-1 and
anti-PL-7 autoantibodies, anti-PL-12 IgG recognizes
independently two antigens: alanyl-tRNA synthetase and its
cognate tRNAAla, suggesting that this recognition occurs by
separate autoantibodies. The antigenic epitope is located in the
anticodon region (83), and an epitope mapping of this protein
identified the immunoreactive region outside the CD, within
amino acids 730–951 (111) (Table 2). In the case of anti-PL-12
autoantibodies, the severity of the clinical manifestations is
mainly driven by the ILD, which was notable in cases
associated with pulmonary hypertension (55). Both in
American and European reports, a series of anti-PL-12-positive
patients showed a low prevalence of muscular involvement,
mechanic’s hands, and Raynaud’s phenomena (55, 112, 113).
Regarding the histopathologic and radiographic features, UIP is
the most common pattern of lung involvement (114).

Glycl-tRNA Synthetase
Glycyl-tRNA synthetase (GlyRS), the target of anti-EJ
autoantibodies, is a dual-localized homodimeric aaRS, found in
both the cytoplasm and the mitochondria. It catalyzes the
attachment of glycine to its cognate tRNA. Mutations in the
gene cod ing for human GlyRS are as soc ia ted to
neurodegenerative diseases including the distal spinal muscle
atrophy type V and CMT disease (115). The impairment in the
mitochondrial metabolism in neurons is one of the mechanisms
through which mutations in GlyRS lead to neurological diseases
(116). GlyRS has been also shown to circulate in serum of human
subjects but, in contrast to HisRS, extracellular levels of GlyRS
were not found to be significantly different between healthy
individuals and patients with myositis (97). In vitro experiments
have demonstrated that it can be secreted from macrophages in
response to Fas ligand that is released from tumor cells (85).
Therefore, it has been suggested that GlyRS is involved in immune
surveillance against cancer (85).

Autoantibodies against GlyRS (anti-EJ) were described for the
first time in 1990 by Targoff in patients with myositis and ILD
(13). In anti-EJ-positive patients from the AENEAS cohort and a
large Chinese cohort, ILD was the most frequent clinical
manifestation, being isolated in almost 40% of the patient
group (48, 117). ILD has been reported as an early
manifestation of the anti-EJ-ASSD disease course (117, 118).
Regarding ILD patterns, NSIP, UIP, OP, and DAD have been
described in patients with anti-EJ antibodies (117–119). OP was
also found to be an independent risk factor for developing
rapidly progressive ILD (117). Among other ASSD features,
fever, mechanic’s hands, and Raynaud´s phenomenon have
been reported as accompanying findings (48, 117, 119).
Frontiers in Immunology | www.frontiersin.org 7
Isoleucyl-tRNA Synthetase
Isoleucyl-tRNA synthetase, IleRS (IARS), the target of anti-OJ
autoantibodies, is a component of the multi-enzyme complex
(MSC) described above that is important for the stabilization of
the interactions between the components (28–30, 120). In
addition, IleRS is important for protein synthesis and
signaling pathways.

The anti-isoleucyl-tRNA synthetase autoantibody (also
known as anti-OJ) was identified in 1990 and was initially
described in a patient with a history of severe, progressive
pulmonary fibrosis and pulmonary hypertension (13). This
autoantibody has a low prevalence (<5%) among patients with
IIM (57). Anti-OJ autoantibodies react with lysyl-tRNA
synthetase (KARS) and the epitope of anti-OJ autoantibodies
could be based on quaternary interactions between MSC
components (57), making the detection in the clinical practice
problematic. The low frequency of this autoantibody might be
associated to the elusiveness of the primary target(s) of anti-OJ.
In the clinical setting, multiplex assays based on immunoblotting
such as line immunoassay (LIA) and dot blot assays (DBA) have
poor performance of anti-OJ (121, 122). Anti-OJ autoantibodies
have also been difficult to detect in ELISA, even with the use of
recombinant proteins from Escherichia coli and Hi-5 (insect cell
line), suggesting that either anti-OJ autoantibodies might
recognize other components of the MSC or that the structural
conformation of the complex is important for the recognition by
this autoantibody (123). To date, immunoprecipitation (IP) remains
the preferred method for anti-OJ autoantibody detection.

A review of 52 published cases identified ILD as the main
clinical manifestation in 90% of the anti-OJ positive cases, with
the patterns of UIP, OP, and NSIP being the most frequent.
Prevalence of myositis seems to vary according to the criteria
applied for ASSD classification and the ethnicity of the
population included in the studies. In an Asian cohort, the
frequency of severe myositis was reported to be as high as 57%
(62), while in the AENEAS cohort study, 40% of the patients with
anti-OJ autoantibodies had hypomyopathic forms of ASSD or
never developed myositis (124). Arthritis, fever, Raynaud’s
phenomenon, and mechanic’s hands are also present, but in a
lower frequency, being an incomplete presentation of the ASSD
frequent (57).

Asparaginyl-tRNA Synthetase
The asparaginyl-tRNA synthetase (AsnRS), the target of anti-KS
autoantibodies, catalyzes the attachment of asparagine to its
cognate tRNA during translation. As for non-canonical
functions, AsnRS has been shown to be involved in growth
regulation mediated by the Hippo signaling pathway (a pathway
involved in growth regulation, dysregulation observed in many
cancers) and, therefore, possibly implicated in tumorigenesis
(125). Studies also reported pro-inflammatory functions of
AsnRS. In particular, AsnRS was shown to induce CCR3-
expressing cells to migrate and, like HisRS, chemoattract DCs
(77). The non-translational chemokine activity of AsnRS is
thought to be exerted by an additional domain at the N-
terminal of the protein sequence, not present in the
prokaryotic system. The modulating activity of AsnRS on
May 2022 | Volume 13 | Article 866087

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Galindo-Feria et al. Aminoacyl-tRNA synthetases and anti-synthetase syndrome
CCR3 signaling has been suggested to be implicated in the
pathophysiology of ASSD and ILD (126). Similar to GlyRS,
AsnRS has been detected in extracellular compartments and
serum levels were not significantly different between myositis
patients and healthy individuals (97).

Autoantibodies against AsnRS (anti-KS) occur in less than 5%
of patients with IIM and were first described in 1999 in two
patients with ILD and no evidence of myositis (14). A review of
the published literature about the clinical features associated with
anti-KS autoantibodies has shown that ILD with NSIP or UIP
patterns is the dominant feature, being the only manifestation in
50% of patients (63). Myositis seems to rarely affect this group of
patients, while arthritis, Raynaud ’s phenomenon, and
mechanic’s hands may occur in one quarter of them (127)

Phenylalanyl-tRNA Synthetase
Phenylalanyl-tRNA synthetase, PheRS, the target of anti-Zo
autoantibodies, has been linked to cancer by reports of
increased expression in some cancers (128–130), and suggested
to be a prognostic indicator for some cancers (131). Thus,
expression of PheRS was increased in gastric cancer tissue and
the levels of expression correlated with distant metastasis and
poor survival (132). Mechanistically, PheRS regulates anti-
apoptotic signaling and cell proliferation through its upstream
interaction proteins (133); however, the regulation of
oncogenesis and development of gastric cancer by PheRS need
further investigation.

The presence of autoantibodies against PheRS, anti-Zo, was
first described in 2007 in a patient with ASSD (15). Anti-Zo is a
rare anti-synthetase autoantibody. The largest cohort positive for
anti-Zo autoantibodies was a case series of nine patients in UK
(134). Seven (78%) of the patients had ILD, and two patients had
evidence of muscle involvement, suggesting that anti-Zo
autoantibodies are associated with features of ASSD. Moreover,
two-thirds of the patients had autoantibodies against anti-Ro52,
which has been previously reported to co-exist with other anti-
synthetase autoantibodies and more severe ILD (135, 136). A
more recent study reported the prevalence of anti-Zo
autoantibodies as 1.4% in patients with ILD and novel
associations of anti-Zo with connective tissue-disease related
ILD (CTD-ILD) and idiopathic pneumonias (45).

Tyrosyl-tRNA Synthetase
Tyrosyl-tRNA synthetase or TyrRS, the target of anti-YRS/anti-
HA autoantibodies, can split into two separate fragments, and
these fragments have distinct cytokine activities whereas the full-
length TyrRS is inactive for cytokine activities (42, 137).
Secretion of both fragments are induced by leukocyte digestion
and active forms of TyrRS can be naturally generated by
alternative splicing or proteolytic cleavage (42, 137). The
fragment that includes the C-terminal domain induced
migration of mononuclear phagocytes and stimulated
production of TNFa. On the other hand, the N-terminal
domain induced migration of polymorphonuclear leukocytes
(PMNs) in a dose-dependent manner very similar to the CXC
chemokine interleukin -8 (IL-8) (42). Similarities in the effects of
Frontiers in Immunology | www.frontiersin.org 8
IL-8 and mini TyRS (N-terminal) on PMNs indicate a possible
functional correlation between mini TyrRS and IL-8 activity. In
addition, human mini TyrRS induced angiogenesis in vivo in
different organisms similar to IL-8 (138). The N-terminal
domain of TyrRS was also reported to be present in platelets,
from which they are released by unknown mechanisms and to
regulate monocytes/macrophage differentiation during bacterial
infections (139).

The first report of autoantibodies against TyrRS referred to as
anti-YRS or anti-HA was published in 2005 in a patient with
ASSD features (17). The prevalence of anti-HA autoantibodies in
a large cohort of patients with ILD (n = 1,194) was 2% (45).
POSSIBLE AUTOANTIGENS IN OTHER
DISEASES

Lysyl-tRNA Synthetase
As mentioned previously, aaRSs gained additional domains and
functions throughout evolution. One example is Lysyl-tRNA
synthetase (LysRS), also referred to as KRS or SC. LysRS binds
to macrophages and monocytes leading to macrophage
migration and TNF production when present in the
extracellular media (140). Moreover, there are many reports in
the literature indicating a role for LysRS in human
immunodeficiency virus (HIV) replication, signal transduction,
and neurodegenerative diseases (141). The mechanism of how
LysRS contributes to HIV replication has been well studied, and
it has been established that HIV recruits LysRS to serve as the
reverse transcriptase through the interaction of LysRS and Gag
protein (142–149). In addition, the contribution of LysRS in
cancer has been established by many studies. LysRS has been
shown to promote cancer metastasis by inducing cancer cell
migration through the interaction with 67LR protein (150).
LysRS can be secreted by cancer cells to induce inflammatory
responses (151), whereas a more recent study showed a novel
mechanism for the secretion of LysRS via exosomes or exosome-
like extracellular vesicles from cancer cells, which is controlled by
a caspase-8-dependent pathway (94).

There is also a possible connection of LysRS with
amyotrophic lateral sclerosis (ALS). In some patients with ALS,
a mutation in SOD1 is observed. The mutation in SOD1 induces
apoptosis of motor neurons, thus leading to the onset of
neurodegeneration and interestingly LysRS associates with
mutant but not wild-type SOD1 (152). The abnormal
interaction between SOD1 and LysRS contributes to
mitochondrial dysfunction in ALS (153). In addition, a loss-of-
function mutation in the CD of LysRS was implicated in CMT
disease. It was reported that the mutation in LysRS severely
affects the enzyme activity (154).

Glutaminyl-tRNA Synthetase
Glutaminyl-tRNA synthetase (GlnRS) is one of the two enzymes
in this family that is not found in all organisms, such as Gram-
positive eubacteria, archaebacteria, and organelles, suggesting
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that this aaRS has evolved along independent evolutionary
pathways (155). Additionally, GlnRS appears to be the largest
polypeptide in the human multienzyme synthetase complex and
shares three significant regions of sequence similarity with the
translation elongation factor EF-1 (156).

In humans, it is bifunctional, being specific for two amino
acids (glutamine and proline) (28), acquiring the term glutamyl-
prolyl-tRNA synthetase [Glu-ProRS or EPRS (157)]. Among the
non-canonical functions of GlnRS is the ability to block apoptosis
trough a negative regulation of the apoptosis signal-regulating
kinase 1 (ASK1) (158). Additionally, in vivo studies in a rat model
to evaluate changes in sensory neurons after nerve injury showed
that the expression of GlnRS was decreased in the dorsal root
ganglia (DRG). Thus, this aaRS may play a potential role as a
neurotransmitter; however, further research is required (159).
In addition, GlnRS expression may affect macrophage
recruitment to injured DRG neurons (159–161).

Mutations in the gene encoding GlnRS have been associated to
early-onset epileptic encephalopathy (162, 163). GlnRS deficiency
has been associated with neurodegenerative disorders associated
with severe developmental delay, microcephaly, delayed
myelinization, and intractable epilepsy, which seems to be more
severe than other disorders associated with mutations in tRNA
synthetases (164).

Tryptophanyl-tRNA Synthetase
Mammalian tryptophanyl t-RNA synthetase, TrpRS or WRS, has
gained functions such as alternative splicing and proteolytic
cleavage through evolution. This aaRSs is found not only in the
cytosol but also in thenucleus. In the cytosol, it plays a role in innate
immune responses, angiogenesis, and type II IFN signaling.

TrpRS is secreted into the extracellular milieu by monocytes
upon infection with certain pathogens and it interacts with TLR2
and TLR4 leading to the secretion of TNFa, neutrophil
infiltration, and increased phagocytotic abilities (90–92). These
responses help to clear out infections at the early phase,
indicating the importance of TrpRS as a ligand for immune
regulation through TLR signaling. In support of this hypothesis,
high levels of TrpRS were found in sera of patients with sepsis, a
potentially fatal complication due to infection, when compared
to healthy controls (92). Additionally, increased TrpRS
expression from CD4+ T cells resisted indoleamine 2,3-
dioxygensase (IDO)-mediated immunosuppression from DC in
Graves’ disease (89). Autoantibodies against TrpRS have been
found in patients with autoimmune diseases, where the clinical
features were associated with rheumatoid arthritis (33–35).

Seryl-tRNA Synthetase
There are few studies investigating the non-canonical functions
of seryl-tRNA synthetase, SerRS. It was reported that SerRS
interacts with a transcription factor called Yin Yang 1, to form a
complex that negatively regulates vascular endothelial cell
growth factor A during angiogenesis (165)

Autoantibodies against SerRS have been detected in a few
cases of systemic lupus erythematosus or rheumatoid arthritis
but not in myositis (36, 77, 166).
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So far, there are no reports in the literature about the remaining
eight aaRSs being recognized as autoantigens. However, recently,
several mutations in encoding genes in mitochondrial or
cytosolic compartments have been identified. These mutations
resulted in dysfunctional aaRSs that lead to a variety of multi-
organ, neuronal, and metabolic disorders (Table 4) (8). Fifty-five
percent of mutations in genes encoding for mitochondrial aaRSs
were associated with disease, whereas in cytoplasmic aaRSs, the
percentage is 20% (177). Notably, mutations in genes encoding
for mitochondrial aaRS are often associated with some form of
myopathy (Table 4).
MECHANISMS OF PATHOGENICITY

There are different ways on how aaRSs contribute to the disease
pathogenesis as discussed in this review. One mechanism is due
to the aaRSs being recognized as autoantigens, thus inducing an
abnormal immune response. Other possible mechanisms in
disease pathogenesis are impairments in their canonical or
non-canonical functions due to mutations as described above.

In many systemic autoimmune diseases, it has been
established that substrates of granzyme B cleavage, which is a
serine protease involved in apoptosis, are more often
autoantigenic rather than the native form of the protein (39,
197). Autoantigens are usually secreted or located extracellularly,
in membranes, or in apoptotic blebs and contain specific
structures or sequences such as coiled-coil motifs, granzyme B
cleavage sites, or ELR (Glu-Leu-Arg) motifs (198). Importantly
IleRS, HisRS, and AlaRS all go through granzyme B cleavage and
release fragments, which contain epitopes recognized by
autoantibodies (128). For example, the WHEP domain,
released from HisRS upon granzyme B cleavage, which is 50 aa
long, has a helix-turn-helix conformation that is also referred as a
“coiled-coil”. This has been recognized as a major epitope for
anti-Jo-1 autoantibodies (98). Similarly, granzyme B cleavage
sites are found in GlyRS, AlaRS, and IleRS, which are
autoantigens for anti-EJ, anti-PL12, and anti-OJ, respectively
(8). Although it is still a mystery how aaRSs are released to the
extracellular environment to accomplish all the non-canonical
functions, it has been proposed that it might be through passive
release from cells that are undergoing necrosis. At least five
aaRSs, HisRS, ThrRS, GlyRs, TyrRs, and AsnR, have been
reported to be secreted out of cells (8, 42–44, 98, 199) during
tissue damage, angiogenesis, and in cancer. For the remaining
four aaRSs that have been reported as autoantigens in ASSD, (i)
AsnRS has also been detected in serum of healthy individuals and
myositis patients possibly due to tissue damage, (ii) the levels of
PheRS were reported to be associated with various types of
cancer whereas there are no reports yet on the extracellular
location of (iii) IleRS and (iv) AlaRS. Interestingly, some of the
aaRSs are secreted or directly act on monocytes such as TrpRS,
GlyRS, TyrRS, and LysRS during infections, which could be a
link between infection and ASSD (85, 90–92, 139, 140).
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In addition to autoantigenic motifs, mutations in genes
encoding aaRSs that lead to impaired functions were reported
in multi-organ disorders, neurological diseases, or cancer
(Table 3). The most common aaRS-associated monogenic
disorder is CMT, a genetic peripheral nerve disorder (8).
Currently, seven known members of aaRSs (GlyrRS, TyrRS,
AlaRS, HisRS, TrpRS, MetRS, and LysRS), have been
implicated in CMT disease, representing the largest protein
family in CMT etiology, although the role of aaRSs in this
disorder is still unclear (115, 200).
CONCLUSIONS

ASSD is an autoimmune condition characterized by the presence
of autoantibodies targeting one of several aminoacyl t-RNA
synthetases (aaRS) along with distinct clinical features.
Although in the literature, reference to autoantibodies against
11 aaRSs can be found, autoantibodies against only eight aaRSs
have been identified so far in ASSD patients as described in this
review. We summarized clinical features of ASSD, what is known
about ASSD-associated aaRSs, and also reviewed the known
properties of the remaining aaRSs. It seems that even though
the remaining aaRSs have not been confirmed to be autoantigens
in diseases, their non-canonical functions inside and outside of
the cell and impairment in their functions contribute to the
Frontiers in Immunology | www.frontiersin.org 10
pathogenesis of diseases such as cancer, multi-organ disorders,
or neurological disorders. This strongly implicates that aaRSs
have an essential role in the regulation of immune responses and
more attention is needed to understand the underlying
mechanisms of their pathogenic functions.
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