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Integrated exome and transcriptome sequencing
reveals ZAK isoform usage in gastric cancer
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Gastric cancer is the second leading cause of worldwide cancer mortality, yet the underlying

genomic alterations remain poorly understood. Here we perform exome and transcriptome

sequencing and SNP array assays to characterize 51 primary gastric tumours and 32 cell lines.

Meta-analysis of exome data and previously published data sets reveals 24 significantly

mutated genes in microsatellite stable (MSS) tumours and 16 in microsatellite instable (MSI)

tumours. Over half the patients in our collection could potentially benefit from targeted

therapies. We identify 55 splice site mutations accompanied by aberrant splicing products, in

addition to mutation-independent differential isoform usage in tumours. ZAK kinase isoform

TV1 is preferentially upregulated in gastric tumours and cell lines relative to normal samples.

This pattern is also observed in colorectal, bladder and breast cancers. Overexpression of this

particular isoform activates multiple cancer-related transcription factor reporters, while

depletion of ZAK in gastric cell lines inhibits proliferation. These results reveal the spectrum

of genomic and transcriptomic alterations in gastric cancer, and identify isoform-specific

oncogenic properties of ZAK.
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G
astric cancer is the fourth most common cancer and the
second most common cause of cancer-related death
worldwide1. While several chemotherapy options are

available for treating gastric cancer patients, the only available
targeted therapy choice is trastuzumab for ERBB2-positive
patients2. The heterogeneous nature of gastric cancer and the
lack of targeted therapy options present an urgent need for
detailed understanding of genomic alterations in gastric cancer, as
such characterization can suggest therapeutic targets and patient
stratification strategies. Previous exome sequencing of 15–22
gastric tumours identified TP53 and ARID1A as frequently
mutated genes3,4, but there was only limited overlap of most
significantly mutated genes between these studies5, suggesting
that more in-depth genomic characterization of gastric cancer is
needed. In addition, transcriptome sequencing coupled with
genomic analysis has not been performed for gastric cancer, thus
it has been difficult to investigate how the reported mutations are
related to transcriptional changes. Cancer-specific splicing
isoforms, in particular, represent an important class of gene
product for executing distinct biochemical functions. Cancer-
specific splicing products can result from both differential
expression and regulation of splicing factors and somatic
mutations impacting critical splicing signals, but the prevalence
of such events is not known. Regardless of the underlying
mechanisms, the identification of cancer-specific splicing
products could broaden the search space for cancer-causing
proteins. This is especially relevant to gastric cancer, since
currently known coding-region mutations can explain the genetic
basis in only a small fraction of the patients3–5.

Here we apply whole-exome sequencing, RNA sequencing and
single nucleotide polymorphism (SNP) array technology to
characterize 51 human primary gastric tumour and adjacent
normal samples, and 32 gastric cancer cell lines (Supplementary
Data 1–3). We examine the somatic mutation spectrum with
respect to the microsatellite stability status, and aim to identify
mutations or DNA copy number changes that might suggest
clinical treatment options. We then focus on combining the
RNA- and DNA-level information to identify both mutation-
dependent aberrant splicing and mutation-independent splicing
isoforms in gastric cancer. We further identify an isoform of the
ZAK kinase that is specifically implicated in gastric cancer.

Results
Viral and bacterial pathogens are known to play a role in the
development of gastric cancer6. Therefore, we first conducted
transcriptome analysis to identify pathogen sequences in gastric
samples. Notably, five of the tumours but none of the normal
samples had Epstein-Barr virus (Human herpesvirus 4) sequences
(Supplementary Figs 1 and 2), although the enrichment does not
reach statistical significance due to small sample size (N¼ 80,
P¼ 0.06, Fisher’s exact test). Sequences of Helicobacter pylori,
known to be associated with gastritis and gastric cancer6, were
found in most samples and not significantly enriched in tumours
(Supplementary Fig. 1).

We identified a total of 27,732 somatic mutations in our exome
data from 48 tumour-normal sample pairs. Forty per cent (11,112)
were protein-altering (8,726 missense, 1,661 indels, 494 nonsense,
10 stop loss and 221 essential splice site. Supplementary
Data 4–6). MSI is an aetiological source of somatic mutations and
is observed in 10–30% of gastric tumours7. Consistent with previous
findings3, the 10 MSI tumours in our collection harboured many
more protein-altering mutations than the 38 MSS samples (median:
643 for MSI versus 83 for MSS, N¼ 48, P¼ 2� 10� 6, one-tailed
Wilcoxon rank sum test, Fig. 1a). The difference was especially
pronounced for insertions and deletions, with MSI samples

containing B90 times more indels than MSS (median: 132 for
MSI versus 1.5 for MSS, N¼ 48, P¼ 6� 10� 7, one-tailed Wilcoxon
rank sum test, Fig. 1a). Notably, all five tumour samples with
Epstein-Barr virus RNAseq reads were MSS, and those samples had
more mutations than other MSS samples (N¼ 37, P¼ 0.01, one-
tailed Wilcoxon rank sum test). In our data set, we identified 30
recurrent somatic mutations in tumours (Supplementary Data 7). In
total, 94 (1%) of the protein-altering somatic variations identified in
this study have been reported in at least two unique samples in
the Catalogue of Somatic Mutations in Cancer8 (Supplementary
Data 4), suggesting that they may be driver mutations.

Analysis of the base-level mutation spectrum showed that
C-to-A transversions were most common in MSS samples (42%),
while C-to-T transitions predominated in MSI tumours (51%)
(Fig. 1b). The increase in C-to-T transitions in MSI samples is
consistent with the results from a DNA mismatch repair-deficient
mouse model9. Sequence analysis of the flanking nucleotides
revealed an enrichment of G following the C-to-T transitions in
both MSS and MSI samples (Supplementary Fig. 3).

To identify significantly mutated genes, we combined our data
with the previously published gastric exome data sets3,4, and
applied the MuSiC10 algorithm to MSI and MSS samples
separately. The meta-analysis of three data sets not only
confirmed recurrent mutated genes highlighted in previous
gastric exome studies, such as ARID1A3 and FAT4 (ref. 4), but
also greatly increased our statistical power to detect significantly
mutated genes. TP53 and PIK3CA were the only genes found to be
significant in both MSI and MSS samples (Fig. 1c and
Supplementary Data 8). Other significantly mutated genes in
MSS samples included some of the known cancer drivers, such as
ARID1A, APC, CTNNB1, CDH1 and SMAD4. In addition, we
identified a few genes not previously implicated in gastric cancer:
putative tumour suppressor proteins LDOC1 (refs 11,12) and
PCDH9 (ref. 13), and cell surface proteins ELTD1, GPC6, TLR4
and PKHD1L1. In MSI samples, we identified 16 significantly
mutated genes, including known oncogenes KRAS and ERBB2.
Other potential novel driver candidates include ZBTB1,
TRAPPC2L, as well as G protein-coupled receptors GPR39,
GPR85 and CHRM3. Notably, in our gastric cell line collection
we also observed 17 protein-altering point mutations or indels in
TP53, 14 in APC, 12 in FAT4, 8 in CDH1 and 5 in PIK3CA
(Supplementary Data 9 and 10).

We further examined genes affected by either protein-altering
mutations or substantial copy number alterations in our
tumour samples (Supplementary Fig. 4, Supplementary Note 1,
Supplementary Data 11 and 12), and aggregated them into
defined and curated pathways that are known to be involved in
cancer14 by constructing a pathway aberration incidence matrix.
Among the highly altered pathways were several known cancer
pathways such as TP53, RTK, PI3K and cell cycle (Fig. 2a).
Notably, alteration of the PI3K pathway is significantly associated
with the MSI group (N¼ 43, Benjamini–Hochberg-adjusted
P-value¼ 0.007, Fisher’s exact test): 9/10 MSI samples have
alterations in the pathway, compared with only 8/33 for MSS
samples (Fig. 2b). In addition, very few copy number changes
contributed to pathway alterations in the MSI samples (Fig. 2b),
confirming that point mutations drive oncogenic deregulation in
these samples.

Currently, the only approved targeted therapy for gastric
cancer is trastuzumab for ERBB2-positive tumours. Several others
in clinical trials or approved for other indications include EGFR
inhibitors, MEK inhibitors for KRAS-mutant tumours, PIK3CA
and MET inhibitors (phase III, gastric cancer). When we
examined alterations in these genes, we identified six samples
with ERBB2 amplification and five harbouring MET amplification
(Fig. 2c). In addition, we found several known activating
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mutations, including two KRAS-activating mutations, 8 PIK3CA-
activating mutations and one EGFR-activating mutation (out of 4
EGFR mutations in our samples). Collectively, more than half of
the patients in our sample set harbour activating alterations in
targetable genes and would potentially benefit from therapies that
are approved or in clinical trials (Fig. 2c). Furthermore, we
identified six patients with ERBB2 point mutations including a
recurrent R678Q change (Supplementary Data 4). None of these
match with the activating ERBB2 point mutations recently
identified in breast tumours15, so it remains unclear whether
gastric cancer patients with ERBB2 mutations would benefit from
the trastuzumab treatment.

The combined exome and RNAseq data enable global analysis
of mutations potentially affecting mRNA splicing. We identified
139 mutations affecting essential splice donor or acceptor sites of
genes that have RNA splice junction reads spanning the splice site
mutations. Among those mutations, 80 had spanning junctions
that were not consistent with annotated exon models. By further
excluding junctions present in any normal gastric tissue samples,
we obtained a list of 55 mutations that are associated with
tumour-specific aberrant splice junctions (Supplementary Fig. 5a
and Supplementary Data 13). Thus, about 40% (55/139) of
essential splice site mutations showed evidence of altered splicing.
Since these mutations were heterozygous, we typically observed
both known and aberrant splice junctions spanning the same

mutation locus; the number of reads supporting normal junctions
was much higher than those supporting aberrant junctions
(Supplementary Fig. 5b), possibly due to nonsense-mediated
decay of the aberrant transcripts. Several of the 55 genes with
evidence of aberrant splicing were known cancer-related genes
including TP53, MAP2K4 (JNKK) and CHD8 (Supplementary
Data 13; Supplementary Fig. 6). Mutations in MAP2K4 were
previously found in a variety of human malignancies8,16–18,
including gastric cancer cell lines18 (Supplementary Fig. 7). We
found 4 mutations in MAP2K4 in our tumour collection,
including one missense, two splice site and one frameshift. In
tumour sample SAM94128, where we identified a mutation
affecting the AG splice acceptor sequence (Supplementary
Fig. 6a), the RNAseq data showed eight reads supporting the
expression of a novel isoform of MAP2K4 that skips exon 8,
leading to an in-frame deletion of 26 residues, thereby disrupting
the essential protein kinase domain. The loss-of-function
nature of the mutation is consistent with the suggested tumour
suppressor role of MAP2K4 (refs 17,18).

We performed differential expression analysis on the trans-
criptome sequencing data. The expression level and variability of
smoothelin (a smooth muscle expression marker (SMTN)) was
significantly higher in our normal gastric tissue samples than gastric
tumours (Supplementary Fig. 8a, left panel), indicating varying
degree of smooth muscle contamination in the normal tissues. After
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Figure 1 | Somatic mutations in gastric cancer. (a) Number of somatic protein-altering mutations per tumour. Epstein-Barr virus (EBV) status (according

to the presence of EBV reads in RNAseq data) and microsatellite status are shown below. EBV status for two samples is not available due to the

absence of RNAseq data for the samples. (b) Mutation spectrum varies between MSI and MSS samples. (c) Recurrently mutated genes for MSS (left) and

MSI (right) samples by MuSiC analysis. Each circle represents a gene and the size of the circle is proportional to the mutation count for that gene.

The genes are represented in alphabetical order from left to right on the x axis. Genes with a statistically significant q-value are labelled.
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including the SMTN term in our statistical model to account
for the contamination effect, we found 165 upregulated and 256
downregulated genes in tumours using a stringent cutoff (fold
change 43 and Benjamini–Hochberg adjusted P-value o10� 10)
(Supplementary Note 2 and Supplementary Data 14). These include
many canonical markers for gastric cancer like serum markers
MUC5AC19, Reprimo20 and Pepsinogen C21. A significant
proportion of the 165 genes with higher expression in tumours are
involved in cell cycle (P¼ 10� 6), while digestion, transmembrane
transport and ion transport functions were downregulated. We also
found 22 gene fusions (Supplementary Note 3, Supplementary Data
15 and Supplementary Fig. 9), but detailed analysis of these fusions
did not support a driver role for any of them.

The transcriptome data also allowed us to identify splice
isoforms related to cancer. Isoform usage was quantified by
tallying the reads uniquely assignable to a particular isoform, and
then comparing those to reads mapped to the entire gene (that is,
all known isoforms). The significance of differential isoform usage
was assessed by a generalized mixed-effect regression model using
negative binomial as the underlying model. After correcting for

the smooth muscle contamination, we identified 170 genes with
differential isoform usage between tumours and paired normal
tissue. These included cancer-related genes such as ZAK, KRAS,
MCM7, ELK4 and CCND3 (Supplementary Data 16). We focused
our attention on ZAK (sterile alpha motif and leucine zipper
containing kinase AZK, also known as MLTK) because it
exhibited one of the smallest P-values among the cancer-related
kinases, a major cancer target class. ZAK is a component of stress-
activated signal transduction cascade, which has been implicated
in several pathways related to cancer, such as apoptosis, cell cycle
and neoplastic cell transformation22–24. ZAK has two major
transcript variants TV1 and TV2. Protein products of TV1
(MLTK-a) and TV2 (MLTK-b) share the same N terminus that
contains a kinase domain. TV1 has a longer C-terminal region
containing a sterile alpha motif; while TV2 has a conserved
unique C-terminal extension of 124 amino acids including an
extended acidic patch (Fig. 3a). Previous studies suggest that the
two isoforms of ZAK may have distinct biological functions, with
TV1 being specifically implicated in histone phosphorylation25

and disruption of actin stress fibres26.
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We observed significant increase in the fraction of ZAK TV1,
indicating preferential upregulation of TV1 in tumours (Fig. 3b,
left panel, P¼ 1.4� 10� 9, see Methods for detailed description of
statistical analysis). The quantification of isoform fractions from
our RNAseq data was supported by quantitative PCR

measurements (Fig. 3c). We also used Cufflinks as an alternative
method for transcript isoform quantification and confirmed that
TV1 expression was higher in the tumours than in the normals,
while TV2 expression remained unchanged (Supplementary
Fig. 8b). To analyse isoform-specific ZAK expression in situ, we

Breast

TV1: NM_016653

TV2: NM_133646

SAMPkinase_Tyr

Pkinase_Tyr

* *

ZAK

1.0

Gastric Colon

0.5

0.0

–0.5

–1.0

0.30 r= 0.91, P= 0.00077

T
V

1/
ge

ne
: R

N
A

-s
eq

 r
ea

ds

0.25

0.20

0.15

0.10

2

0

–2

–4

–6

Head_neck Kidney Lung Thyroid Urinary

Lo
g2

(ls
of

or
m

_c
t/G

en
e_

ct
)

0.4 0.6

TV1/gene: qPCR

0.8 1.0

–1

0

1

2

A
dj

us
te

d 
T

V
1 

is
of

or
m

 fr
ac

tio
n

A
dj

us
te

d 
T

V
1 

is
of

or
m

 fr
ac

tio
n

Normal Tumour Normal

Normal Tumour
ZAK TV1: TCGA

Tumour

a

b

c d

Figure 3 | Differential ZAK isoform usage between normal and tumour samples. (a) ZAK gene model and protein domain structure. Thick bars: coding

exons; thin bars: UTR. TV2 lacks the last nine exons and has a long terminal coding and non-coding exon. Blue and red indicate unique TV1 and

TV2 sequences. Transcript variant 1 (TV1) encodes a longer protein product with a sterile alpha motif domain. (b) ZAK TV1 fraction is significantly higher in

gastric tumours (left) and colon tumours (right), compared with normal adjacent tissues. The fraction of TV1 was measured by the ratio between the

number of reads uniquely assignable to TV1 and the number of reads mapped to the entire ZAK gene. To account for smooth muscle contamination in

normal tissues, we fit a linear model with smoothelin expression as predictor and the log isoform fraction as response, and used the residuals of the

model as the ‘adjusted isoform fraction’. Dots represent samples. Grey lines connect matched tumour and normal samples. The boxes in the box-and-

whisker plots represent the interquartile range between the first and third quartiles; the dashed lines (whiskers) extend to the most extreme data

points, which is no more than 1.5 times the interquartile range from the box. (c) ZAK isoform fractions derived from RNAseq data correlate with

quantitative PCR (qPCR) measurements. For nine gastric cancer cell lines in our study, we quantified the ratio between ZAK total expression and ZAK TV1

expression using qPCR, and compared the measurements with the isoform fraction we derived from the RNAseq data. The two measurements have

significant correlation (Pearson’s correlation coefficient r¼0.91, P-value¼0.00077). (d) ZAK isoform expression in six TCGA data sets where

there are 410 normal samples. Normal samples are represented by blue dots and tumour samples by red dots. ZAK TV1 fraction is significantly higher

(adjusted P-value o0.001 and fold change 42) in breast and bladder cancer data (marked by the green asterisks).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4830 ARTICLE

NATURE COMMUNICATIONS | 5:3830 | DOI: 10.1038/ncomms4830 | www.nature.com/naturecommunications 5

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


performed in situ hybridization using probes specific to the
different ZAK isoforms (Supplementary Methods). Consistent
with the transcriptomic analysis, ZAK TV1 expression was found
upregulated in gastric cancer, while TV2 was more ubiquitously
expressed in gastric tumour cells as well as normal mucosa and
smooth muscle (Supplementary Fig. 10). The preferential
upregulation of ZAK TV1 is seen in several other cancers.
Analysis of colorectal cancer RNAseq data27 showed that the
fraction of TV1 increased by about threefold (Po10� 20, Fig. 3b,
right panel), and ZAK was reported to be one of the top candidate
genes to modulate b-catenin-dependent transcription and
regulate colon cancer cell proliferation in two loss-of-function
screens28. The Cancer Genome Atlas (TCGA) RNAseq data also
showed significantly higher ZAK TV1 usage in bladder and breast
cancer relative to corresponding normal samples (Fig. 3d). We
only detected one non-synonymous mutation and one frameshift
insertion in ZAK in our tumour samples and one additional point
mutation in the cell lines, suggesting that expression of ZAK
isoforms in these samples may be regulated by trans-acting splice
factors instead of mutations in the ZAK gene itself.

To validate our findings from RNAseq and characterize ZAK
activity in gastric cancer, we tested ZAK function in gastric cancer
cell lines. ZAK TV1 protein was upregulated in gastric tumours
and cell lines relative to normal stomach (Fig. 4a). Overexpression
of TV1, but not of TV2, induced robust transcriptional activation
of several cancer-related signalling genes such as AP1 and NFkB,
known to be modulated by ZAK activity22 (Fig. 4b). Depletion of

ZAK using two independent short hairpin RNAs (shRNAs) led to
significant growth inhibition in gastric cell lines that express high
levels of ZAK TV1 and variable levels of TV2 (Fig. 4c). These
observations suggest an important role for ZAK TV1 in activating
cancer signalling pathways and gastric cancer growth.

This study represents the largest integrated genomic and
transcriptomic analysis of gastric cancer to date. Our meta-
analysis of three gastric exome data sets provides the most
comprehensive characterization of the recurrently mutated genes
in gastric cancer. We also identified 170 genes with distinct
isoform usage patterns between tumour and normal samples. In
particular, the ZAK TV1 isoform is preferentially upregulated in
gastric tumours and cell lines, resulting in significantly higher
TV1 fraction. This pattern was seen in several other cancer types,
suggesting a widespread association of ZAK TV1 with tumor-
igenesis. Recently, ZAK TV1, but not TV2, has been shown to
stimulate anchorage-independent colony growth and xenograft
tumour formation29, further supporting the oncogenic role of
this particular isoform. These cancer-specific isoforms can
dramatically broaden opportunities in cancer classification and
tumour-specific anti-cancer targets.

Methods
Sample preparation. We characterized primary tissue samples from 51 gastric
cancer patients (Supplementary Data 1) and 32 gastric cancer cell lines
(Supplementary Data 2). Fresh-frozen primary gastric tumours and adjacent
normal tissue samples were obtained from SeraCare LifeSciences, ILSBio,
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Figure 4 | Experimental validation of ZAK function in cancer. (a) Immunoblots of ZAK TV1 and TV2 expressions show that protein level of TV1 is

higher in gastric tumours and cell lines, compared with normal stomach tissues. ZAK TV1 was detected with Bethyl a-ZAK antibody and TV2 with Sigma

a-ZAK antibody (see Methods). (b) ZAK TV1, but not TV2, can stimulate multiple transcriptional programs related to cancer pathways. Transcription

reporter assay in 293 cells transfected with empty vector, TV1 or TV2 along with the indicated firefly luciferase reporter construct (AP1, NFkB and

TCF/LEF). Activity is normalized to cell number using CellTiter-Glo. Immunoblot shows relative ZAK isoform expression from 293 cells transfected with the

indicated construct. ZAK was detected with Sigma a-ZAK antibody. (c) Depletion of ZAK from gastric cancer cell lines inhibits cell growth. In

cell lines where ZAK knockdown led to reduced viability, there was consistently high TV1 expression, while TV2 expression was marginal and variable

(for example, IM-95m cell line, see for example, panel a). Cell viability analysis was carried out 6 days after infection of gastric cancer cell lines

with independent ZAK shRNAs. Cell number is normalized to shNTC-infected cells. Immunoblot indicates the level of ZAK-TV1 depletion 4 days after

infection. ZAK was detected with Bethyl a-ZAK antibody.
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ProteoGenex, University of Michigan, and Cureline, Inc. All samples used in the
study had approval from institutional review board and informed consent from
study participants. All tumour and normal tissues were subjected to pathology
review to confirm diagnosis and tumour content. Only tumours with 450%
tumour content and their corresponding matched normal tissues (if available) were
included in this study. The Qiagen AllPrep DNA/RNA kit was used to prepare
DNA and RNA. Tumour samples were assessed for MIS using an MSI detection kit
(Promega). Gastric cancer cell lines were obtained from DSMZ, KCLB, JCRB,
ECACC, ATCC, Riken and Teva (Supplementary Data 2).

High-throughput sequencing of exomes and transcriptomes. Exome capture
was performed using the Nimblegen SeqCap EZ Human Exome Library v2 (44 Mb)
or Agilent SureSelect Human All Exome kit (50 Mb). Exome capture libraries were
sequenced by HiSeq 2000 (Illumina) to generate 2� 75 bp paired-end data
(Supplementary Data 3).

We also obtained RNAseq data using the TruSeq RNA Sample Preparation kit
(Illumina). Libraries were multiplexed two per lane and sequenced on HiSeq 2000
to obtain at least 30 million paired-end (2� 75 bp) reads per sample.

All sequencing reads were evaluated for quality using the Bioconductor
ShortRead package. Sample identity was confirmed by comparing genotype data
derived from exome sequencing and RNAseq against Illumina 2.5 M array data.
Samples derived from the same patient were expected to have 480% concordance.
Samples failing the criteria were excluded.

Variant calling and validation. Sequence reads were mapped to the UCSC human
reference genome (GRCh37/hg19) using Burrows-Wheeler Aligner software30 with
default parameters. Local realignment and duplicate removal were performed as
described31. Somatic mutations were determined for each sample from the
corresponding tumour and matched normal BAM files using Strelka32. Strelka
variants were additionally filtered to include only variants with a minimum variant
quality of 30, a minimum variant allele frequency of 5% and a variant allele
frequency in the matched normal of o5%. Known germline variations seen in
dbSNP Build 131 (ref. 33) or 6,515 normal exomes34 but not in COSMIC v56
(ref. 8) were excluded.

For cell lines, variants were determined using the GATK UnifiedGenotyper31.
Known germline variants were screened out if it they were not represented in
COSMIC in at least two samples and were present in one of the following data
sources: dbSNP Build 131 (ref. 33), 6,515 previously published normal exomes34,
germline variants from this study and germline variants from previous
publications27,35.

Mutational significance. We evaluated the mutational significance of genes using
MuSiC10 for both the MSI and MSS samples separately given their different
background mutation rates. Genes with very low expression (RPKMo0.17, the
lower quartile among expressed genes) were excluded from this analysis. Q scores
were calculated by taking the negative log10 of the FDR CT values from MuSiC
with a maximum possible value of 16.

Analysis of pathway aberration. We aggregated genomic mutations and copy
number changes into defined and curated pathways that are known to be involved
in cancer14 by constructing a binary pathway aberration matrix. For each sample
we called a pathway aberrant if any of the genes in the pathway contained a somatic
mutation or a significant copy number change in that sample. Significant copy
number changes were either amplifications (median centred, ploidy-corrected copy
number 40.3) or losses (median centred, ploidy-corrected copy number o� 0.4).
Somatic mutations were limited to mutations that caused a premature stop codon,
were previously annotated in COSMIC8 or were predicted to be deleterious by the
Condel algorithm36.

RNAseq data processing and expression analysis. RNAseq reads were first
aligned to ribosomal RNA sequences to remove ribosomal reads. The remaining
reads were aligned to the human reference genome (NCBI Build 37) using
GSNAP37 version ‘2012-01-11’, allowing maximum of two mismatches per 75 base
sequence (parameters: ‘-M 2 -n 10 -B 2 -i 1 -N 1 -w 200000 -E 1 --pairmax-
rna¼ 200,000’). Transcript annotation was based on the RefSeq database
downloaded on 30 November 2011. To quantify gene expression levels, the number
of reads mapped to the exons of each RefSeq gene was calculated. Differential
expression analysis on the count data was performed using the R package
‘DESeq2’38, which is based on a negative binomial distribution and uses shrinkage
estimation for the variance of the distribution. As an alternative way of quantifying
normalized gene and transcript expression, Fragments Per Kilobase of transcript
per Million mapped reads (FPKM) values were also derived using Cufflinks39

(version 2.1.1).
Raw data of TCGA cancer RNAseq data sets were downloaded from the TCGA

repository (http://cancergenome.nih.gov/) and processed in the same way as our
in-house data.

Essential splice site mutations and aberrant splicing events. Somatic muta-
tions at essential splice sites (the first and last two bases of introns) were extracted
from the list of somatic mutations in 32 tumours with both exome and RNAseq
data. Splice junction reads spanning the splice site mutations were extracted from
the RNAseq data. To more stringently define aberrant splice junctions, we checked
the splice junction reads against transcript models from both RefSeq and UCSC,
and only those junctions inconsistent with both sources were called aberrant.

Differential isoform usage between cancer and normal samples. Total read
counts for each gene, as well as counts of reads that can be uniquely assigned to a
particular isoform, were obtained from the BAM files. Differential isoform usage
was assessed on isoforms with sufficiently high number of counts using a negative
binomial regression model. Specifically, for each gene we calculated the 75th
percentile of gene read counts in tumour samples and, separately, in normal
samples. Any gene with the 75th percentile below 20 in either set of samples were
excluded from further analysis. Similarly, for each isoform we calculated 75th
percentile of isoform-specific read counts in two sets of samples and excluded
isoforms with 75th percentile below 10. We then fit a generalized mixed-effect
negative binomial regression model to isoform-specific read counts, using tumour/
normal status (fixed effect) and patient identifier (random effect) as main covari-
ates and gene-level read counts as offset. Since we observed variable smooth muscle
inclusion in our normal tissue samples, we also included the expression of
smoothelin (SMTN) in our model to correct for the extent of the smooth muscle
inclusion. The model was fit using the ‘glmer.nb’ function in the ‘lme4’ R package40

independently for each isoform as follows: glmer.nb(Isoform.ctBTumorStatusþ
(1|Patient)þ log(SMTN)þ offset(log(Gene.ct))). The reported P-values corres-
ponding to TumorStatus coefficient estimates for each isoform were adjusted using
Bonferroni correction. Transcript isoforms with significantly differential isoform
usage (adjusted P-value o0.1 and fold change 41.5) were selected for further
investigation. To visualize the differential isoform usage, we fit a linear model
lm(log2(Isoform.ct/Gene.ct)Blog(SMTN)), and used the residuals of the model as
the ‘adjusted isoform fraction’ for individual samples. To further narrow down the
list of candidate genes for experimental validation, we focused on cancer-related
genes. Genes are defined as cancer related if they appear in either Cancer Gene
Census41 or cancer-related canonical pathways in Molecular Signatures Database42

(v3.0), including AKT, cell cycle, death receptor signalling, ERBB, ERK, MAPK,
MTOR, NFkB, Notch, P53, PTEN, VEGF and WNT pathways.

To assess the accuracy of our method, we performed systematic simulations.
The detailed procedure and results of our simulation are presented in
Supplementary Methods and Supplementary Fig. 11.

Expression quantification by TaqMan assays. The TaqMan probe and primer
assays for ZAK (Hs00370448_m1 for entire gene, Hs00928997_m1 for TV1) and
glyceraldehyde 3-phosphate dehydrogenase (GAPDH Hs00266705_g1) were
obtained from Life Technologies, CA. RNA was isolated from cells using TRIzol
(Invitrogen, CA). Gene and isoform expression was measured using the Quantitect
Probe RT-PCR kit (Qiagen, CA, kit# 204443) with 50 ng of RNA and appropriate
probe primer set. The samples were first held at 50 �C for 30 min for reverse
transcription, and then at 95 �C for 15 min. This was followed by 40 cycles at 94 �C
for 15 s and 60 �C for 1 min on an ABI ViiA7 Sequence Detection System (Life
Technologies). Data were analysed using DCt method by normalizing to GAPDH.
The TaqMan reactions were performed in duplicates to obtain the mean values.

Cell lines and culture conditions. The gastric cell lines FU97, HGC-27, IM-95m,
KATOIII, MKN-45, NUGC-4, OCUM-1, SNU-216, SNU-484, SNU-601, SNU-638
and SNU-719 were grown in RPMI-1640 medium, 10% fetal bovine serum (Sigma)
and 1% penicillin–streptomycin (Invitrogen). Two hundred and ninety-three
human embryonic kidney cells were grown in DMEM (high-glucose) medium, 10%
fetal bovine serum (Sigma), 1� non-essential amino acids (Invitrogen) and 1%
penicillin–streptomycin (Invitrogen), and used for transcriptional reporter assays
and lentivirus packaging.

Antibodies. The following antibodies were used for immunoblot analysis: ZAK
TV-1 (Bethyl; A301-993A), ZAK TV-1 and TV-2 (Sigma; HPA017205), FLAG
(Sigma; A8592), Tubulin (Sigma; T6074), and horseradish peroxidase-conjugated
anti-mouse and anti-rabbit secondary antibodies (Jackson ImmunoResearch). The
Sigma HPA017205 antibody also recognizes additional bands when probing for
endogenous levels of ZAK, some of which run at the same molecular weight as
ZAK TV-1. Therefore, the Bethyl A301-993A antibody was used for probing for
endogenous ZAK TV-1.

Lentivirus manipulation. shRNAs were expressed in IM-95m, MKN-45 and SNU-
216 cells using a lentiviral system. Three lentiviral shRNAs constructs targeting
ZAK or a non-targeting control (NTC) were used in the study: pLKO.1-shNTC
(Sigma; SHC002), pLKO.1 shZAK-1 (Sigma; TRCN0000003265), and pLKO.1-
shZAK-2 (Sigma; TRCN0000003266). Briefly, 293 cells were transfected with
pLKO.1-shRNA vector along with pCMV-VSVG and pCMV-dR8.9 to produce
lentiviral particles. Viral particles were added to cells with 8 mg ml� 1 polybrene

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4830 ARTICLE

NATURE COMMUNICATIONS | 5:3830 | DOI: 10.1038/ncomms4830 | www.nature.com/naturecommunications 7

& 2014 Macmillan Publishers Limited. All rights reserved.

http://cancergenome.nih.gov/
http://www.nature.com/naturecommunications


and spin infected at room temperature (1,800 r.p.m., 30 min). Cells were selected
30 h after infection with 2 mg ml� 1 puromycin.

Transcriptional reporter assay. ZAK transcript variant 1 (TV1) and 2 (TV2)
were cloned into pCMV2a (Agilent Technologies) as BamHI/XhoI fragments.
Transcriptional reporters were purchased from System Biosciences for AP1
(TR201PA-P), NFkB (TR012PA-P) and TCF/LEF (TR013PA-P). Two hundred and
ninety-three cells were plated in 96-well format (15,000 cells per well) and plasmids
were co-transfected with Fugene 6 (Promega). Reporter activation was measured
after 48 h using the Dual-Glo luciferase system (Promega). Cell number was
measured on a parallel plate using CellTiter-Glo (Promega).
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