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Abstract

Identifying whether potential causal variants for related diseases are shared can identify 

overlapping etiologies of multifactorial disorders. Colocalization methods disentangle shared and 

distinct causal variants. However, existing approaches require independent datasets. Here we 

extend two colocalization methods to allow for the shared control design commonly used in 

comparison of genome-wide association study results across diseases. Our analysis of four 

autoimmune diseases, type 1 diabetes (T1D), rheumatoid arthritis, celiac disease and multiple 

sclerosis, revealed 90 regions that were associated with at least one disease, 33 (37%) of which 

with two or more disorders. Nevertheless, for 14 of these 33 shared regions there was evidence 

that causal variants differed. We identified novel disease associations in 11 regions previously 

associated with one or more of the other three disorders. Four of eight T1D-specific regions 

contained known type 2 diabetes candidate genes: COBL, GLIS3, RNLS and BCAR1, suggesting a 

shared cellular etiology.

Introduction

Overlaps of genetic association to different diseases have been widely observed, and are 

thought to reflect shared etiology between diseases.1 However, showing that a variant is 

associated with two traits does not demonstrate that it is causal for both: this may be due to 

distinct variants in linkage disequilibrium.2 Colocalization analyses are used to study 

whether potential causal variants are shared by combining information across multiple single 

nucleotide polymorphisms (SNPs) in a region. The proportional approach3 tests a null 

hypothesis of proportionality under which, if causal variants are shared, we expect to see 

that the effects of any set of SNPs on the two diseases are proportional to each other. A 

weakness of this approach is interpretation. Failure to reject the null hypothesis does not 

only imply colocalization, but could also be caused by either disease being not associated, or 

by insufficient power owing to too few samples analysed and/or an incomplete genetic map4 

(Supplementary Fig. 1). We have no way of measuring how likely colocalization is. A 

strength is that no assumptions are made about the number of causal variants: the null 

hypothesis corresponds to complete sharing across all causal variants. An alternative is to 

use a Bayesian framework,5 to generate posterior probabilities for colocalization and distinct 

causal variants, as competing hypotheses. However, a weakness of this approach, as 

currently developed, is that it assumes only a single causal variant for each trait within any 

region.

Existing colocalization methods require that genetic association with the two traits of 

interest has been tested in distinct samples. However, this requirement restricts the 

applicability of the approach to related diseases since each set of case samples must have a 

corresponding distinct set of control samples, enabling a logistic binomial model to be used 

independently upon each disease. In contrast, many studies use a common set of controls for 

different diseases to increase efficiency. Here, we extend both colocalization methods to 

allow for the use of multinomial logistic regression, the natural model for shared controls.

Previous studies have identified many regions associated with multiple autoimmune or 

autoinflammatory diseases, including type 1 diabetes (T1D) and celiac disease (CEL).6,1 
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Such multi–disease association led to the development of the ImmunoChip,7 a custom 

genotyping chip with 196,000 SNPs designed to densely cover 186 regions known to 

associate with at least one immune disease on the basis of GWAS p–value < 10−8. The 

ImmunoChip consortium genotyped a common control set, to which some disease groups 

added their own controls. We applied our extended methods to ImmunoChip raw genotyping 

data for a total of 36,030 samples, including one set of controls and four disease cohorts, in 

order to better understand the extent of shared genetic etiology in these diseases.

Results

Overview of Method

The Bayesian method derives the posterior support for each of five hypotheses describing 

the possible association of the region with both diseases. Of greatest interest are:

: Both diseases are associated with the region, with different causal variants.

: Both diseases are associated with the region, and share a single causal variant.

Association with both traits corresponds to  or ; colocalization corresponds to . This 

method requires specification of prior probabilities for each hypothesis. We calibrated priors 

to match our expectations that about 50% of regions associated with two immune–mediated 

diseases correspond to a shared causal variant (Supplementary Fig. 2), which is close to the 

proportion found in a manually curated summary of association to six immune–mediated 

diseases8 (58%). For rheumatoid arthritis (RA)9 and multiple sclerosis (MS),10 for which 

only UK subsets of international cohorts were analyzed, we modified priors in regions with 

published associations to reflect this additional information from the published papers. 

Where a region was annotated in ImmunoBase as associated with RA or MS, we shrunk our 

priors for hypotheses corresponding to no association for the disease close towards 0, and 

increased our priors for the remaining hypotheses (Supplementary Methods).

One hundred and twenty six ImmunoChip regions assigned to at least one of the diseases 

(based upon knowledge when the chip was designed or identified in subsequent papers and 

curated in ImmunoBase, accessed 12/11/13) were analyzed using both approaches for all six 

pairwise comparisons of the four diseases. Sample and SNP QC is described in the Methods; 

we excluded low frequency variants (MAF< 1%) to reduce the number of models to be 

considered and because genotyping errors are more common amongst this group of SNPs, 

and we did not have cluster plots available for all diseases. Although GWAS studies 

typically have sufficient power to detect association only with more common SNPs, some 

rarer variants (for example, in TYK211) have been reported with these diseases which will be 

missed in our analysis.

Overview of Results

The Bayesian approach assumes a single causal variant per trait in any region. To allow for 

multiple causal variants, we used a stepwise method. In the overwhelming majority of cases 

(740 out of 756 pairwise comparisons, or 98%) data were consistent with at most one causal 

variant per trait in a region. Ninety of the 126 regions (71%) showed association with at 
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least one disease; in 33 regions, the association was shared between at least two diseases 

(Fig 1). Complete results are given in Supplementary Table 1, Supplementary Table 2 and 

Supplementary Table 3. For fifty–seven regions, the greatest support was for association 

with precisely one of the four diseases; in 21 cases, we know of no other immune–mediated 

diseases that have reported association to these regions and therefore hypothesize these may 

be disease specific among autoimmune diseases (Table 1).

In the Bayesian approach, when the posterior probability of a hypothesis is close to 0.5, 

assignment cannot be made with confidence to any single hypothesis. However, in the 30 

instances in which both diseases showed very strong evidence of association 

, the Bayesian and proportional approaches produced consistent results. 

For these 30 cases, the proportional null was rejected only in cases in which the Bayesian 

analysis favored , and not rejected in cases where  was favored. Focusing on these, the 

data strongly supported that the same causal variants underlie all diseases in ten cases, while 

seven showed strong evidence for distinct variants, suggesting that just under half, 42%, of 

overlapping association signals reflect distinct causal variants. In total, fourteen regions 

showed evidence of separate SNP effects , see Table 2).

Disentangling Patterns of Association

For colocalized disease regions, the two diseases generally have consistent directions of 

effect (Fig 2) with the exception of the 6q25.3 region containing candidate gene TAGAP, 

which is associated in our analysis with CEL and MS only: the risk allele for CEL is 

protective for MS and vice versa (Supplementary Fig. 3). This opposing effect of TAGAP 

alleles has been previously described for T1D and CEL,6 although the region did not provide 

sufficient evidence for association with T1D in the data available to us. A similar effect for 

the 2q12.1 region containing candidate gene IL18RAP has also been reported.6 However, 

later data12 have not offered support for T1D association to 2q12.1, and, in our analysis, the 

posterior support is concentrated on CEL association alone.

Patterns of association with multiple diseases can be complex. In the 2q33 region containing 

established candidate gene CTLA4, as well as the equally strong functional candidate genes, 

CD28 and ICOS, three potential causal variants appear to be partially shared between T1D, 

RA and CEL. The strongest association with T1D is at rs3087243 (which has previously 

been called CT60), while the strongest association with CEL is with rs231775 (which alters 

the amino acid at position 17 of CTLA4, Ala17Thr, and has previously been called CT42). 

The two SNPs have r2 = 0.5, and haplotype analysis has previously suggested CT60 and not 

CT42 is causal for Graves’ disease.13 For RA, the strongest single SNP signal is at 

rs1980422, which is not in LD with either CT42 or CT60 (r2 < 0.1). We fitted the 512 

possible standard multinomial models involving these three SNPs for the three diseases, and 

computed approximate Bayes factors for each. Assuming each model to be equally likely a 

priori, the model with highest posterior probability has rs1980422/rs3087243 (CT60) signals 

for CEL and rs231775 (CT42)/rs1980422 for both T1D and RA, although whilst rs231775 

(CT42) is the strongest effect for T1D, rs1980422 is strongest for RA (Fig. 3). We note that 

our analysis is based on SNPs selected through a stepwise process and that without fine 

mapping analysis we cannot claim that any one of these models correctly reflects the causal 
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variants for any disease. These results do, however, clearly illustrate the different patterns of 

association with the three disorders and emphasize the potential complexity that can arise in 

regions of multiple association signals. They motivate the future extension of the 

colocalization approach developed here to allow model search strategies that do not require 

stepwise assumptions.

Discovery of Novel Associations

Two regions were associated with all four diseases (Fig. 1). One was the 6q23.3 region 

containing candidate gene TNFAIP3, known to be associated with RA and CEL. There has 

been some published evidence that T1D is associated with this region,14 although not at 

genome–wide significant levels. Our results identify a T1D signal, colocalized with that for 

RA and CEL, suggesting a single shared causal variant affecting the three diseases. There is 

also evidence of MS association, driven by a distinct causal variant (in the CEL–MS 

analysis, , Fig. 4).

The second region was 19p13.2, known to be associated with T1D, RA and MS, containing 

the strong functional candidate gene TYK2, although immune adhesion genes ICAM1 and 

ICAM3 are also good candidate genes. Our analysis supports these associations, with a 

posterior probability of colocalization approaching 1. We also find evidence for a novel 

CEL association. In each of the pairwise analyses involving CEL, the probability of both 

diseases being associated ≃ 0.88, although this could be a distinct signal: we have 

 (Supplementary Fig. 4). In total, 11 regions showed strong evidence 

of novel association with  (Table 3).

In regions with colocalizing novel associations, effect sizes tended to be smaller in the new 

disease (Fig. 2). This could indicate that the stronger effect is in the previously known 

association, or it could be due to Winner’s Curse,15 with the previously known associations 

displaying inflated effect size estimates. In general for colocalized signals, the coefficient of 

proportionality is centered about 1.

One novel association found was in the chromosome 1q24.3 region, known to be associated 

with CEL and containing candidate gene FASLG. Pathway analysis also produced evidence 

for a T1D–associated variant here,16 although no SNP has reached the genome–wide 

significance threshold. Our results support a shared causal variant for T1D and CEL 

(posterior probability 0.71). Our Bayesian approach also enables fine–mapping when dense 

genotyping data are available, as is the case here. We identified a single likely causal variant 

lying in a region with strong evidence of predicted regulatory activity, rs78037977 

(Supplementary Fig. 5), with a posterior probability of being causal amongst all genotyped 

variants, given the colocalization hypothesis, of 0.99. Note that rs78037977 was removed 

from the CEL data in the original analysis17 owing to failing a missingness check (the call 

rate of 99.942% was just below the 99.95% cut–off). Plots of the signal clouds for our 

samples at this SNP are given in Supplementary Figure 6. The clustering shown here is of 

good quality, implying that the rs78037977 genotype can be considered reliable.
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Prior Sensitivity

We tested prior sensitivity by varying p12 (the probability that an arbitrary SNP is associated 

with both diseases) from p12 = 10−5 to 10−7, while keeping p1 and p2 (the probability that 

this SNP is associated with only trait 1, or only trait 2) constant at 10−4 (Supplementary 

Table 4). Whether a region is disease specific is largely unaffected by choice of p12 and, for 

the five regions discussed in detail in this paper (1q24.3/FASLG; 2q33.1/CTLA4; 6q23.3/

TNFAIP3; 6q25.3/TAGAP and 19p13.2/TYK2), the prior does not change which diseases are 

associated. However, the posterior odds for  does vary with p12. Under p12 = 10−7, 

neither 1q24.3/FASLG nor 6q23.3/TNFAIP3 had strong posterior support as a novel T1D 

region since the evidence for novel association in these regions comes about due to 

colocalization with the stronger previously known association. This dependence on prior 

belief is a strength of Bayesian methods, but they require that priors be carefully calibrated. 

Whilst our prior belief is that about 50% of regions associated with two immune–mediated 

diseases are likely to correspond to a shared causal variant, others may disagree. The results 

given in Supplementary Table 2 can be used to calculate the posterior under any alternative 

p12 using the formula given in Supplementary Material.

Discussion

Colocalization methods so far have allowed for the simultaneous analysis of only two traits: 

a potential weakness when considering more than two diseases, as investigated here. The 

Bayesian approach could be extended to arbitrarily many traits, at the cost of increased 

computational complexity and spreading the posterior over an exponentially increasing 

hypothesis space, potentially making it difficult to draw firm conclusions. Wen et al, in their 

description of an alternative method for partitioning the association of a single SNP amongst 

multiple related quantitative traits,18 suggest dealing with this complexity by considering 

only the extremes – a SNP is associated to all traits, exactly one, or none. Such reduction is 

impractical when analyzing regions, since it does not allow for overlapping but distinct 

signals. Although we have extended our software to consider three diseases simultaneously, 

we have chosen for practical reasons to focus on pairwise analyses with manual curation of 

the 11 cases (9%) for which more than two diseases showed association.

Giambartolomei et al5 showed that inference is consistent when the causal variant is directly 

genotyped or well imputed. The decision was taken when the ImmunoChip was designed 

not to thin by LD, but instead target all SNPs and small indels known at that time in 1000 

Genomes European samples and it has since been shown that common variants may be very 

accurately imputed using ImmunoChip.19 Therefore we are likely to be very close to the 

situation where causal variants are directly genotyped. The application of our method to the 

less complete coverage provided by genome–wide SNP arrays would require an imputation 

step to allow consistent inference to be made. The Bayesian colocalization analysis assumes 

a single causal variant per region, which could be restrictive, and we addressed this using a 

stepwise approach, attempting to colocalize the individual signals for each disease where 

there was evidence for more than one. The agreement between our results with this approach 

and using the proportional colocalization approach which does not make this assumption 

confirms the appropriateness of the stepwise approach in the cases we consider.
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We identified 21 regions that appeared associated to only one autoimmune disease. One 

challenge in interpretation when defining disease unique signals is exemplified by a region 

on chromosome 7p12.2 which contains the candidate causal gene IKZF1. This gene overlaps 

two ImmunoChip regions separated by a recombination hotspot, one 5′ of IKZF1 and one 3′ 

of IKZF1. The 5′ region contains a colocalized signal for MS and T1D, whilst the 3′ region 

contains only a T1D signal (Supplementary Fig. 7). Our analysis has been based on regions, 

as defined in the design of the ImmunoChip and based on recombination hot spots. 

However, whilst the T1D signals in these regions are independent and the 3′ region of 

IKZF1 appears unique to T1D, it is plausible that the causal variants in both regions act 

through the same gene, IKZF1. Another challenge is to deal with the effects of power, given 

the established influence of sample size on power to detect associations.20 Many of the 

regions in Table 1 contain genes linked to immune function, and we expect a number of 

apparent disease–specific results to associate with other diseases as sample sizes for each 

disease continue to increase. Indeed, the chromosome 19p13.11 region, associated only with 

MS in our analysis, has previously been associated with lymphocyte count,21 with high LD 

between the peak MS SNP (rs1870071) and the lymphocyte count SNP (rs11878602, r2 = 

0.99), suggesting an immune mechanism for the association.

However, in the case of T1D, three disease–unique regions overlap known type 2 diabetes 

(T2D) regions. Chromosome 9p24.2, containing the candidate gene GLIS3, has been 

associated with T2D22 and fasting glucose23 with high LD between the peak SNP for T1D 

(rs10814914) and these other traits (rs7041847, r2 > 0.9). GLIS3 and its causal allele alter 

disease risk by altering pancreatic beta–cell function, probably by increasing beta–cell 

apoptosis.24 Chromosome 16q23.1, containing the candidate gene BCAR1, is associated with 

T1D in our analysis and T2D,22 and the T2D alleles in this region have been associated with 

reduced beta cell function,25 again with high LD between the peak SNPs for T1D 

(rs8056814) and T2D (rs7202877, r2 = 0.81). Inspecting the distribution of T2D GWAS p 

values at the peak SNPs in our T1D associated regions (Supplementary Fig. 8), we note that 

the peak SNP in the T1D associated region 6q22.32, rs17754780, also shows association to 

T2D (p = 7.9 × 10−5) and is in tight LD with peak T2D SNP in the region (rs9385400, r2 = 

0.97). This region has been reported as associated with T2D at genome–wide significance in 

a larger study.26 Chromosome 6q22.3 is not uniquely associated to T1D in our analysis 

because it overlaps an established Crohn’s disease region,27 but the lead Crohn’s SNP 

(rs9491697) is not in LD with the T1D SNP (r2 = 0.03). This is then likely to be a third 

shared signal between T1D and T2D. The nearest genes are MIR588 about which little 

appears to be known and CENPW (centromere protein W) which has no obvious functional 

candidacy. This genetic overlap between T1D and T2D (Supplementary Table 5) 

emphasizes that T1D results from an interaction between the immune system and beta cells, 

and it is probable that some of our other apparent disease unique regions will also prove to 

be specific to the target of autoimmune destruction in MS and RA.

By analyzing regions known to associate with one disease, we were able to link 11 to 

additional disorders: in most cases (8/11) the novel disease association was clearly 

colocalized with a previously known signal, whilst in one case, GPR183, the evidence 
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supported a distinct causal variant for the novel association. In others (3/11) the evidence for 

colocalization was more equivocal, even with evidence for pairwise association.

In a standard GWAS analysis, a p–value significance threshold of 5 × 10−8 is used in 

absence of replication data, due to a desire to minimise reporting of false positive results, 

although a relaxation of this threshold has been suggested.29 However, since autoimmune 

diseases are known to share etiology, conditioning upon association for one autoimmune 

disease, we should require a less stringent threshold to believe it significant for another. 

Indeed, whilst the question of whether the ImmunoChip significance threshold should be 

somewhat relaxed remains,8 examination of p–values in the regions in which we observe 

novel associations (Supplementary Fig. 9) suggests that a threshold between 10−5 and 10−6 

for SNPs that are confirmed index SNPs for another disease might be more appropriate. We 

estimated that 42% of overlapping and genome–wide significant immune–mediated disease 

signals relate to distinct causal variants. In these regions, therefore, there appear to be 

distinct causal variants for two or more autoimmune diseases which are physically proximal 

but in low LD. We suggest that physical proximity to a known associated variant in a related 

disease, and not only LD with it, may prove to be an appropriate criterion with which to alter 

interpretation of a small but not genome–wide significance threshold. Variants meeting such 

thresholds might be prioritised for genotyping in replication samples. We note, also, that the 

four diseases we studied are all characterized by the presence of autoantibodies. Had we 

included autoantibody negative diseases we might have found a higher proportion of 

discordant associations as reported in a previous manual curation of ImmunoChip studies,8 

given there remains considerable overlap in location of association signals. Although a 

careful and detailed manual curation of several studies has been conducted,8 the ability of 

colocalization methods to distinguish shared from distinct causal variants allows clearer 

interpretation of genetic results.

In summary, we have developed a methodology for examining shared genetic etiology 

between diseases in the case of common control datasets, extending previous work.2,3 This 

enables the discovery of new disease associations and the exploration of complex 

association patterns. Although these methods have been presented in this paper to analyze 

autoimmune diseases, the prior is user defined, and could be used to analyze any pair of 

related diseases.

Online Methods

Samples

All samples included in this analysis were gathered in the United Kingdom, and have 

reported or self declared European ancestry. Informed consent was obtained from all 

subjects. Detailed summaries of the sample cohorts are given in the ImmunoChip papers for 

CEL,17 RA,9 MS10 and T1D.30 For the RA and MS cases, we used the subset of cases from 

the UK. Sample exclusions were applied as described in each paper, and in total, 6,691 T1D, 

3,870 RA, 7,987 CEL, 5,112 MS and 12,370 control samples were analyzed. SNPs were 

filtered according to the following criteria: call rate > 0.99; minor allele frequency > 0.01; 

Hardy–Weinberg ∣Z∣ < 5. SNPs which passed these thresholds in controls and any specific 

pair of cases were used for that pairwise analysis.
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Using only UK cases and controls means that we expect any effects of population 

stratification to be very limited, as evidenced by the low genomic inflation factors in 

published UK ImmunoChip analyses31 and we did not take any further specific actions to 

limit effects of population stratification.

Selection of Regions for Analysis

We considered all regions annotated in ImmunoBase (accessed on 12/11/13) as associated 

with at least one of our diseases. Where regions overlapped, we formed the union. Regions 

containing fewer than ten SNPs or with a SNP density < 1 SNP/kb were excluded. The 

MHC (chr6:29797978–33606563 hg18) was removed from the analysis, since this region is 

known to have complex multi–SNP effects. A full list of the 126 regions analyzed, together 

with our resulting associations, can be found in Supplementary Table 1.

Colocalization Analysis

Two colocalization methods were applied to each of the 126 regions (see Supplementary 

Fig. 1).

Bayesian Approach—The first approach is based upon a Bayesian approach proposed by 

Giambartolomei et al.5 All models in which each trait is caused by at most one variant are 

considered, and approximate Bayes factors computed for each. Our extension follows the 

same framework, but, in order to extend this method to the case of a common control, a 

multinomial model was used. Bayes factors were computed using a Laplace 

approximation32 as implemented in the R package mlogitBMA. Each of these models is 

contained within precisely one of the following sets:

: No SNP is associated with either trait

: There is a SNP associated with trait 2, but no SNP is associated with trait 1.

: There is a SNP associated with trait 1, but no SNP is associated with trait 2.

: Both the traits are associated with the region, with different causal variants.

: Both the traits are associated with the region, and share a single causal variant.

By summing the Bayes factors generated for all models in the set, a posterior possibility can 

be computed for each of the hypotheses, and hence for colocalization ( ). Similarly, the 

posterior probability of any given model, given a specific hypothesis and equal prior 

probability of each model, is proportional to the Bayes factor for that model. Since a Bayes 

factor is assigned to each model independently, it is straightforward to calculate the 

conditional probability of each SNP being causal, given association, as proportional to the 

Bayes factor for the relevant model.

This approach assumes a single causal variant at any region. In regions with strong evidence 

of association  we performed conditional analysis. Firstly, all plausibly 

important SNPs were discovered by iteratively conditioning on the most likely set of SNPs 

to cause the associations seen, until there was no longer strong evidence of additional 

association. In those cases where multiple SNPs were considered relevant, all but a pair (one 
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potentially causal for the first trait, and one for the second) were conditioned upon, in order 

to discover the colocalization (or not) of the effects at this pair alone.

Proportional Approach—A second method based upon the proportional approach2,3 was 

also used. Phenotypes are modeled using multinomial logistic regression, producing 

maximum likelihood estimates b1 and b2 of regression coefficients β1 and β2. Since the 

samples sizes can be large, the asymptotic normality of maximum likelihood estimators is 

used to approximate:

for some variance–covariance matrix V.

The proportional method3 assumes that b1, b2 are independent (i.e. V 12 = V 21 = O). 

However in the extension to a common control dataset, we cannot assume this, and proceed 

with a fully unknown V.

The null hypothesis corresponds to the existence of a constant η such that:

Under this hypothesis, and given η,

This is used as our test statistic. However, since the value of η was unknown, a posterior 

predictive p–value is generated instead, by integrating the p–values associated with the test 

statistic over the posterior distribution of η. To avoid bias in regression coefficients due to 

selection of SNPs on the basis of their strength of association, Bayesian model averaging 

was used to average inference over all plausible two SNP models.

Further details of the colocalization methods can be found in the Supplementary Methods 

section.

Identification of disease specific regions

To examine evidence for GWAS association with other traits, we took the index SNP with 

smallest p values in a region, and then identified proxy SNPs based on LD (r2 ≥ 0.9) using 

1000 genomes EUR data. We used this as a query SNP set to examine associations 

annotated in the NIHR GWAS catalog (accessed 07/10/2014)

We identified disease specific regions for which: the posterior probability for single SNP 

association was >0.5; posterior probability of association with any other disease was <0.2; 
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the region was not annotated as associated with any other autoimmune disease in 

ImmunoBase; and no proxies for the index SNP were associated with any other autoimmune 

disease in the NIHR GWAS catalog.

Type 2 diabetes data

Summary from a T2D GWAS meta–analysis22 was downloaded from the DIAGRAM 

website (accessed 20/10/14).

Code availability

The code used is given in the colocCommonControl R package, which can be found at 

https://github.com/mdfortune/colocCommonControl

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A Venn diagram showing summary of disease assignments to 90 regions which showed 

association to at least one disease, based upon the results of the Bayesian analysis. In cases 

where assignment was uncertain, the assignment most supported by the posterior 

probabilities was used. The numbers in brackets correspond to how many of these regions 

show evidence of distinct causal variants. Thirty–six regions analyzed did not demonstrate 

association to any disease within our available data, and so are not included in this figure.
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Figure 2. 
The distribution of , the estimated proportionality coefficient, together with its 95% 

confidence interval. In the case of colocalization, η is the ratio of the effects the region exert 

upon the two traits. ∣η∣ > 1 corresponds to a stronger effect in Trait 2 than Trait 1. We 

estimate η by . Labels on the x–axis give the traits and regions analyzed; D for T1D, R for 

RA, C for CEL and M for MS. Note that in some regions, the conditional analysis supports 

the existence of multiple associated variants: if none of these overlap, then we consider the 

region to have separate SNP effects.
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(a) Regions with novel evidence of disease association, in which we believe there to be 

colocalization present between the novel association and at least one of the existing 

associations. Regions have been ordered such that  estimates the effect size for the novel 

trait divided by the effect size for the known association. Labels give the novel association 

being given first. It can be seen that the effect size tends to be smaller in the new disease.

(b) Regions with strong evidence of colocalization . As we would expect,  is 

distributed about 1, which corresponds to the regions having equal effects on each trait. Note 

that 6q25.3, containing the candidate causal gene TAGAP, has , indicating opposite 

effects on the two diseases. Trait 1 is listed first, and trait 2 second.
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Figure 3. 
The 2q33.1 region containing the candidate gene CTLA4. Three potential causal variants are 

partially shared between T1D, RA and CEL.

(a) A Manhattan plot of the region. The blue signal corresponds to the tag rs231775, the 

green to rs1980422 and the magenta to rs3087243. All other SNPs are colored according to 

their linkage disequilibrium with these three SNPs. SNPs rs231775 and rs3087243 have r2 = 

0.50; all other pairwise r2 < 0.1.
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(b) Each possible model involving these three SNPs was tested; the four models with highest 

posterior probabilities, which together encompass over 90% of the total posterior 

probability, are shown.

(c) Effect size estimates (including 95% confidence intervals) of each SNP for each disease 

for the most likely model.

(d) Effect size estimates (including 95% confidence intervals) of each SNP for each disease 

for the second most likely model.

Fortune et al. Page 18

Nat Genet. Author manuscript; available in PMC 2016 February 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. 
The 6q23.3 region containing candidate causal gene TNFAIP3. Our results show that T1D, 

RA and CEL all colocalize, suggesting a single shared causal variant affecting the three 

diseases; rs6933404 being the most likely SNP. There is also evidence of MS association, 

driven by a distinct causal variant. Note that this region was associated with MS at genome–

wide significant levels in the analysis of the international MS dataset10.
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