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Abstract

Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative
genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms
are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or
dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection
among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity
for enhancing sensitivity in detecting homology independent of ‘‘recent’’ paralogs. The spectral clustering approach with
new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing
inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm
deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among
all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the
superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an
existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with
modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in
multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance.
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Introduction

The remote homology detection from available protein

sequences is one fundamental problem in comparative genomics.

With higher sequence similarity, several panoply of methods can

detect homologs accurately. However detecting remote homologs

with subtle sequence similarity still remains a challenging problem.

In general, there are three categories of methods to solve this

problem – simple approaches based on sequence similarity like

BLAST or Smith-Waterman [1,2], generative model approaches

like HMMs (Hidden Markov Models) [3], [4] and discriminative

classifier methods like SVMs (Support Vector Machines) [5–7].

Historically, the probabilistic profiles (PSSMs) method (PSI-

BLAST) [8] exhibits superior performances for remote homology.

Recently, the discriminative kernel methods with SVMs like

mismatch string kernels [6,9], string alignment kernels [10],

profile-based direct kernels [11] – exhibited better homology

detection. These methods require extensive annotated proteins for

training to yield good performances. The protein-structure kernel

on MAMMOTH score in [12] and the combined approach of

sequence and secondary-structure similarity scores in [13] also

proved to be efficient. Incorporating incremental-kernel [14],

multi-instance kernel [13] or gapped Markov-feature pairs [15]

are the recent approaches for homology detection.

To compute the sequence distances, some groups utilized

Connected Component Analysis(CCA) [16] on fully-connected

graphs like GeneRAGE [17]. To improve them, Markov cluster

algorithm(MCL) [18] utilizes random walks on Markov transition

matrix to analyse the emergence of clusters in the graph, which

encodes this matrix. The most successful methods for homology

detection utilizing MCL algorithms [18] are OrthoMCL [19] and

TribeMCL [20], which bias the random walks with ‘inflation’

parameter to promote the cluster emergence. Earlier non-kernel

approach of [21] significantly utilize spectral clustering on protein

sequences.

The semi-supervised protein clustering achieved efficiency

earlier, introducing the neighborhood vector over profiles in

cluster kernels by [22], [23]. The combined kernel approach using

bagging-method over mismatch-string kernels [22] utilized the

strength of combined clustering for remote homology. The

protein-function prediction with kernels on Yeast genomes [24],

introduced one kernel matrix for combining heterogeneous data.

Symmetry is an inherent feature to enhance recognition and

reconstruction of shapes and objects. It reflects to be powerful for

recognizing homolog protein clusters in kernel space. In [25] a

symmetry based distance measure is proposed. Yet it fails to detect

clusters with inherent symmetry relative to some intermediate

point. Subsequently, the distance norm is corrected in [26] leading
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to a modified proximity norm, which is able to handle overlapping

symmetrical clusters with multiclass points.

In this work, at first we develop new valid Mercer kernels based

on similarities explicitly in local alignment methods like BLAST

and PSI-BLAST. We present two positive semi-definitive local-

alignment kernels based on the singular-value decompositions of

respectively MCL similarity scoring and position-specific scoring

matrices (profiles). The Markov cluster similarity kernel further

with the neighborhood feature vectors is enhanced. Furthermore

incorporating the mismatches with profiles the diagonal domi-

nance issue problem is reduced. This enables more accurate

detection of remote homologs boosted by similarity deemphasizing

multi-domain proteins. To reduce promiscuous domain problems,

we further incorporate the spectral clustering approach over kernel

matrices to alleviate inter-cluster edges implicitly selecting the

leading eigenvectors from ‘global’ distances without using any

hard-threshold. Finally, we introduce the modified-symmetry

based correction over the homolog distributions in Hilbert space.

This reduces number of singletons (represented as outliers) and

classifies multi-domain proteins into more biologically-significant

clusters with closest nearest-neighbor homologs from different

domains. Contradicting with earlier discriminative approaches,

this approach detects remote homology among unlabelled multi-

domain proteins without any prior annotation. Local-alignment

kernels or Markov similarities are combined cascadingly with

neighborhoods in spectral clustering, which are further enhanced

by modified-symmetry based correction.

We experiment all our kernel frameworks over the multi-

domain proteins from Genolevures Yeast database [27]. The

performance of our combined spectral kernels with modified

symmetry are compared to other state-of-the-art combined cluster

kernel methods. The experimental outcomes also demonstrate the

superiority of introducing modified-symmetry over kernel space

with spectral clustering to detect remote homologs more

accurately even for multi-domain and promiscuous domain

proteins. Moreover statistical and quantitative performance

evaluations with five validity measures to demonstrate the

significance of our proposed approaches are also performed. We

also study the comparative results over our chosen dataset

provided by the already-existing string [28] and mismatch [22]

kernels with our proposed kernels. To experiment over the large

datasets, we compare the clustering solutions of our proposed

kernels with those of the already-existing string [28] and mismatch

[22] kernels over the sequences of target 54 families from SCOP

version 1.59 [22]. The scores provided by all algorithms also show

the superiority of our proposed kernels with higher values.

Figure 1. Comparison of ROC50 score distribution for different local alignment based kernels.
doi:10.1371/journal.pone.0046468.g001

Table 1. ROC, ROC50 averaged over 23 families for different
local alignment based kernels.

ID Kernel Mean ROC50 Mean ROC

I BLASTP kernel 0.481 0.836

II PSI-BLAST kernel 0.495 0.939

III OMCL NM kernel 0.741 0.949

IV OMCL MP kernel 0.756 0.960

OMCL NM = OrthoMCL Neighborhood Mismatch kernel, OMCL MP = OrthoMCL
Mismatch Profile kernel.
doi:10.1371/journal.pone.0046468.t001

Spectral Neighbor Kernels and Symmetry in Homology
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Materials and Methods

Background
In this section, we briefly describe existing state-of-the-art

cluster kernel methods for remote homolog proteins detection and

the modified symmetry based distance measure for clustering.

Spectral clustering. In semisupervised learning, [23] intro-

duced cluster kernels modifying the eigenspectrum of a kernel

matrix. The spectral clustering kernel boils down to be the spectral

graph partitioning into the sub-space of the k largest eigenvectors

of a normalized affinity/kernel matrix [29]. Let us assume an

undirected graph G~(V ,E) with vertices vi[V , for i~1,:::,n and

edges ei,j[E with non-negative weights si,j expressing the similarity

between vertices vi and vj . Then the eigenvectors (v1,:::,vk) are

computed as D{1=2KD{1=2, where D is a diagonal matrix

computed as Dii~
X

n
Kin, where K is the RBF-kernel

interpreted as a transition matrix of random walk on the graph.

The spectral clustering approach produced qualified clusters from

protein sequences earlier [21], [23] following the work of Weiss

[29] and Mealia and Shi [30] to simultaneously analyse k
eigenvectors before normalizing.

Neighborhood mismatch kernel. To project the selection

of closely related neighbor sequences through evolution from PSI-

BLAST profiles in mismatch kernel, [22] defined a neighborhood

kernel over the feature representation

wnbd (x)~
1

DNbd(x)D

X
x’[Nbd(x)

worig(x’) as shown below:

Knbd (x,y)~
1

DNbd(x)DDNbd(y)D

X

x’[Nbd(x),y’[Nbd(y)

Korig(x’,y’) ð1Þ

where Nbd(x) denotes a neigborhood for sequence x over a

sequence set x’ with E-value less than a fixed threshold in PSI-

BLAST/BLASTP search. As they proved the neighborhood

averaged vector wnbd (x) stays within the convex hull of all vectors

in neighborhood [22], this kernel boosts up the protein classifi-

cation performance.
Modified symmetry based distance measure. Among the

different distance measures for clustering like Euclidean, Pearson

correlation or Spearman distance, none can detect symmetrical

overlapping clusters. Su and Chou [25] proposed a symmetry

based distance measure ds between a pattern x and a reference

centroid c as follows:

ds(x,c)~
d1

de(x,c)zde(x1,c)
ð2Þ

where x1 is the symmetrical point of x with respect to c and

de(x,c) and de(x1,c) are Euclidean distances respectively between

x and c and between x and c1. If x’ represents the first nearest-

Figure 2. Comparison of ROC50 score distribution for different combined spectral kernels.
doi:10.1371/journal.pone.0046468.g002

Table 2. ROC, ROC50 averaged over 23 families for different
combined spectral kernels.

ID Kernel
Mean
ROC50

Mean
ROC

V BLASTP + OMCL NM kernel 0.738 0.942

VI PSI-BLAST + OMCL NM kernel 0.757 0.945

VII BLASTP + OMCL MP kernel 0.752 0.964

VIII PSI-BLAST + OMCL MP kernel 0.773 0.961

OMCL NM = OrthoMCL Neighborhood Mismatch kernel, OMCL MP = OrthoMCL
Mismatch Profile kernel.
doi:10.1371/journal.pone.0046468.t002

Spectral Neighbor Kernels and Symmetry in Homology

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e46468



neighbor of x and is computed as x’~(2 � c{x), then d1

represents Euclidean distance of x1 and x’. To improve the effect

of this symmetry-based distance norm even for inter-symmetrical

clusters, Chou et al [26] proposed a modified measure dc as

defined below:

dc(x,c)~ds(x,c)de(x,c) ð3Þ

Therefore to detect compact symmetrical overlapping clusters we

incorporate the modified-symmetry based distance measure [26].

This improves the biological significance of homology detection

reducing outliers, as we discuss later.

Data
The Genolevures database explores nine complete genomes

(Candida glabrata, Eremothecium gossipii, Kluyveromyces Lactis, Yarrowlo

lipotytica, Zygosaccharomyces rouxii, Saccharomyces kluyveri, Kluyveromyces

thermotolerans, Debaryomyces hansenii, Saccharomyces cerevisiae) [31], [27]

from the class of Hemiascomycete yeasts. The non-redundant

protein-family database was generated by progressively taking

protein-coding gene-sequences following the family structures of

Genolevures Release 3 candidate 3 data (2008-09-24) [32–33]. We

use 323 sequences as unlabelled data from 23 Multiple choice

families GL3M: � which are complicated families like polypro-

teins and repeat-domains. Therefore proper homology detection

among them is suitable for our remote homology experiments. We

use the Genolevures Release-3 candidate-3 [32] family structure as

the true-clusters for ROC analysis. Finally we utilize 1000

sequences of the target 54 families from SCOP version 1.59

which it was experimented earlier in [22] for testing the

performances of our proposed kernels over the large datasets.

This dataset contains the kernel matrices generated from BLAST,

PSI-BLAST and Spectrum mismatch kernels following the

method of [22].

Methods

To explore remotely detected homologs even for multi-domain

and promiscuous domain proteins, we define twelve simple and

combined alignment cluster kernels in this section and evaluate

them with spectral clustering.

Local alignment-based kernels
The local alignment kernel developed in [10] based on SW

(Smith-Waterman) scores. They measured the pair-wise sequence

similarity by summing up local alignment scores with sequence

Table 3. ROC, ROC50 averaged over 23 families for different
combined spectral kernels after modified symmetry based
correction.

ID Kernel
Mean
ROC50

Mean
ROC

IX BLASTP + OMCL NM
kernel + Modsym

0.742 0.946

X PSI-BLAST + OMCL NM
kernel + Modsym

0.798 0.962

XI BLASTP + OMCL MP
kernel + Modsym

0.768 0.964

XII PSI-BLAST + OMCL MP
kernel + Modsym

0.789 0.969

OMCL NM = OrthoMCL Neighborhood Mismatch kernel, OMCL MP =
OrthoMCL Mismatch Profile kernel.
doi:10.1371/journal.pone.0046468.t003

Figure 3. Comparison of ROC50 score distribution for different combined spectral kernels after modified symmetry based
enhancement.
doi:10.1371/journal.pone.0046468.g003

Spectral Neighbor Kernels and Symmetry in Homology
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gaps. They use a convolution of kernels with a point wise limit to

the Mercer kernels. The probabilistic profiles of logarithmic E-

values generated by local alignment methods like BLASTP or PSI-

BLAST are recently used for kernel generation instead of sequence

encoding itself for protein classification [21]. However collecting

these E-values for a pair of sequences into a matrix does not satisfy

symmetric property in the alignment scores. The average

interpretation of log10 of E-values between two sequences

produces a symmetric kernel solving this problem in MCL

algorithm [20]. This symmetric matrix is represented as a

connection graph with weighted edges between proteins, which

are searched iteratively for probabilities of protein transitions and

matrix inflations by scaling the Hadamard power of the matrix.

However utilizing the HSP (high-scoring segment pair) score of

BLASTP results directly resembles the functionality of mismatch

string kernel [6] to some extent. Therefore instead of using the E-

values as in earlier works for kernel formation, we utilize the

BLASTP HSP score within the threshold cut-off to compute the

kernel matrix which also satisfies the biological relevance of

searching out homologous sequences. We define this kernel as

kernel (I).

Position specific scoring kernel. To explore the statistically

significant alignments produced by BLASTP with the position-

specific score matrix (PSSM), PSI-BLAST generates a score to the

iterated gapped multiple alignment over a set of sequences [8]. We

treat the PSI-BLAST score directly for generating the kernel

matrix computation, as it represents the similarity of homologous

sequences in descending order more accurately than BLASTP

[1,34]. Unfortunately the matrix formed directly from PSI-BLAST

scores between pair of sequences is not positive semidefinitive in

nature, as all-vs-all PSI-BLAST scores are not symmetric for a pair

of sequences. However if P is the PSI-BLAST similarity score

matrix, then P is symmetric with singular value decomposition

P~UT DV where D is the diagonal matrix diag(l1,:::,ln) with

singular value entries l1§
:::

§ln§0. Therefore we define the

PSI-BLAST kernel by

K~UT y(D)V ð4Þ

where y(D)~diag(y(l1),:::,y(ln)) and y(l)~1zl if lw0, and 0
otherwise. We normalize the kernel with unit sphere projection

via, Kij~
Kijffiffiffiffiffiffiffiffiffiffiffiffi
KiiKjj

p . We identify this kernel as kernel (II). A related

protein structure kernel, based on MAMMOTH score [12]

previously yielded good performance in classifying proteins.

Markov cluster similarity scoring kernel. The Markov

Cluster algorithm(MCL – http://micans.org/mcl/) [18] is a fast

and reliable approach for complicated domain structures [20],

which simulates random walks on a graph to detect the transition

probabilities among its edges using Markov matrices. Several

existing methods including TribeMCL [20] and OrthoMCL [19]

apply the MCL algorithm to detect protein clusters which consists

of multi-species orthologs or recent paralogs. The scoring matrix

used for MCL clustering in OrthoMCL algorithm is initially

Figure 4. Family-by-family comparison of PSI-BLAST OMCL NM and PSI-BLAST OMCL MP kernels after modified symmetry based
updation. The coordinates of each point in the plots are the ROC50 scores for one family, obtained using PSI-BLAST OMCL NM kernel(x-axis) and PSI-
BLAST OMCL MP kernel (y-axis).
doi:10.1371/journal.pone.0046468.g004

Spectral Neighbor Kernels and Symmetry in Homology
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computed as the average {log10(P{value) from pairwise WU-

BLASTP similarities. These weights are then normalized dividing

the averaged edge weights Wi,j of all ortholog pairs of two species i

and j by average weight W of all multi-species ortholog and

‘‘recent’’ paralog pairs [19]. This minimizes the impact of

‘‘recent’’ paralogs in cross-species ortholog clusters. Therefore this

normalized score emphasizes the remote homologs better than the

BLASTP scores and also reduces the impact of ‘‘recent’’ paralogs

in classification. We generate another kernel matrix using this

score, which solves the diagonal dominance issue for K(x,x) to be

orders of magnitudes larger than K(x,y), by assigning arbitrary

values to K(x,x). To satisfy the positive semidefinitive property in

this kernel, we utilize the neighbors and the profiles information to

transform this matrix.

Neighborhood similarity kernel. We incorporate the

neighborhood probabilistic representation of each input sequence

over the above explained MCL similarity scores, following earlier

neighborhood mismatch kernel [22]. Initially we compute the

neighborhood feature vector over the MCL scores and then

generate neighborhood similarity matrix in equation 1. However

to satisfy the positive semidefinitive property of our kernel we

compute the singular value decomposition of this matrix. We

normalize the generated kernel to the [0,1] interval. We identify

Figure 5. Family-by-family comparison of BLASTP kernel and BLASTP OMCL MP kernel after modified symmetry based updation.
The coordinates of each point in the plots are the ROC50 scores for one family, obtained using BLASTP OMCL MP kernel with modified symmetry(x-
axis) and BLASTP kernel (y-axis).
doi:10.1371/journal.pone.0046468.g005

Table 4. Wilcoxon signed rank test on AUC for ROC50 scores.

ID Method ID Method Median p-value

1 1 2 2 Difference

I BLASTP kernel XII PSI-BLAST +OMCL MP kernel + Modsym 0.808 2.38 e-7

II PSI-BLAST kernel III OMCL NM kernel 0.466 1.19 e-7

III OMCL NM kernel X PSI-BLAST + OMCL NM kernel + Modsym 0.729 1.48 e-2

V BLASTP + OMCL NM kernel VIII PSI-BLAST + OMCL MP kernel 0.483 2.77 e-2

V BLASTP + OMCL NM kernel X PSI-BLAST + OMCL NM kernel + Modsym 0.714 3.45 e-2

OMCL NM = OrthoMCL Neighborhood Mismatch kernel, OMCL MP = OrthoMCL Mismatch Profile kernel.
doi:10.1371/journal.pone.0046468.t004

Spectral Neighbor Kernels and Symmetry in Homology
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our OrthoMCL Neighborhood Mismatch (OMCL NM) kernel as

kernel (III).

Mismatch profile kernel. To construct the kernel based on

profile information, we generate a variant kernel with MCL

similarity and PSI-BLAST profile-based scores. Following the

profile mismatch kernel based on spectrum kernel [23], we

develop our kernel using the probabilistic profiles of sequences

over the neighborhood of the Markov cluster similarity kernel.

The singular value decomposition over our feature vector with the

[0,1] interval normalization generates our new kernel with semi-

definitive property. We identify our OrthoMCL Mismatch Profile

(OMCL MP) kernel as kernel (IV).

Combined spectral kernel clustering
The position specific scoring kernels are based on the singular

value decompositions and therefore, are Mercer’s kernels. Again

the neighborhood similarity kernel and mismatch profile kernel

are also proved to be Mercer kernels. We define the kernels

combining PSI{BLAST with OMCL NM and OMCL MP
kernels as kernels (V, VII) and similarly the combined BLASTP
kernels with OMCL NM and OMCL MP kernels as kernels (IV,
VI). Therefore our combined local alignment kernels (V, VI, VII,

VIII), which are the tensor products K(i,j)~K1(i,j):K2(i,j) of

those simple alignment and modified Markov cluster similarity

kernels are also valid Mercer’s kernels [35–37].

For unsupervised classification, we apply the spectral clustering

method directly to the combined local alignment cluster kernel

matrices without using a transductive setting like in [22]. [12]

established the well-clustered approach of the spectral clustering

over protein sequences. However this random walk based graph

partitioning method solves the problem to identify the tightly

coupled clusters, and cut the inter-cluster edges. Thus explicitly

removing the promiscuous domain problem.

This algorithm also constructs the Markov transition matrix as

used in Markov Clustering algorithm (MCL) [20], but differs in the

analysis of the perturbation to the stationary distribution following

a Markovian relaxation process [12] to utilize the eigenvectors

corresponding to the leading eigenvalues of the matrix. As this

method does not need to modify the random walks with a

relaxation parameter called ‘inflation’ in OrthoMCL [19] and

TribeMCL [20], it outperforms those methods in the accuracy of

Table 5. Performance evaluations on clustering solutions for all kernels.

ID Kernel Dunn DB Kruskal Rand Jaccard

I BLASTP kernel 0.013 2.174 5.566 e-3 7.951 e-1 2.455 e-2

II PSI-BLAST kernel 0.015 2.167 5.826 e-3 7.961 e-1 2.577 e-2

III OMCL NM kernel 0.032 2.159 1.145 e-2 8.020 e-1 2.636 e-2

IV OMCL MP kernel 0.036 2.157 1.327 e-2 8.026 e-1 2.707 e-2

V BLASTP + OMCL NM kernel 0.039 2.156 1.418 e-2 8.263 e-1 3.207 e-2

IX BLASTP + OMCL NM kernel + Modsym 0.039 2.135 1.748 e-2 8.399 e-1 3.295 e-2

VI PSI-BLAST + OMCL NM kernel 0.040 2.123 1.879 e-2 8.489 e-1 3.824 e-2

X PSI-BLAST + OMCL NM kernel + Modsym 0.041 1.908 1.999 e-2 8.724 e-1 4.017 e-2

VII BLASTP + OMCL MP kernel 0.052 1.741 2.253 e-2 8.856 e-1 4.191 e-2

XI BLASTP + OMCL MP kernel + Modsym 0.053 1.678 3.123 e-2 8.989 e-1 4.205 e-2

VIII PSI-BLAST + OMCL MP kernel 0.055 1.574 5.097 e-2 8.991 e-1 4.262 e-2

XII PSI-BLAST + OMCL MP kernel + Modsym 0.068 1.419 6.974 e-2 9.025 e-1 4.289 e-2

OMCL NM = OrthoMCL Neighborhood Mismatch kernel, OMCL MP = OrthoMCL Mismatch Profile kernel.
doi:10.1371/journal.pone.0046468.t005

Table 6. ROC50 averaged over 23 families for different string
and mismatch kernels.

Kernel Dataset matrix Mean ROC50

Spectrum Mismatch kernel BLASTP (I) 0.416

PSI-BLAST (II) 0.430

OMCL NM (III) 0.465

OMCL MP (IV) 0.521

String kernel (LIBSVM) BLASTP (I) 0.495

PSI-BLAST (II) 0.545

OMCL NM (III) 0.584

OMCL MP (IV) 0.550

OMCL NM = OrthoMCL Neighborhood Mismatch kernel, OMCL MP =
OrthoMCL Mismatch Profile kernel.
doi:10.1371/journal.pone.0046468.t006

Table 7. ROC50 averaged over existing dataset from SCOP
version 1.59 for different string, mismatch and spectral
kernels.

Kernel Mean ROC50

Linear kernel (SPIDER) 0.384

String kernel (LIBSVM) 0.388

Spectrum Mismatch kernel [22] 0.416

BLASTP kernel (I) 0.420

PSI-BLAST kernel (II) 0.433

OMCL NM kernel (III) 0.780

OMCL MP kernel (IV) 0.801

Spectrum Mismatch kernel + Modsym 0.789

BLASTP kernel + Modsym 0.851

PSI-BLAST kernel + Modsym 0.869

OMCL NM = OrthoMCL Neighborhood Mismatch kernel, OMCL MP =
OrthoMCL Mismatch Profile kernel.
doi:10.1371/journal.pone.0046468.t007

Spectral Neighbor Kernels and Symmetry in Homology
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the result clusters with respect to the true classifications.

Modified symmetry in kernel space
The modified-symmetry based distance measure dc [26], as

defined in equation 3 considers the nearest neighbor of

symmetrical points among clusters to compute distances. The

distance of a point and its nearest neighbor in the Hilbert space

produces significant higher values for the case of outliers.

Therefore scaling it with the euclidean distance between the point

and the centroid distinguishes outliers with much higher values.

Correcting clusters with lower modified symmetry norm (dc) value

imposes compact clusters reducing outliers over kernel space. We

can define the modified symmetry based reassignment of a point x
to cluster c as:

c~argmink~1,:::,K dc(x,Ck) ð5Þ

where Ck~ Centroid of kh cluster and dc as defined in Eq 3.

Furthermore to prove the non-negative definiteness in spectral

kernel with modified symmetry, for arbitrary fx1,:::,xng, we can

show that:

Xn

i~1

Xn

j~1

K(xi,xj)cicj~

Xn

i~1

Xn

j~1

K(xi,xj)ds(xi)de(xi)ds(xj)de(xj)§0

ð6Þ

where ds(xi)~ds(xi,Ck) and de(xi)~de(xi,Ck) are related to c in

Eq 5 using Equation 3 and are always §0 Vi,j.

Therefore the spectral kernel matrix with modified symmetry

norms is itself positive semidefinitive in nature. Alternatively, let
~KK(xi,xj)~ds(xi)K(xi,xj)ds(xj), where K(xi,xj) is a positive

semidefinite spectral kernel. Then for arbitrary fx1,:::,xng and if

e represents de(xi) and e[Rn, then we obtain:

e0 ~KKe ~
X

ij
ei

~KK(xi,xj)ej

~
X

ij
eids(xi)K(xi,xj)ds(xj)ej

~
X

ij
de(xi)ds(xi)K(xi,xj)de(xj)ds(xj)

~
X

ij
ds(xi)de(xi)K(xi,xj)ds(xj)de(xj)

~
X

ij
ciK(xi,xj)cj

~c’Kc§0, ð7Þ

where c[Rn and any ci~ds(xi)de(xi) following Eq 5. Thefore ~KK is

a valid kernel function.

Accordingly, we correct the combined spectral kernel results with

modified symmetry with reallocating proteins to a cluster with its

optimal modified symmetry distance norm less than the pre-defined

threshold h~0:18 [25]. With respect to the original ‘‘true’’ clusters,

this yields to create good overlapping symmetrical clusters, which

are more relevant to homology detection as discussed in Section0.

We define the spectral clustering solutions after modified symmetry

based redistribution for the combined BLASTP kernel with OMCL

NM and OMCL MP kernels as respectively kernels (IX, XI) and

combined PSI-BLAST kernel with OMCL NM and OMCL MP

kernels as respectively kernels (X, XII).

Results

In this section the framework for the experiments and

comparative results of all local alignment kernels and combined

spectral kernels after modified symmetry based correction are

described. The comparative study of the clustering solutions of the

existing string [28] and mismatch [22] kernels are also included in

this section. Similarly we perform the experiments over one large

dataset also to evaluate performances of all the kernel algorithms.

Evaluation framework
Several frameworks have been implemented for demonstatating

the performance of twelve different kernels proposed in this article.

The PSI{BLAST [8,34] iterations with composition based

statistics [38] are performed on a Cluster with 62 Opteron nodes

[2:60 GHz, 322:4 GFLOPs] using MPIBlast and the command-line

program blastpgp. We implement OrthoMCL version 2.0 [19] for

our experiments. All the kernels are generated in Matlab v7.10

(R2010a) 64-bit. The normalized spectrum kernel with sub-

sequence/string length = 4 settings in the Kernel-based Machine

Learning Lab (kernlab) package [39] in R [40] from CRAN is used.

This is utilized for spectral clustering [29] over all our local alignment

and combined kernel matrices. The spectral clustering results of all

methods are evaluated using the receiver operating characteristic

(ROC) score, commonly called Area Under ROC Curve (AUC) and

the ROC-50, which is the ROC score or AUC computed only up to

the first 50 false positives. For the ROC [41] analysis of the kernel

matrices, ROCR packages [42] have been used. Finally the CRAN
statistical package R [40] with RCommander library [43] have been

used for Wilcoxon signed rank test. The modified symmetry based

clustering approach using MPICH has been implemented. We utilize

the existing string kernel of LIBSVM [28] software for comparing its

results with our kernel clustering results. We also experiment over our

chosen dataset with the pre-existing spectrum mismatch [22] kernels

on SVM. To verify the performances over a large dataset, we execute

all our proposed as-well-as those already-existing kernels over the

chosen 54 target families from SCOP version 1.59 [22] from

literature as mentioned in Data section. We also utilize the linear

kernel with SVM of SPIDER [44] framework in MATLAB to obtain

the comparative results.

Performance of local alignment-based spectral kernels
Table 1 summarizes the performance achieved by the local

alignment based kernels for family-level classification implemented

with spectral clustering. We measure the performance of BLASTP

kernel(I), PSI-BLAST kernel(II), OrthoMCL Neighborhood

Mismatch (OMCL NM) kernel(III) and OrthoMCL Mismatch

Profile (OMCL MP) kernel(IV) to classify the multi-domain

protein families of our dataset with mean ROC and mean ROC50

scores. These results show that OMCL MP kernel(IV) performs

best over all other methods indicating the influence of profiles in

homolog detection. All the modified local alignment kernels

outperforms simple score based kernels in this experiment. As an

illustration, the distribution of ROC50 scores for all local

alignment-based kernels is shown in Figure 1. The number of

families whose ROC50 scores are greater than a given threshold in

Spectral Neighbor Kernels and Symmetry in Homology

PLOS ONE | www.plosone.org 8 February 2013 | Volume 8 | Issue 2 | e46468



the range [0,1] are shown in Figure 1. All modified kernels from

OMCL scores, namely OMCL NM (III), OMCL MP(IV) kernels

retrieve approximately two times more ROC50 scores than the

two simple score based BLASTP(I) and PSI-BLAST(II) kernels for

similar number of families.

Performance of combined spectral kernels
In order to investigate the performance of our spectral kernels over

simple alignment kernels, we combine all modified local alignment

kernels using normal product. Combining PSI{BLAST with

OMCL NM (VI) and OMCL MP (VIII) kernels provide respec-

tively ROC values 0:757 and 0:773 in Table 2, which is superior to

the values 0:738 and 0:752 obtained by combining BLASTP kernel

respectively with OMCL NM (V) and OMCL MP (VIsI) kernels.

PSI{BLAST with OMCL MP kernel (VIII) outperforms all other

methods with the highest ROC50 score of 0:773. Figure 2 illustrates

the combined kernel performances of ROC50 distribution for the

unlabelled protein family classification. The basic BLASTP (I) and

PSI-BLAST (II) kernels cannot successfully perform in the absence of

sufficient positive training data for a huge unlabelled protein database

[7]. Therefore combining local alignment kernels may provide

improvement for unsupervised protein family classification. As shown

in Figure 2 both OMCL NM (VI) and OMCL MP (VIII) kernels

combined with the proposed PSI{BLAST kernel (II) consistently

show superior performance while significantly outperforms other

combined kernels.

Modified symmetry in protein classification
In the unsupervised setting of homolog detection, the simple

score based kernels do not show very strong performance in

comparison with the combined modified spectral alignment

kernels. Incorporation of the modified symmetry based cluster

correction imporves the performance further (see Table 3) for

unlabelled data. In comparison with the ROC and ROC50 scores

shown in Table 2, all combined spectral kernels show better

performance after modified symmetry-based enhancement in

detecting homologs. The most striking observation from this result

is that the major impact of modified proximity norm dc in ROC50

scores of 0:798 and 0:789 for two combined PSI{BLAST

spectral kernels (X, XII).

Figure 3 shows the ROC50 distributions for all combined

BLASTP and PSI{BLAST kernels after modified symmetry

based corrections (IX, X, XI, XII). These results show that

PSI{BLAST kernel combined with OMCL NM and

OMCL MP kernels after modified symmetry based redistribution

(X, XII), consistently outperform other combined kernels with

higher ROC50 values.

Figure 4 shows a family-by-family comparison of the ROC

scores of PSI{BLAST kernel combined with OMCL NM and

OMCL MP kernels (VI, VIII). The points fall approximately

near evenly above and below the diagonal, indicating similar

performance of both methods. However there exists more points

on upper triangle of the Figure 4 which proves a little superiority

for PSI{BLAST kernel combined with the OMCL MP kernel

(VIII). Figure 5 shows the family distribution for ROC50 scores of

BLASTP kernel (I) and its improvement after combination with

the OMCL MP kernel including modified symmetry based

enhancements (XI). For most of the families, the

BLASTPzOMCL MP kernel after modified symmetry based

reassignment (XI) provides higher ROC50 scores than simple

BLASTP kernel (I). All the experiments demonstrate the utility of

combined spectral kernel approaches with modified symmetry

corrections in the remote homolog detection.

Discussion

We have presented and experimentally evaluated twelve

spectral kernels for remote homology detection that classify

protein sequences in comparison with the explicit evaluation of

modified symmetry based proximity norm. These kernels

measures sequence similarity on the unlabelled data. For this

unsupervised protein family classification approach, we focus on

our spectral clustering approaches with combined local alignment

score-based valid kernels. This approach performs competitively

with state-of-the-art neighborhood [22] and profile [23] mis-

match kernel methods. When we experiment with introducing

modified symmetry in kernel space for homolog detection, our

methods outperform earlier known cluster kernel methods in this

setting.

Weston et al in [22,23] introduced the neighborhood and

mismatch profile concepts on the BLASTP and PSI-BLAST scores

earlier. However, they did not experiment with positive-semide-

finitive kernels after singular value decomposition of BLASTP (I),

PSI-BLAST (II) and newly experimented OrthoMCL scores for

kernel formations (III, IV). After combined with neighborhood

similarity and mismatch profile features (V, VI, VII, VIII), our

proposed Mercer kernels provide significant solutions after

introducing modified symmetry based updating (IX, X, XI,
XII) in spectral clustering results.

Four major observations can be made by analysing different

experiments presented in this article. First, the direct use of local-

alignment based BLASTP and PSI-BLAST scores to create a

kernel matrix with singular value decomposition (I, II) proves to

be a valid kernel for homology detection. Second, as discussed

earlier in coperation of previously detected OrthoMCL scores to

reduce the ‘‘recent’’ paralog effects in BLASTP/PSI-BLAST

results gains significance. The neighborhood similarity and the

mismatch profile kernel over OrthoMCL scores (III, IV) also

proves to be significant in comparison with earlier cluster kernels,

reducing the diagonal dominance issue with arbitrary lower

magnitude distribution of diagonal values. Third, we do not need

to diagonalize the matrix of all labelled and unlabelled data as in

[22]. The leading eigenvectors over the kernel matrix in our

spectral clustering implementation. It improves the sensitivity over

the all-vs-all local alignment scores for the global distance

computation to all proteins without using any hard cut-off

threshold. Implicit reduction of inter-cluster edges in spectral

clustering also demotes promiscuous domain problem. Without

using any relaxation to random walks by restricting to a one-to-

one allocations for all proteins among all families it solves this

problem, which TribeMCL [20] did with the inflation parameter

as a relaxation over the random walks. Four, the modified

symmetry based reallocation in kernel space imposed to be

biologically significant to exclude outliers as discussed earlier. The

intra-symmetrical clusters represent more compact set of homologs

based on their similarity scores in the kernel matrix. The nearest

neighbors within same cluster represent homologs with similar

domains. Smaller distance with the nearest neighbor therefore

signifies more compact clusters in kernel space and the nearest

neighbors in different clusters represent homologs in different

domains. Therefore detecting modified symmetry among multi-

domain homolog proteins classifies the protein to a cluster of

proteins. The clusters show more accurate domain selection with

closer nearest neighbor homologs expressing more biological

significance.

Both the widely used cluster kernels [22] and OrthoMCL [19]

produce efficient clusters even in the context of remote homolog

detection in multi-domain protein families. This fact is reassuring
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to the validity of our approaches to capture more statistically

significant protein clusters with biological relevance of modified

symmetry correction.

Statistical performance evaluation
To evaluate the statistical significance of the differences in the

performances observed among all spectral kernels, we perform

Wilcoxon signed-rank tests on the area under the ROC50 curve of

all simple score-based local alignment kernels, combined spectral

kernels and the results after corrections with modified symmetry.

Table 4 shows the outputs of this test. Method A outperforms

method B according to Wilcoxon test with pv0:05. The signed-

rank results show expected trends of superiority of position specific

scoring, modified symmetry based corrections and the

OMCL MP kernel over OMCL NM kernel. The median

difference values between two methods in Table 4 show the

consecutive improvement in cluster results of local alignment

kernels after combinations and modified symmetry based upda-

tions over them.

Quantitative performance evaluation
We evaluate the clustering solutions for all kernels objectively by

measuring five validity measures Dunn, Davies-Bouldin, Kruskal,

Rand and Jaccard indices as defined in [45], [46], [47], [48] and

[49] respectively in Table 5. The Dunn validity index [45] shows

increasing values for better performance. As a further quantitative

evaluation, for the PSI{BLAST kernel after modified symmetry

based corrections and combined with the OMCL NM (X) and

OMCL MP (XII) kernels respectively provide Dunn’s index

values of 0:041 and 0:068 in Table 5. Similarly, the Davies-

Bouldin (DB) index [46] value shows better clustering solutions

with combined PSI{BLAST kernel over combined BLASTP
kernel with decreasing values for 1:741 and 1:574 for

BLASTP z OMCL MP (VII) and PSI{BLAST z
OMCL MP (VIII) kernels in Table 5 respectively.

The increasing values of 1:145e{2 and 1:327e{2 for Kruskal

index [47] in Table 5 for OMCL NM (III) and OMCL MP (IV)

kernels over those values 5:566e{3 and 5:826e{3 respectively

for BLASTP (I) and PSI{BLAST (II) kernels, shows the

significance of the Markov cluster similarity scoring kernels

considering neighborhood similarity and mismatch profile respec-

tively. The Rand index [48] shows the increasing superiority of

clustering solutions for OMCL NM (III), BLASTP z
OMCL NM (V) and PSI{BLAST z OMCL NM (VI) kernels

respectively with increasing values of 8:020e{1, 8:263e{1 and

8:489e{1 in Table 5 for the quantitative evaluation. The better

increasing values of Jaccard index [49] with 3:824e{2,

4:017e{2, 4:262e{2 and 4:289e{2 values in Table 5 for PSI{
BLAST OMCL NM (VI), PSI{BLAST OMCL NM z
Modsym (X), PSI{BLAST OMCL MP (VIII) and

PSI{BLAST OMCL MP z Modsym (XII) kernels respective-

ly further show the significance of modified symmetry based

corrections over the clustering solutions provided by the combined

local alignment spectral kernels. This shows superiority of the

combined kernels even over local alignment kernels proving

OMCL MP kernel more significant than OMCL NM kernel.

Comparative performance evaluation
We evaluate the clustering solutions of our proposed kernels

comparatively with those of the already-existing linear [44],

mismatch [22] and string [28] kernels. We experiment those

mismatch [22] and string [28] kernels over the BLASTP, PSI-

BLAST and OMCL matrices to obtain ROC50 scores provided

by those kernels. In Table 6, the ROC50 scores provided by

those existing kernels are shown. The ROC50 scores of our

proposed kernels in Tables 1, 2, 3, 4 show superior efficiency with

higher ROC50 scores. Similarly, to experiment with a large

dataset, we run all our proposed kernels as-well-as the state-of-

the-art linear [44], string [28] and mismatch [22] kernels on

SVM over the existing dataset with 54 families from SCOP

version 1.59 [23]. We experiment the existing linear [44] and

string [28] kernels over this dataset and compare it with existing

results of Spectrum Mismatch kernel [22]. We also experiment

our proposed BLASTP, PSI-BLAST, OMCL NM and OMCL

MP kernels over this dataset. We also compare the kernel outputs

further after the modified symmetry based enhancements. All the

ROC50 scores of the clustering solutions provided by all

algorithms are included in Table 7. The higher ROC scores

provided by our proposed kernels also show superior values over

the existing kernels.

Conclusions

The homologous protein family detection tool within Hemi-

ascomycete yeast complete genomes are appreciated in genomics

to detect the conservation of function. Therefore, we propose a

computational approach for computing local alignment based

Mercer kernels utilizing Markov similarity to reduce ‘‘recent’’

paralog effects. Introducing profile mismatching and neighbor-

hood feature vectors in combined Mercer kernels for spectral

clustering, effectively escalates remote homolgy detection from

unlabeled protein sequences database. We experiment the

corrections by the modified symmetry based proximity norm

producing improved clusters with reduced outliers/singletons

and selecting more biologically significant domains for multi-

domain proteins. Our position specific scoring kernel combined

with the modified symmetry based corrections, achieves state-of-

the-art prediction performance in the context of unsupervised

homology detection. When combined with Markov cluster

similarity kernels in well-known neighborhood feature space

and considering neighborhood mismatch based on profiles, this

approach performs superiorly over other cluster kernels.

Therefore to detect the homologs among multi-domain proteins,

our spectral clustering approach with combined local alignment

kernels results in clusters having better more biological

significance. We suggest that this is achieved due to the

incorporation of the modified symmetry based corrections in

kernel space.
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