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ABSTRACT

Alternative splicing is frequently involved in the di-
versification of protein function and can also be mod-
ulated for therapeutic purposes. Here we develop
a predictive model, called Exon ByPASS (predict-
ing Exon skipping Based on Protein amino acid Se-
quenceS), to assess the criticality of exon inclusion
based solely on information contained in the amino
acid sequence upstream and downstream of the exon
junctions. By focusing on protein sequence, Exon
ByPASS predicts exon skipping independent of tis-
sue and species in the absence of any intronic infor-
mation. We validate model predictions using tran-
scriptomic and proteomic data and show that the
model can capture exon skipping in different tis-
sues and species. Additionally, we reveal potential
therapeutic opportunities by predicting synthetically
skippable exons and neo-junctions arising in cancer
cells.

INTRODUCTION

Accurate gene annotations help clarify the relationship be-
tween a gene and its potential impact on biology (1–3).
With the advent of high-throughput sequencing and so-
phisticated analytical methods, scientists have discovered
enormous complexity resulting from alternative splicing of
expressed genes. Splice variants from protein coding tran-
scripts frequently encode distinct protein isoforms, and
gene function can vary widely depending on the isoform
that is expressed (4,5). In higher eukaryotes, alternative
splicing increases the diversity of functions that can be car-
ried out by a limited number of genes, including tissue-
specific functions (6,7). Cataloging these isoforms is neces-
sary to fully understand function.

Recently, machine-learning models have been developed
to predict all possible splice variants that can arise from
the transcriptome. These tools interrogate exon flanking se-
quences to identify features––sequence elements––that are
compatible with exon skipping or other forms of alterna-
tive splicing. Tools like AVISPA (8), SpliceAI (9), Splice-
Port (10), MaxEntScan (11) and ESEFinder (12) look for
regulatory elements that direct splicing which allow for al-

ternative isoforms. This approach is limited by our knowl-
edge of the factors that mediate splicing and the complex-
ity of this process. Splicing depends on the position, size
and strength of sequence elements as well as the presence
and accessibility of splicing factors which are unique to cell
types and species (13–15). A model that could identify skip-
pable exons, regardless of RNA context, might be helpful
in the discovery of additional targets for oligonucleotide-
mediated skipping therapies as well as neo-junctions (neo-
antigens derived from skipped exons) that could be targeted
in cancer immunotherapies.

To overcome these challenges, we built a model called
Exon ByPASS (predicting Exon skipping Based on Protein
amino acid SequenceS) that attempts to predict the feasibil-
ity of exon skipping based on the resulting protein sequence.
We hypothesize that the constraints on protein structure
provide sufficient information to predict whether a coding
exon is removable and that these constraints should be in-
dependent of species and tissue. Based on this hypothesis,
we leveraged an abundance of protein sequence informa-
tion that is available across eukaryotic species to train the
model, which aims to measure the probability that a pro-
tein will fold and function if the segment encoded by a spe-
cific exon is removed. With our model, we identified protein
features that constrain exon skipping, and we validated the
presence of novel isoforms predicted by Exon ByPASS with
transcriptomic and proteomic data. We show that the model
captures skipping events independent of tissue, and the
model can be applied across species. Importantly, the model
finds previously unobserved skipping events that could have
significant biological consequences.

MATERIALS AND METHODS

Exon classification

Protein sequence data as well as exon genomic coordinates,
exon id and exon rank were pulled and merged from En-
sembl’s BioMart using biomaRt v2.44.4 (16). Two hundred
two genomes were available from biomaRt at the time of
training. First, we ignored all first and last exons within a
transcript. Any gene with only one transcript annotation
was also set aside. Next, we removed any non-coding tran-
scripts. Exon classification into groups of constitutive and
skippable exons was done by an in-house script that uses ge-
nomic coordinates to find transcripts that have exons that
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do or do not occupy the same genomic positions. If an exon
was found to occupy the same genomic coordinates in every
transcript it was considered constitutive. If an exon was not
present in one transcript but was in others, it was considered
skippable; however, the flanking exons of the two transcripts
had to be sequence-equivalent. This ensured that our clas-
sifications were specific to exon skipping and not the result
of alternative 5′- or 3′-splice sites. Additionally, this clas-
sification avoided calling retained introns as skipped exon.
Exons were then classified by frame using coding sequence
length. If the coding sequence length was divisible by three
then it was considered in-frame. After classification, amino
acid sequences were assigned to each exon. If an amino acid
codon was split between two exons, the exon with more than
one nucleotide was assigned the amino acid. Exon classifi-
cations were checked to ensure they were consistent for each
gene so that an exon was not constitutive in one isoform and
skippable in another isoform.

Model parameters, architecture and training

We used the GPU version of TensorFlow in keras v2.3.0 in
R 3.6.1 (https://www.r-project.org/) (https://keras.rstudio.
com/). The keras package in R uses reticulate to connect
to keras in python. Keras is a neural network API which
uses TensorFlow as a backend. We built a sequential keras
model with embedding layer that allowed us to stack lay-
ers. The input of the model uses one-hot coding represen-
tations of amino acids. The model starts with an embed-
ding layer with input dim = 22, output dim = 22, and in-
put length = 100. The next 3 layers are 1D convolutional
layers with 1028 filters, window sizes of 4, strides of 1 and
with a relu activation function. Then there are 3 additional
convolutional layers with the same parameters; however,
they only have 512 filters. Next, was a max pooling layer
that used a window size of 1 and then a dropout layer
which removed 20% of the nodes. Next, there is a bidirec-
tional LSTM layer which takes the input after pooling and
dropping out. The LSTM layer output is a 100-unit vec-
tor before it is passed to a 2-node dense layer with a sig-
moid activation function. The last layer serves as the out-
put layer and is where the probabilities are obtained. To
optimize weights, we found that ADAM performed bet-
ter than the traditional stochastic gradient descent algo-
rithm (17). With ADAM, we used a learning rate of 0.001
with other parameters set to default. Finally, for model
training we used a 90:10 training validation split. We used
a batch size of 1000 and found that accuracy and mean
squared error was optimal after 10 epochs. The model can
be found at https://github.com/wavelifescience/ExonByPass
and sample datasets can be found at https://zenodo.org/
record/5998350#.YgFUiFjML64.

Testing exons in mouse and human

To make predictions on mouse and human exons, which we
then used for validation, we pulled amino acid sequences
from biomaRt (16). We used GRCh38 and GRCm38 as-
semblies for testing. We pulled all protein sequences from
coding exons except the first and last exons of transcripts.
We also pulled genomic coordinates, exon id and transcript

rank per exon. The model was loaded into R using the R
package keras v2.3.0 (https://keras.rstudio.com/). The se-
quences were again encoded into 100 × 22 matrix represent-
ing 50 amino acids in the exon of interest and 25 amino acids
from the up- and downstream exon. The predict proba
function was then used to calculate the skip probability us-
ing the model and the exon sequences. The exon probabili-
ties were merged with genomic position, exon id and tran-
script rank, which allowed us to compare to known anno-
tations and validation data.

Pairwise mutational analysis

Pairwise mutational analysis was performed using an in-
house script which loops through all pairwise Ala substi-
tutions in a 100-amino acid sequence. To predict skip prob-
ability on the modified sequences, we used predict proba.
Each evaluated exon results in 100 × 100 matrix of predic-
tions. We analyzed 10 000 exons from GRCh38 that had the
highest predicted probability in the reference sequence. The
resulting 100 × 100 matrices from the 10 000 were averaged.
The mean probabilities were then plotted using pheatmap
v1.0.12.

Disorder prediction, physiochemical properties and InterPro
annotations

For protein disorder predictions, we used DISpro. DISpro
uses an energy estimation function to calculate interactions
between residues; residues more favorable to folding gen-
erally have more contact. We used default parameters when
running DISpro. Predictions were again returned per amino
acid, and the average was taken across each exon for each 25
amino acid segments. Amino acid hydrophobicity was cal-
culated based on the Rose scale (18), and amino acid flex-
ibility was calculated based on the Karplus scale (19). Hy-
drophobicity and flexibility were averaged across 100 amino
acid input sequence using a 5 amino acid window. The 25th,
26th, 75th and 76th amino acids are excluded due to amino
acid bias from the acceptor and donor nucleotides. Net
charge is defined as the charge of amino acids at pH 7. Asp,
Arg, Lys and Glu were considered to be charged and were
averaged over the input sequence using a 5 amino acid win-
dow. To find InterPro annotation over exon 7 in APAF1, we
used biomaRt to pull positions (20). We used ggribbon to
visualize annotations.

Identifying skipped exon junction counts in mouse

Published RNA-seq experiments were retrieved using
SRA toolkit (21) (https://www.ncbi.nlm.nih.gov/books/
NBK56551/). This dataset contains 12 different mouse
tissues sampled every 6 h for 2 days, for a total of 96
RNA-seq samples. Fastq files were adaptor trimmed
with bbduk v38.73 and quality checked with FastQC
v0.11.5 (https://sourceforge.net/projects/bbmap/) (https:
//www.bioinformatics.babraham.ac.uk/projects/fastqc/).
Hisat2 v2.1.0 was used to align reads to GRCm38 (22).
Aligned bam files were sorted and indexed using samtools
v1.9 (23). Using Rsubread v2.4.0, we counted reads that
would span junctions of all coding regions within the
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GRCm38 genome (24). The genomic coordinates for
junction reads, which was an output of Rsubread, was used
find specific junction reads that skip single exons. These
junction reads were then compared with known skipped
exons in annotations and predicted skipped exons. The
total skipped exon junction counts per exon was taken
from all 96 samples. Sashimi plots were taken from a single
sample from the specified tissues. We used the python
package ggsashimi (25) to make sashimi plots. Annotations
for these plots were extracted from GRCm38 annotations.

Comparing to ExonSkipDB

To find evidence to support predicted skipped exons from
human RNA-seq data, we used ExonSkipDB (https://ccsm.
uth.edu/ExonSkipDB/). GRCh37 coordinates were con-
verted to GRCh38 using biomaRt. The exon skipped exons
where then filtered by frame. Finally, the skipped exons were
compared with annotations and predictions using genomic
coordinates.

Mouse to human orthologs

We used biomaRt to find orthologs and annotations of or-
thologs. We use only orthologs with 80% sequence similarity
at the nucleotide level. Gene order scores >75 and genome
alignment score >75 were also considered as ortholog pairs.
First, we obtained orthologous genes using gene ids from
biomart and looked at differences in the annotation of the
genes between human and mouse. To ensure that only or-
thologous exons were compared, we examined transcripts
in which the total number of exons were the same, and we
only called exons as skipped if their rank was equivalent
in mouse and human. We also ensured that skipped exons
had >70% sequence similarity at the protein level in mouse
and human. Finally, we categorized skipped exons that were
annotated in human but not in mouse and were predicted to
be skippable by our model. We used sankeyMATIC to plot
the breakdown on the orthologs of predicted and annotated
in-frame skipped mouse exons (http://sankeymatic.com/).

Annotation track plots

Track plots were generated in R using Gviz v 1.30.3 us-
ing mouse GRCm38 and human GRCh38 (26). Transcripts
were filtered by coding sequences. BiomaRt was used to pull
transcript coordinates and annotations. For more detail see
exon annotation plot.R in github.

AUC

Receiver operating characteristic curve (ROC) analysis was
performed in R using pROC v 1.16.2 (27). For the mouse
RNA-seq AUC, we used all in-frame skipped exons with
at least one junction count as a true case in the response
vector. We compared RNA-seq junction counts to anno-
tations in mm10 and predictions by our model. For anno-
tations, the predictor vector was encoded into binary: for
each exon, 0 represented annotated constitutive exons, and
1 represented annotated skipped exons. For our model, the

predictor vector was just the probability that an exon could
be skipped. For ExonSkipDB AUC, we used all in-frame
skipped exons identified by ExonSkipDB and all hg38 an-
notated in-frame skipped exons as true cases in the response
vector. We compared this to our model predictions as well as
known skipped exon annotations. For annotations, the pre-
dictor vector was encoded into binary as described above.
For our model, the predictor vector was the probability that
an exon could be skipped. The resulting ROC objects were
then plotted using ggroc.

Proteomics analysis with Philosopher v3.2.9 and MSFragger
v2.3

We used a standard ftp to download mzML per iTRAQ
multiplexed samples from the 2012 Breast Cancer Study
using the CPTAC data portal (28,29). We used MSFrag-
ger based search and Philosopher to demultiplex and to
match peptide spectra derived from skipped exon junctions
(30,31). To generate the theoretical skipped exon peptide
database, we merged the protein sequences of the up- and
downstream exons while excluding the exon of interest for
every annotated exon. We did this for every exon except
the first and last exons of a transcript and any exons from
non-coding transcripts. Additionally, decoy sequences were
added to estimate and account for false-positive rates. We
used Philosopher pipeline and standard parameters to per-
form a closed database search. Parameters can be found in
Supplementary Table S4. We used the combined peptide
output to search for junction peptides. After the search,
we filtered for any peptides that spanned the junction be-
tween the upstream or downstream protein sequence. At
least one amino acid had to match the end of the upstream
exon or the beginning of the downstream exon to ensure
that the peptide spanned the exon junction. To quantify
peptides per treatment we used peptides per multiplexed
sample.

MARIA HLA class II predictions

For prediction by classification as HLA class II present-
ing antigens, we used MARIA (https://maria.stanford.edu/)
(32). The identified skipped exon peptide sequences from
the CPTAC Breast Cancer Study were used as the se-
quence input. We also assumed all genotypes to be HLA-
DRB1*01:01 alleles. We used TCGA’s BRCA studies for ref-
erence gene expression. After MARIA, classification confi-
dence scores >95% were considered as presenting peptides.

Exon ByPASS validation by exon skipping oligonucleotides

PubMed was searched for publications involving exon skip-
ping or splice switching. Obvious off-topic publications and
reviews were removed. The gene and exon were then iden-
tified from the publication title and abstract. Publications
were additionally filtered by any skipping strategies that in-
volved targeting cryptic splice sites. This left 51 unique ex-
ons that have been experientially validated with exon skip-
ping oligonucleotides.
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RESULTS

Exon ByPASS

Deep neural networks are a good choice when trying to in-
fer complex interactions in sequence data (8,9,33–36). Ac-
cordingly, we have built a model, called Exon ByPASS, us-
ing deep neural networks based on a CNN-LSTM (convo-
lution neural network––long-short-term memory) (Figure
1A) (37,38). Exon ByPASS predicts the likelihood that an
exon of interest can be skipped or is constitutive based on
the resulting protein sequence. Previous methods to predict
exon criticality have been based on nucleotide sequence (8–
12); however, Exon ByPASS considers the possibility that
exon skipping constraints can be imposed at the protein
level.

Input comprises amino acid sequences upstream and
downstream of an exon, allowing us to consider determi-
nants within and adjacent to the exon of interest. After ex-
ploring several input lengths, we found that including at
least 25 amino acids derived from the upstream exon and
25 derived from the downstream exon provided the most
consistent results. Additionally, we used the first 25 amino
acids and the last 25 amino acids from the exon of interest.
Including the sequences from the flanking exon, the input
length totals to 100 amino acids. We padded Exon ByPASS
inputs with <100 amino acid inputs, adjusting to achieve a
total input of 100 amino acids per exon.

Amino acids sequences are encoded into a 100 × 22
format, where there are 100 amino acid positions with 22
possible identities at each position, including stop codons
and ambiguous amino acids (Figure 1A). The data pass
through several convolutional layers, a fully connected layer
and an LSTM layer. The model output is binary, classify-
ing each exon as skippable or constitutive. We trained the
model with the Ensembl (release 100) BioMart database of
amino acid sequences containing 202 vertebrate genomes
(Figure 1B) (16). Input exons were divided by existing an-
notations into constitutive (all isoforms contain the exon),
skippable (one or more isoforms exclude the exon while re-
taining adjacent exons) or one annotation (only one iso-
form has been annotated). Constitutive exons were divided
into in-frame and out-of-frame categories. Exons that are
constitutive and in-frame were excluded from training and
validation to avoid training on skippable exons that have
not yet been identified, and these exons are what we con-
sidered our test set. Genes with only one transcript anno-
tation were similarly excluded to avoid training on under-
studied or new genomes that could bias training results.
In total, we identified ∼18 million constitutive exons and
∼1 million skippable exons that were divided into a train-
ing set and validation set at a ratio of 90% to 10%, respec-
tively. After 10 epochs of training, Exon ByPASS reached
99% accuracy on training data and 93% accuracy on valida-
tion data. Exon ByPASS performed similarly to alternative
splicing models such SpliceAI (accuracy = 95%) (9); how-
ever, it is difficult to directly compare Exon ByPASS to other
models because Exon ByPASS considers only exon skipping
and evaluates exons as a whole while other models con-
sider all aspects of alternative splicing and evaluate gains
or losses in acceptor sites, donor sites and other splicing
motifs.

Predicting skippable exons in mouse

To validate existing skipped exons and find novel skip-
pable exons using protein sequence, we applied our model
to mouse coding sequences (Genome Reference Consor-
tium mouse build 38, mm10; https://www.ncbi.nlm.nih.gov/
assembly/GCF 000001635.20/). We used the model to cal-
culate probabilities for all mouse exons using criteria pro-
vided for the model. We classified exons with probabili-
ties >0.5 as skippable and ≤0.5 as constitutive. A majority
were predicted to be constitutive (Figure 2A,B). Compared
with existing mm10 annotations, we predicted more exons
than expected to be skippable (Figure 2A,B; 29,370 anno-
tated as skippable; 89,262 predicted as skippable).

Next, we confirmed that predicted skippable exons re-
tained the reading frame of the transcript, and that reading
frame is not a singular feature driving selection of skippable
exons (Figure 2C). Differences between Exon ByPASS pre-
dictions and annotations arose for test exons that were ex-
cluded during training (Figure 1B). Because these exons
were omitted from the training data, we predict Exon By-
PASS will more accurately classify these exons than exist-
ing annotations. To validate predicted skippable exons, we
assessed a diverse dataset comprising transcriptomes of 12
mouse tissues sampled at 8 timepoints over 2 days (21).
Skipped exon-junction counts were used to gauge perfor-
mance of Exon ByPASS (Figure 2D).

First, we compared the distribution of skipped exon-
junction counts from predicted skippable and constitutive
exons (Figure 2E). Most skipped exon-junction counts are
predicted as skippable: 85% of these were correctly pre-
dicted as skippable. For the 15% that were misclassified,
we found that most counts derive from out-of-frame exons
(Figure 2F), which could be from transcripts destined for
non-sense mediated decay or that are in midst of RNA pro-
cessing, and additional exon skipping will eventually cre-
ate an in-frame transcript. Overall, we found substantial
agreement between predicted skipped exons and skipped ex-
ons validated with junction counts. Next, we looked for in-
stances where the mm10 annotation missed exon skipping
events detectable in the RNA-seq data that was predicted by
Exon ByPASS. In total, we found 3557 skipped exons in the
RNA-seq data that were not annotated but that were pre-
dicted by Exon ByPASS (Supplementary Table S1). Includ-
ing these exons increases the total counts mapping to in-
frame skipped exons by >4%. We found that Exon ByPASS
predictions outperformed classification of exon skipping
events in the RNA-seq dataset mm10 annotations (model
AUC = 0.86 (light blue), mm10 AUC = 0.68 (navy blue),
DeLong’s test: P < 2.2e-16) (Supplementary Figure S1).

Exon ByPASS predicts skipping independent of tissue

Alternative splicing is largely regulated by tissue-specific
factors (6,7,39–41). To examine Exon ByPASS’s ability to
predict tissue-independent exon skipping events, we sur-
veyed the mouse RNA-seq dataset (21), considering data
from the different tissues separately. As expected, we found
exon skipping events across all tissue types (Supplemen-
tary Figure S2A,B). For each tissue, we identified at least
20,000 unique skipped exons and, depending on the tissue,
3–6% of these exons had mean counts per million reads
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Figure 1. Exon ByPASS predicts exon skipping from protein sequence. (A) Overview of Exon ByPASS, illustrating the 100 × 22 amino acid matrix, with
underlying exons encoded into matrix before being passed through a series of convolutional neural network layers. The last layer in the CNN is a fully
connected layer which gets passed to an LSTM layer. Finally, the probability that the exon is skipped is relayed to two output neurons. (B) Data from 202
annotated genomes in the Ensembl database were used for training. Exons were labeled as constitutive and skippable for training. Exons encoding only
one protein isoform or determined to be constitutive and in-frame were removed from training. Data meeting input criteria were divided, with 90% used
for training and 10% used for validation; CNN, convolution neural network; LSTM, long-short-term memory.

(CPM) >1. We also found 195 skipped exons that were pre-
dicted to be skipped by Exon ByPASS but were not anno-
tated in mm10 and only skipped in one unique tissue type
(Figure 3A). We identified a majority of unannotated exons
in liver, cerebellum, kidney and muscle, which is consistent
with complex alternative splicing that has been previously
associated with these tissues, particularly the cerebellum
(39–41). Existing annotations may have also been limited
by biased sampling from data used in NCBI pipeline (https:
//www.ncbi.nlm.nih.gov/genome/annotation euk/process/).

For each tissue, we found at least 1,400 skipped exon
junctions that were unannotated but predicted as skipped
exon junctions by Exon ByPASS (Figure 3B and Supple-
mentary Figure S2C). In cerebellum, we discovered 2,591
unannotated but predicted skipped exons; for brainstem,
we found 2,437 (Supplementary Figure S2D). These ob-
servations are consistent with known high levels of alter-
native splicing in neuronal tissue (39–41). Many of these
newly identified skipped exons are not associated with mi-
nor isoforms, as 3–6% of them have a mean CPM > 1 (Sup-
plementary Figure S2C,D). In addition to having the most
unannotated but predicted skipped exons, cerebellum also
had the most highly expressed unannotated but predicted
skipped exons, with 141 having mean CPM > 1. The most
prevalent skipped exon of those that were unannotated was
exon 15 from Neb (nebulin), which was detected in muscle
(Figure 3B). Junctions reads skipping exon 15 of Neb have
a mean >100 CPM across all muscle tissue samples. Ad-
ditionally, we identified junction counts for 341 additional
unannotated but predicted skipped exons in all 12 tissues.

Model predictions reconcile human and mouse databases

Although we found RNA-seq reads that validate many
unannotated skippable exons predicted by Exon ByPASS,
confirming all possible skipped exons would require sam-
pling transcriptomes under all conditions that can impact
splicing (3,42). To better assess the scope of skippable ex-
ons that remain unannotated, we compared annotations in
mm10 to better characterized annotations in hg38 and then
to Exon ByPASS predictions (Figure 3C). Of 169,895 in-
frame mouse exons, we found 24,767 exons which are pre-
dicted and not annotated to be skipped despite being an-
notated as orthologs that are skipped in hg38. More than
half of the mouse exons that are orthologs of annotated hu-
man skipped exons have been missed by mm10 but were
predicted by our model. One example of this is illustrated
in Figure 3D. In cerebellum, exon 26 of Neo1 (neogenin 1)
is skipped in 115 junction counts. In the mm10 annotation,
exon 26 is not skipped; however, in the hg38 annotation,
the orthologous exon for NEO1 is predicted to be skipped.
In addition to Neo1, we confirmed that 540 exons, which
were predicted skippable by Exon ByPASS and have been
annotated as skipped in hg38 but have not been compara-
bly annotated in mm10, and are confirmed as skipped in
RNA-seq data.

Predicting human skippable exons

We next applied our predictions to human protein
sequences from hg38 (https://www.ncbi.nlm.nih.gov/
assembly/GCF 000001405.26/). Again, we used Exon By-
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Figure 2. Validation of predicted skipped exons in mouse using RNA-seq data. (A) Histogram showing probability that an exon is skippable based on
protein sequence derived from mm10 coding regions. Constitutive exons have a skip probability ≤0.5 and skippable exons have a skip probability >0.5.
(B) Pie chart showing exons that are annotated as constitutive (navy blue) or skippable (light blue) in mm10. Of the 410,069 analyzed exons, 7.2% are
annotated as skippable and 92.8% are annotated as constitutive. (C) Pie chart showing exons that are predicted as constitutive (navy blue) or skippable
(light blue). Of the 410,069 analyzed exons, 21.8% are predicted as skippable and 78.2% are predicted as constitutive. Pie chart showing the reading frame
for exons from the predicted constitutive cohort. 75% are out-of-frame exons (navy blue), and 25% are in-frame exons (light blue). Pie chart showing the
reading from for exons predicted to be skippable. >99% are in-frame exons (light blue), and <1% are out-of-frame exons (navy blue). (D) Scheme of data
used to validate predicted skipped exons. Mouse RNA-seq data has 12 tissue types with 8 timepoints per tissue (21). These data were used to identify
skipped exon junctions reads which are evidence for skipped exons. (E) Distribution of skipped exon-junction counts for predicted constitutive (navy blue)
and predicted skippable (light blue) exons. The x-axis is the log of the sum of the skipped exon-junction counts in each sample for all identified skipped
exon junctions. (F) Scatter plot showing all identified skipped exon junctions. Each point is a unique skipped exon junction. The y-axis represents the log
of the sum of the skipped exon-junction counts in each sample for all identified skipped exon junctions. The x-axis depicts probability of exon skipping
based on Exon ByPASS. Exons that are out-of-frame (navy blue) and in-frame (light blue) are represented.

PASS to calculate skip probabilities for all exons according
to model criteria (Figure 4A). As expected, we found most
exons were constitutive (Figure 4B). However, we found
a higher proportion of exons that were annotated and
predicted to be skippable in human than mouse. Exon
ByPASS predicted 73,041 more exons to be skippable
than were annotated as skippable in hg38 (Figure 4C).
High numbers of both predicted skipped exons (99%)
and predicted constitutive exons (25%) retain the reading
frame, indicating that the reading frame cannot be the sole
feature driving predictions (Figure 4C).

To validate predicted skippable exons, we evaluated Ex-
onSkipDB (43) and VastDB (44), a database of skipped
exons (Figure 4D). Exons in ExonSkipDB derive from
RNA-seq data from two major initiatives: Genotype-Tissue
Expression project (GTEx) and The Cancer Genome At-
las program (TCGA) (6,45). VastDB uses extensive RNA-
seq data and provides additional exons that can be used
as a gold standard for comparison. After filtering for in-
frame skipped exons, we looked for overlap between pre-
dicted skipped exons and exons found to be skipped in
GTEx,TCGA or VastDB. As expected, predicted skippable
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Figure 3. Exon ByPASS predicts exon skipping independent of tissue and can reconcile human and mouse databases. (A) The number of tissue-specific
unannotated but predicted skipped exons with junction counts in RNA-seq data detected in each tissue. (B) Sashimi plots for representative unannotated
but predicted skipped exons showing cerebellum-specific splicing for Itpr1 (inositol 1,4,5-trisphosphate receptor type 1) exon 12, lung-specific splicing for
Rps7 (ribosomal protein S7) exon 3, heart-specific splicing for Hadhb (hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta)
exon 12, muscle-specific splicing for Neb exon 15, and non-tissue-specific splicing for Slmap exon 16. For each panel, expression in representative samples
of cerebellum, lung, heart and muscle tissue are depicted. Annotations are based on mm10. (C) Sankey plot showing the breakdown for in-frame mouse
exons. Two-thirds of the in-frame mouse exons do not have a human ortholog. The rest have a human ortholog and are annotated as skippable in hg38. Of
the annotated skippable exons in humans, 23,554 are also annotated as skippable in mouse. This leaves 24,767 exons that are not annotated as skippable
in mouse but that are annotated as skippable in human. (D) Sashimi plot of junction reads for mouse Neo1 exon 26, with 115 reads that skip exon 26 in
mouse. Mm10 annotation for Neo1 is shown, with exon 23 highlighted. Hg38 annotation for NEO1 is shown, with region orthologous to mouse Neo1 exon
26 highlighted.
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Figure 4. Validation of predicted skipped exons in humans using ExonSkipDB. (A) Histogram showing probability that an exon is skippable based on
protein sequence derived from hg38 coding regions. Constitutive exons have a skip probability ≤0.5 and skippable exons have a skip probability >0.5. (B)
Pie chart showing exons that are annotated as constitutive (navy blue) or skippable (light blue) in hg38. Of the 622,195 analyzed exons, 12.9% are annotated
as skippable and 87.1% are annotated as constitutive. (C) Pie chart showing exons that are predicted as constitutive (navy blue) or skippable (light blue).
Of the 622,195 analyzed exons, 24.6% are predicted as skippable and 75.4% are predicted as constitutive. Pie chart showing the reading frame for exons
from the predicted constitutive cohort. 76.4% are out-of-frame exons (navy blue), and 23.6% are in-frame exons (light blue). Pie chart showing the reading
frame for exons predicted to be skippable. >99% are in-frame exons (light blue), and <1% are out-of-frame exons (navy blue). (D) Scheme of data used
to validate predicted skipped exons. ExonSkipDB (43) used GTEx and TCGA to identify skipped exons. Additional validated skipped exons were found
from VastDB (44). (E) Upset plots showing the overlap of skipped exons as predicted by Exon ByPASS, annotated in hg38, present in GTEx, present in
TCGA or present in VastDB. The overlap of predicted but not annotated exons identified by GTEx and TCGA or VastDB is shown (light blue). (F) Violin
plot showing skip probability with respect to TCGA (light blue) and GTEx (navy blue). The dashed line demarcates a skip probability of 0.5. (G) Receiver
operator curve (ROC) showing Exon ByPass’s classification of all hg38 exons. Exon ByPASS predictions compared with skipped exons in TCGA and hg38
annotation (light blue) and compared with skipped exons in GTEx and hg38 annotation (navy blue) are shown.

exons overlap substantially with hg38 annotations (Fig-
ure 4E, 28,434 exons). Surprisingly, the next most sub-
stantial overlap was between predicted skipped exons and
exons found to be skipped in VastDB (19,450 exons).
Additionally, a large overlap was observed between pre-
dicted skipped exons and exons found in GTEx and TCGA
(6,979), None of these >25,000 exons are identified in the
current hg38 annotation as skippable.

Next, we considered the skip probabilities for all in-frame
skipped exons from GTEx and TCGA (Figure 4F). Our
model correctly identified more than two-thirds of these ex-
ons, with a mean skip probability >0.5. We also observed
that Exon ByPASS had >0.5 mean skip probability for all
in-frame skipped exons identified by VastDB (Supplemen-
tary Figure S3). Next, we compared exon skip probabil-
ities from Exon ByPASS to hg38 annotations and found
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that the model increased area under the receiver operat-
ing characteristic curve (AUC) compared with hg38 anno-
tation (DeLong’s test: GTEx’s P value < 2.2e-16, TCGA’s
P value < 2.2e-16; Figure 4G).

Finally, we examined the proportion of Exon ByPASS
predictions with respect to PSI (percent spliced in) of exons
found in VastDB. By using PSI, which is provided for all
in-frame skipped exons by VastDB, we can assess Exon By-
PASS accuracy compared to exon-skipping frequency (Sup-
plementary Figure S4). As expected, in both mouse and hu-
man, the more frequently an exon is skipped, the more likely
Exon ByPASS will call it skippable.

Sequence position and structure contribute to skip probability

To examine the potential driving factors of exon skipping,
we looked at the properties of input amino acid sequences
from the top 10,000 predicted skippable exons and top
10,000 predicted constitutive exons in hg38. To compare
predicted constitutive and skippable exons, we first com-
pared the frequency of each amino acid (Supplementary
Figure S5). Predicted skippable exons were found to have a
much higher proportion of glycine (Gly) and proline (Pro).
Both amino acids have distinct structural features. Gly,
without a side chain, is highly flexible, so it is generally not
found in helices (46). Pro, whose sidechain in connected to
its backbone, is rigid and lacks the hydrogen-bonding po-
tential necessary for helices (47). Because we observed dif-
ferences in structurally unique amino acids, we compared
predicted disorder of constitutive and skippable exons. We
used DISpro to calculate a disorder score for 25 amino acids
segments across input sequences of predicted skippable ex-
ons predicted constitutive exons (48). We found that across
each 25 amino acid segment, skippable exons encoded sig-
nificantly more disordered regions than constitutive exons
(Welch’s t-test P-value < 2.2e-16, Figure 5A). To further re-
fine the distinction observed by disorder score, we looked at
the physiochemical properties across the input amino acid
sequence, including average hydrophobicity, flexibility and
net charge across the input sequence. Net charge showed
no difference between constitutive and skippable exons. Hy-
drophobicity is consistently higher at all input positions in
constitutive exons and flexibility is consistently higher at all
input positions in skippable exons (Supplementary Figure
S6). However, there are regions within the input sequences
where the difference between constitutive and skippable de-
creases or increases.

To evaluate specific positional features driving exon skip-
ping predictions, we perturbed protein sequences at spe-
cific positions. To gauge amino acid sequence associa-
tions, we used a pairwise mutational scheme and mea-
sured the impact on skip probability. Similar approaches
have been used to find sequences that are important fea-
tures in other neural network models (10). For this evalua-
tion, we selected the 10,000 highest scoring skippable exons
from the human genome (Genome Reference Consortium
human build 38, hg38: www.ncbi.nlm.nih.gov/assembly/
GCF 000001405.26/). For each of the 10,000 exons, we
used the 100-position input (as described above) for pre-
dictions, but input data were modified iteratively with two
alanine (Ala) substitutions within the input sequence. We

then quantified the change in skip probability between pair-
wise substituted sequences and the wild-type sequence for
each exon. Because we examined the most highly skippable
exons, Ala substitutions rendered them more constitutive.
This pairwise substitution resulted in a 100 × 100 matrix
for each exon. These 100 × 100 matrices created from pair-
wise substitution of the 10,000 skippable exons were aver-
aged to create a single matrix that highlights the regions of
input that most significantly impact the likelihood an exon
can be skipped (Figure 5). The largest perturbations come
from pairwise Ala substitutions encoded by the upstream
and downstream exons. Large changes in probability were
also observed when pairwise substitutions were made in se-
quences encoded by the upstream exon alone, or in combi-
nation with substitutions in the first half of the exon of inter-
est. Surprisingly, minimal changes in probability were ob-
served when pairwise substitutions were made in sequences
encoded by the exon of interest. Similarly, minimal changes
were observed when single Ala substitutions were made in
the input.

Exon ByPASS identifies exons amenable to exon-skipping
oligonucleotides

Since Exon ByPASS relies on protein data to make pre-
dictions, the model may predict compatible protein se-
quences after an exon is skipped regardless of whether it
occurs naturally. Thus, there is a possibility that Exon By-
PASS can predict exons that can be skipped through syn-
thetic means, which would be a useful tool in the discovery
of exon-skipping targets for oligonucleotide therapeutics.
These therapeutic oligonucleotides can be used to skip over
exons containing disease-causing mutations in order to re-
store protein expression or normal protein function (49). To
examine this application of Exon ByPASS, we conducted an
extensive literature search for oligonucleotides that mediate
exon skipping. We found 51 exons that were validated exper-
imentally as skippable using oligonucleotides. Of these 51
exons, Exon ByPASS correctly predicted 41 of them as skip-
pable, which was 10 more than the number of exons found
in VastDB and 33 more than are annotated as skippable
(Supplementary Table S2). High concordance between ex-
perimentally confirmed skippable exons and Exon ByPASS
makes Exon ByPASS a viable tool for the prediction of ther-
apeutic exon skipping targets.

Proteomic validation of predicted exons

Finally, we extended our validation to consider proteomic
data from CPTAC (Clinical Proteomics Tumor Analysis
Consortium) (28), focusing on the Cancer Proteome Study
of Breast Tissue. The study consisted of 105 proteome sam-
ples from breast cancer tissue as well as a 3 proteome sam-
ples from normal breast tissue (50). To compare predic-
tions and annotations, we first created a theoretical pep-
tide database containing all possible peptides derived from
skipped junctions that could arise from the human pro-
teome consistent with input criteria for Exon ByPASS (Fig-
ure 6A). Using Philosopher and MsFragger, we compared
this theoretical database to proteomic data from above
(30,31). In total, we found 81 unique peptides that are in-

http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
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Figure 5. Amino acids physiochemical properties and amino acid substitutions impact skip probability. (A) Disorder score for the input from the last
25 amino acids of the upstream exon, the first 25 amino acids of the exon of interest, the last 25 amino acids of the exon on interest, and the first 25
amino acids of the downstream exon in the top 10,000 predicted skippable exons and top 10,000 predicted constitutive exons in human genome (hg38).
(B) Hydrophobicity, flexibility, and net charge ([Arg + Lys]-[Asp + Glu]) were averaged over a 5 amino acid window across the input sequences for the
top 10,000 predicted skippable exons and top 10 000 predicted constitutive exons in human genome (hg38). Plotted error represents standard error. (C)
Heatmap of change in probability across amino acid sequence for the averaged 100 × 100 matrix. Pairwise substitution of Ala into predictable skippable
human genome (hg38) exons. 10,000 hg38 skippable exons and the change in skip probability when pairwise Ala substitutions are introduced.
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Figure 6. Peptides from breast cancer samples overlap with predicted skipped exons. (A) Scheme of theoretical peptide database created to compare to
proteomics data from CPTAC study of breast tissue. The database contains all possible peptide junctions that could arise from skipped exons. (B) Bar plot
showing unique peptides derived from skipped exon junctions. All skipped exon junctions (black) were not filtered by annotations or model predictions.
Predicted (light blue) skipped exon junctions are skipped exon junctions where exon skip probability is >0.5. Annotated (navy blue) skipped exon junctions
are skipped exon junctions that are annotated in hg38. (C) Annotation of APAF1 in hg38 with amino acid sequences for exon 6, exon 7 and exon 8 shown.
(D) Dot plot showing the abundance of the predicted APAF1 peptide in healthy (light blue) and cancer tissue (navy blue) per multiplexed sample. (E)
Image of cryo-EM structure of APAF1 (55). The position of exon 7 (light blue) and ATP (multicolored spheres) are indicated.

dicative of skipped exons (Figure 6B). Of these, 54 pep-
tides matched predicted skipped exons, whereas only 40
matched annotated skipped exons. Of the 14 peptides that
are predicted but not annotated, the mean skip probability
was 0.937, indicating that the skipped exons are highly pre-
dictable.

The potential impact that the discovery of unannotated
skipped exons can have on cancer treatment merits atten-
tion. Neoantigens––those produced specifically by cancer
cells––may be a source for novel targets for immunother-
apies (51,52). Cancer can impact splicing, so skipped ex-
ons are a likely source for neoantigens (53). Neo-junctions
(neoantigens derived from skipped exons) have been shown
to occur at a higher frequency than neoantigens derived
from single nucleotide variant (SNV) somatic mutations
and are more likely to be shared by patients (29). To this
end, we explored the CPTAC Study of Breast Tissue to
identify neoantigens produced by unannotated skippable
exons. To identify potential neo-junctions, we compared an-

notated and predicted peptide junctions and used MARIA
(MHC Analyzer with Recurrent Integrated Architecture) to
find HLA class II presenting peptides (32). We found 9 pep-
tide junctions in the CPTAC study that have not been an-
notated as skipped but were predicted (i) as skippable by
Exon ByPASS and (ii) as HLA class II presented peptides
by MARIA (Supplementary Table S3).

For example, we found the peptide ‘VQPDGVTLEYN-
PYSWNLVAQSNFEALQDFFR.’ This peptide maps to an
unannotated skipped CTSA (cathepsin A) transcript de-
rived from the end of exon 4 and the start of exon 6. The
presence of this peptide suggests CTSA exon 5 is skipped
in breast cancer cells. Exon ByPASS predicts CTSA exon 5
as highly skippable (probability > 0.9), and MARIA pre-
dicts this peptide as likely for HLA class II presenting (nor-
malized score = 99.299). This peptide is likely missed by
databases derived from hg38 and would not be consid-
ered as a potential neoantigen for the development of im-
munotherapies.
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Skipping of APAF1 exon 7 is prevalent in breast cancer sam-
ples

In addition to expanding the neo-junction search space,
identifying proteins derived from unannotated skipped ex-
ons could reveal novel protein structure and function. We
once again interrogated the CPTAC Study of Breast Tissue,
looking for peptides derived from skipped exons in genes
that could be drivers of cancer progression. Comparing pep-
tides found in cancer samples to those found in healthy
samples, we identified a peptide (SVTDSVMGSPLVVSLI-
GALLR) that was enriched in cancer samples. This peptide
aligns to the APAF1 (apoptotic peptidase activating factor
1) protein and corresponds to the end of exon 6 and the
start of exon 8 (Figure 6C), suggesting the presence of an
alternatively spliced APAF1 transcript missing exon 7. This
variant of APAF1 is not annotated in hg38, but it was pre-
dicted by Exon ByPASS (exon 7 skip probability = 0.953).
Proteomics data from multiple cancer samples support the
presence of this peptide (Figure 6D), indicating that APAF1
likely undergoes alternative splicing.

APAF1 is activated by p53 and supports p53-mediated
apoptosis by promoting the activation of caspase-9 (54–
56). Although this isoform of APAF1 has not been stud-
ied, the missing exon 7 corresponds to a region within the
NB-ARC domain of the protein, which contains an ATP-
binding pocket (55) (Supplementary Figure S7 and Fig-
ure 6E). This pocket hydrolyses ATP, inducing a confor-
mational change that promotes the formation of the active
apoptosome (55). The peptide encoded by exon 7 sits near
bound ATP (Figure 6E) and may impact ATP binding and
hydrolysis. An APAF1 isoform that lacks this peptide could
have compromised apoptosome activity, which would com-
promise its ability to activate caspase-9 and apoptosis, po-
tentially enabling cells expressing this isoform to escape pro-
grammed cell death.

DISCUSSION

We built Exon ByPASS to test the hypothesis that con-
straints on protein structure hold enough information to
predict whether a coding exon can be removed. After train-
ing, Exon ByPASS reached 99% accuracy and 93% accuracy
on validation data from the Ensembl database (release 100),
indicating that protein sequence is sufficient to predict exon
criticality. To the best of our knowledge, Exon ByPASS is
the first alternative splicing model that relies solely on pro-
tein features.

In addition to predicting known skippable exons, Exon
ByPASS predicted novel exon skipping events, even in well-
annotated mouse and human genomes (mm10 and hg38,
respectively). Using an extensive mouse RNA-seq dataset
(21), we assessed the predictions of Exon ByPASS in the
context of mouse annotations (mm10). This evaluation
identified 3,557 unannotated exons that were predicted to
be skippable by Exon ByPASS and that are supported
by the RNA-seq dataset. Using a similar approach, we
evaluated Exon ByPASS using extensive human RNA-seq
datasets (43,44) and found many unannotated exons that
are predicted to be skippable by Exon ByPASS and that
are supported by the data sets. In a parallel analysis of
proteomic data, we identified peptides that likely derive

from exon-skipping events predicted by ByPASS that are
not annotated. This analysis revealed novel peptides en-
riched in cancer samples that could serve as neoantigens
for immunotherapy, as well as a novel peptide from APAF1
that could result from an unannotated alternative splicing
event in cancer samples and help to explain how these cells
could escape programmed cell death. Finally, we used exon-
skipping oligonucleotide literature to show that Exon By-
PASS can predict synthetically skippable exons as well.

Together, these data suggest that protein sequences can
be used to predict skippable exons and that this approach is
applicable across species. The interpretation of ‘omics data
sets notably suffers from incomplete annotations, as these
approaches rely on comparisons to a reference data set.
As the number of transcriptomic and proteomic studies in-
creases, the quality of our annotated references becomes in-
creasingly important. Exon ByPASS has the potential to im-
prove annotations of reference genomes across species. Fur-
thermore, Exon ByPASS can be used in the search for ther-
apeutics. A literature search in PubMed suggests that only
51 exons have been confirmed as skippable with oligonu-
cleotides. Exon ByPASS can be used to search for additional
exons that may be amenable to therapeutic skipping ap-
proaches. Additionally, Exon ByPASS can be used to search
for neo-antigens from skipped exons in cancer cells. Re-
gardless of genetic changes that disrupt splicing, Exon By-
PASS will reveal compatible protein sequences when exons
are skipped, providing a reliable set of protein sequences
that can produce neo-junctions, which can potentially be
exploited for immunotherapies.

Our analysis with Exon ByPASS revealed several charac-
teristics of amino acid sequences in proximity to the splice
junctions that are significantly associated with exon critical-
ity. Notably, sequences that are compatible with alternative
splicing tend to have a lower average hydrophobicity and,
relatedly, a higher average flexibility. It has been reported
that low average hydrophobicity is a characteristic of intrin-
sically disordered regions and that these regions are often
associated with splice junctions, our findings are consistent
with this observation (57–60). Our pairwise amino acid sub-
stitution analysis identified a reduced likelihood of alter-
native splicing following perturbation of amino acid pairs
upstream and downstream of the skipped exon (Figure 5).
In the skipped isoform, these pairs would be separated by
approximately 25–30 amino acids and may reflect the im-
portant role of loops in globular protein structures (61,62).
Interestingly, these features differ from those suggested by
RNA-based models, which tend to emphasize features im-
mediately adjacent to the junctions. Although we identified
several features that correlate with exon criticality, our un-
derstanding remains incomplete. We know what positions
and which amino acids influence exon skipping; however,
we do not know how these amino acids interact with the
rest of the protein to accommodate exon skipping. More
investigations at the protein level should provide additional
insights into exon criticality. One avenue for investigation
could be to compare structures of proteins derived from
splice variants. By comparing enough protein structures,
additional governing features would likely emerge. Unfor-
tunately, very few proteins in the Protein Data Bank have
structures for more than one isoform (60). Additional struc-



3140 Nucleic Acids Research, 2022, Vol. 50, No. 6

tures could help provide insight into the protein properties
required for exon skipping.

Others have developed machine-learning models to pre-
dict alternative splicing (8–12). Some of these models work
well, achieving both high sensitivity and specificity. They
can also predict other alternative splicing outcomes. For
example, MaxEntScan and SpliceAI can find both 5′ and
3′ splice sites for an exon based on RNA sequence (9,11).
MaxEntScan uses a probabilistic model to evaluate splice
site potential given a short RNA sequence. SpliceAI uses
a neural network model to predict splice junctions given a
long RNA sequence. Both models predict exon skipping,
intron retention, as well as alternative 5′- or 3′-splice sites
based on input RNA sequence. Because of the limitations
imposed by the training set, Exon ByPASS is not suitable
for predicting intron retention or finding alternative 5′- or
3′-splice sites. These limitations were necessary to ensure
correct classification in the training set; however, alternate
strategies could be used to extend protein sequence model-
ing to these other forms of alternative splicing.

In conclusion, Exon ByPASS can reliably predict exon
criticality from protein sequence. Exon ByPASS can be ap-
plied to all protein-coding genes, across tissues and, based
on work reported here, may have applications in therapeutic
discovery.
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