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Identification of relevant biomarkers that are associated with a treatment effect is one requirement for adequate treatment
stratification and consequently to improve health care by administering the best available treatment to an individual patient.
Various statistical approaches were proposed that allow assessing the interaction between a continuous covariate and treatment.
Nevertheless, categorization of a continuous covariate, e.g., by splitting the data at the observed median value, appears to be very
prevalent in practice. In this article, we present a simulation study considering data as observed in a randomized clinical trial with
a time-to-event outcome performed to compare properties of such approaches, namely, Cox regression with linear interaction,
Multivariable Fractional Polynomials for Interaction (MFPI), Local Partial-Likelihood Bootstrap (LPLB), and the Subpopulation
Treatment Effect Pattern Plot (STEPP) method, and of strategies based on categorization of continuous covariates (splitting the
covariate at the median, splitting at quartiles, and using an “optimal” split by maximizing a corresponding test statistic). In
different scenarios with no interactions, linear interactions or nonlinear interactions, type I error probability and the power for
detection of a true covariate-treatment interaction were estimated.)e Cox regression approach was more efficient than the other
methods for scenarios with monotonous interactions, especially when the number of observed events was small to moderate.
When patterns of the biomarker-treatment interaction effect were more complex, MFPI and LPLB performed well compared to
the other approaches. Categorization of data generally led to a loss of power, but for very complex patterns, splitting the data into
multiple categories might help to explore the nature of the interaction effect. Consequently, we recommend application of
statistical methods developed for assessment of interactions between continuous biomarkers and treatment instead of arbitrary or
data-driven categorization of continuous covariates.

1. Introduction

For medical decision making, predictive biomarkers play an
important role for various diseases [1–4]. A biomarker is
called “predictive,” if the difference between the effectiveness
of two or more treatment options depends on the value of
that biomarker [5, 6]. In the presence of a qualitative
biomarker-treatment interaction [7], i.e., when the choice of
the “optimal” treatment for a given patient depends on the
patient’s value of a certain biomarker, the biomarker can be
used for treatment stratification [8]. Biomarkers used in
clinical practice for treatment stratification are, e.g., the
human epidermal growth factor receptor 2 (HER-2) status
for breast cancer patients [9, 10] or presence of epidermal

growth factor receptor (EGFR) mutation in non-small cell
lung cancers (NSCLC) [11]. Consequently, the identification
of biomarkers that allow prediction of the treatment effect
when different treatment options are available is essential to
increase clinical decision making in the sense of a stratified
or personalized medicine [12].

In practice, investigation of such treatment effect het-
erogeneity over the range of a certain biomarker in data
obtained from a randomized clinical trial is often performed
by subgroup analyses [13], where the difference in outcome
between the study groups, quantified, e.g., by a hazard
ratio, an odds ratio, or a mean difference, is estimated for
patient subgroups with similar characteristics [14] and
compared using a statistical test for interaction, which can be
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performed by including the product of the biomarker and
the variable indicating treatment allocation in an appro-
priate regression model [15, 16]. While this procedure is
intuitive and straightforward for categorical variables, e.g.,
gender or presence of comorbidities as diabetes, in-
vestigation of treatment effect heterogeneity with respect to
continuous variables, e.g., age or continuously measured
blood parameters, requires categorization of the variable,
when subgroup analyses are to be performed. Such cate-
gorization of continuous variables was criticized due to loss
of information leading to a loss of power for detection of true
interactions, implication of biological implausible effects,
and lack of comparability of results from different studies
[17, 18]. )erefore, various approaches were proposed in the
literature that allow to model and test for treatment effect
heterogeneity over the range of a continuous variable that do
not require categorization of the variable [19–21].

In this article, we describe a simulation study comparing
different approaches for detection of an interaction between
one (predefined) continuous covariate and treatment. We
simulated data as they would be expected to be collected in a
randomized clinical trial intended to compare efficacy of two
treatment groups or of treatment versus placebo. Conse-
quently, patients are allocated randomly into one of two
treatment arms and the distribution of the variable of in-
terest (often referred to as a biomarker [22]) is expected to be
the same for both treatment groups. As most predictive
biomarkers were identified for treatment of cancer [23], a
time-to-event outcome is considered, as typically overall
survival or progression-free survival is considered as pri-
mary endpoint in randomized phase III oncological trials
[24]. Results obtained by methods relying on categorization
of the continuous variable as well as methods that do not use
such categorization were investigated. We considered a
method splitting the continuous biomarker at its median to
determine two subgroups for further analysis, the use of four
subgroups determined by splitting data at the quartiles, and
use of an “optimal” cutoff value found by maximization of
the Wald statistics of the interaction term in a Cox re-
gression model. Additionally, we applied the Subpopulation
Treatment Effect Pattern Plot (STEPP) approach that in-
corporates overlapping subgroups [25], the Cox regression
model [26] assuming a linear covariate-treatment in-
teraction term, the Multivariable Fractional Polynomials for
Interaction (MFPI) approach that incorporates nonlinear
transformations for the interaction term [19], and the Local
Partial-Likelihood Bootstrap (LPLB) that uses local esti-
mates of the treatment effect at different values of the
variable of interest [27]. Different scenarios with absence
and presence of biomarker-treatment interactions were
investigated in order to estimate and compare type I error
probability and statistical power of the different approaches
under the given scenarios. Sample size and censoring dis-
tribution are varying to investigate the impact of these
characteristics on the outcome.

)e article is organized as follows. In Section 2, the
simulation study is described. )e different methods used
for identification of a biomarker-treatment interaction are
shortly introduced in Section 2.1, and references to original

articles and further articles including more detailed de-
scriptions of the considered methods are given. )e setting
of the simulation study and the relevant aspects that were
varied are described in Section 2.2. Results of the simulation
study, namely, observed type I error probabilities for sce-
narios with no true biomarker-treatment interactions and
estimates for statistical power for scenarios with truly
present biomarker-treatment interactions, are presented in
Section 3. A discussion of the results with concluding re-
marks and strengths and limitations of our simulation study
is given in Section 4.

2. Methods

)e methods investigated in the simulation study are de-
scribed in Section 2.1. Details on the settings used in the
simulation study and the data generating process are given
in Section 2.2. Data were generated and analysed using the
statistical software R [28]. Cox regression was performed
using the function coxph provided in the R library survival
[29, 30]. For convenience, the continuous covariate of in-
terest will be called “biomarker” and denoted as Z
throughout the section. Treatment allocation will be rep-
resented by a binary treatment variable T with T � 0, 1{ },
where T � 1 represents, e.g., an experimental treatment and
T � 0 a placebo control or standard treatment. As it appears
to be the most relevant effect size in practice, homogeneity of
the hazard ratio between the study groups in regard to the
biomarker of interest was investigated. For all statistical
tests, a significance level of α � 5% was used. Exact 95%
confidence intervals for rejection probabilities were
calculated.

2.1. Methods Used to Test for a Biomarker-Treatment
Interaction

2.1.1. Median Split. In many applications investigating
treatment-effect heterogeneity in regard to a continuous
biomarker, individuals are divided into two subgroups of
equal size.)is is achieved by splitting the data at the median
of the biomarker Z. )is procedure will be denoted as
“Median split” in this article. A binary indicator variable that
is assigned the value of one if the biomarker value is above or
equal to the observed median and zero else is derived. To test
for biomarker-treatment interaction, a Cox regression
model with this indicator variable, the binary treatment
indicator, and their product (the interaction term) is fitted to
the data.)e p value of theWald test for the interaction term
was used to decide whether the null hypothesis of no
biomarker-treatment interaction can be rejected on the
prespecified significance level of α � 5%.

2.1.2. Quartile Split. As an alternative approach, individuals
were divided into four subgroups with splits at the corre-
sponding quartiles of the biomarker of interest (“Quartile
split”). )e categorical variable indicating the corresponding
subgroup was used as a dummy coded nominal independent
variable in a Cox regression model. Additionally, the binary
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treatment indicator and an interaction term between the
dummy coded categorical variable indicating the biomarker
quartile and treatment were included. A likelihood ratio test
with three degrees of freedom provided in the R library car
[31] was performed to test for presence of a biomarker-
treatment interaction.

2.1.3. “Optimal” Split. For this approach, henceforth called
“Optimal split”, an “optimal” cutoff value for splitting the
continuous variable into two subgroups was determined in a
first step. Of all possible cutoff values (restricted to a
minimum subgroup size of 10% of the overall sample size),
the one leading to the largest value of the Wald statistic for
the interaction term between the dichotomized biomarker
and treatment in a Cox regression model also including the
corresponding main effects as independent variables was
used to define the subgroups for assessment of treatment
effect heterogeneity. In a second step, these subgroups were
treated as if they were predefined subgroups, and assessment
of a biomarker-treatment interaction was performed as
described for the Median split procedure in Section 2.1.1.

2.1.4. Subpopulation Treatment Effect Pattern Plot (STEPP)
Method. )e Subpopulation Treatment Effect Pattern Plot
(“STEPP”) method was proposed by Bonetti and Gelber
[25]. In the STEPP procedure, heterogeneity of the treatment
effect over the range of a biomarker of interest is assessed by
estimating the effect in multiple overlapping subgroups.
Additionally, methods for estimation of simultaneous
confidence intervals and for testing the null hypothesis of no
biomarker-treatment interaction were developed [25, 32].
Two different versions, a “tail-oriented” and a “sliding
window” approach, were proposed initially. In our simu-
lation study, we used the “sliding window” approach, where
the number of individuals within two consecutive subgroups
is held (approximately) constant by adding and eliminating
the same number of observations and the number of ob-
servations overlapping between two consecutive subgroups
is chosen a priori. For our analysis, the number of in-
dividuals within each subgroup was chosen to be n/5 and the
number of overlapping individuals to be n/10. So, the
subgroup sizes were 50, 100, and 200 for scenarios with 250,
500, and 1000 observations, and the number of overlapping
observations was 25, 50, and 100, respectively. )is led to a
total number of nine subgroups considered irrespective of
the sample size. A test on homogeneity of the hazard ratio
over all subgroups was performed to test for a biomarker-
treatment interaction. A permutation test as recommended
in [32] was conducted using 500 permutations for each
simulated dataset. Further details on the STEPP procedure
can be found in [33, 34]. For application of STEPP, the R
library stepp [35] was used.

2.1.5. Cox Regression Model with Linear Interaction. To
avoid categorization of the continuous biomarker of interest
Z, a Cox regression model [26] assuming a linear interaction
between Z and treatment T was considered. )is procedure

implies that the log-hazard ratio between the study groups is
linearly associated with the biomarker value. )e main ef-
fects of the biomarker Z, the treatment group T, and their
product Z × T were used as independent variables in a Cox
regression model. )e p value of the Wald test for the in-
teraction term was considered to decide on rejection of the
null hypothesis of no biomarker-treatment interaction. )is
procedure will be called “Cox model with linear interaction”
or shortly “Cox (linear Int.)” throughout the article.

2.1.6. Multivariable Fractional Polynomials for Interaction
(MFPI). To allow for nonlinear interaction terms, Royston
and Sauerbrei proposed the Multivariable Fractional Poly-
nomials for Interaction (“MFPI”) approach [19], which is
based on the Multivariable Fractional Polynomials (MFP)
approach presented by Royston and Altman [36]. A non-
linear transformation is considered for the biomarker of
interest, and amodel includingmain effects of treatment and
the transformed biomarker as well as their interaction is
compared to amodel including only the correspondingmain
effects. In the original publication, a model with two
polynomial transformations p1 and p2 (FP2) out of the set
p ∈ −2,−1,−0.5, 0, 0.5, 1, 2, 3{ }, where p � 0 indicates a
logarithmic transformation, was described. Identification of
the best transformation was proposed to be determined in
the model without an interaction term by finding the
combination of transformations providing the highest (log-)
likelihood value (later called flex1 approach). Based on the
results of a simulation study [37, 38] considering a con-
tinuous outcome, an alternative approach with only one
polynomial transformation (FP1) and separate de-
termination of the best transformation in the model with
and without interaction (flex3, potentially leading to non-
nested models) was recommended. We applied both ap-
proaches, the FP2-flex1 and the FP1-flex3 approach, to our
simulated data. To test for presence of a biomarker-
treatment interaction, likelihood ratio tests comparing the
models with and without interaction terms were performed
for both strategies.

2.1.7. Local Partial-Likelihood Bootstrap (LPLB). Another
method proposed in the literature for modelling nonlinear
interaction effects between a continuous biomarker and
treatment is the Local Partial-Likelihood Estimation pro-
posed by Fan et al. [21]. Liu et al. developed a bootstrapping
method, called Local Partial-Likelihood Bootstrap (“LPLB”),
that allows to test for the presence of an overall treatment
effect and to test whether the treatment effect is heteroge-
neous over the range of a continuous biomarker [27]. In the
LPLB approach, linear approximations of the treatment
effect estimate at a given biomarker value are obtained by
first-order Taylor approximations using weighted data in the
local neighbourhood of the biomarker value of interest. )e
proposed bootstrap test makes use of the residual bootstrap
[39]. )e obtained local estimates of the log-hazard ratio are
compared to the estimate obtained from a standard Cox
regression model assuming a constant treatment effect over
the biomarker range. )e maximum observed standardized
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difference of the local estimates to the constant log-hazard
ratio is considered as test statistic. For our simulation study,
we used the R library lplb [40] to apply the LPLB procedure.
Local estimates were obtained for every decile of the em-
pirical biomarker distribution. A bandwidth, indicating the
amount of observations in the neighbourhood used for local
estimation, of 0.2 was used and an Epanechnikov kernel was
considered for weighting. Five hundred bootstrap samples
were drawn for each generated dataset.

2.2. Simulation Settings. Data were generated to mimic data
observed in a randomized clinical trial primarily intended
for comparison of two different treatment options. Conse-
quently, simulated individuals were randomly allocated to
one of two treatment groups (T � 0, 1{ }) with equal prob-
ability for each group. )e covariate of interest was ran-
domly generated from a uniform distribution with a
minimum value of zero and a maximum value of one. Event
times were drawn from an exponential distribution with the
individual hazard rate depending on the allocated treatment
group and the drawn covariate value as described in Section
2.2.1. Censoring times were drawn from exponential dis-
tributions with rates as described in Section 2.2.3. )e lower
value of the two time variables was allocated as observed
time and an observed event was indicated, if the drawn event
time was smaller than the corresponding censoring time,
and a censored observation was indicated else.

2.2.1. Functional Form. In order to estimate the type I error
probability and the statistical power for detection of truly
present interaction effects associated with the different ap-
proaches, different scenarios were investigated. Overall, six
different functional forms were considered, two without
presence of an interaction effect (Scenarios 1 and 2) and four
scenarios considering different shapes of interaction terms
(Scenarios 3 to 6). All scenarios are visualized in Figure 1,
showing the hazard rates used for simulation of the event
times in dependence of the biomarker value (dashed black
and solid grey line and black scale/axis) and the resulting
hazard ratios (using a logarithmic scale) between the
treatment groups (red line and scale/axis).

Scenario 1. No associations between treatment and risk for
an event and between the biomarker of interest and risk for
an event are present; the hazard rate for each individual was
set to 1, irrespective of treatment group and biomarker value
(Figure 1(a)).

λ(x ∣ z, T � 0) � λ(x ∣ z, T � 1) � 1, (1)

where λ(x) indicates the hazard rate as a function of time.
Consequently, the hazard ratio between the groups is 1 for all
covariate values, indicating no biomarker-treatment interaction.

HR(z) � 1. (2)

Scenario 2. In the second scenario, the hazard rate depends
on the value of the biomarker Z for both treatment groups,

but the hazard ratio between the treatment groups is the
same for all biomarker values, so no biomarker-treatment
interaction is present (Figure 1(b)).

λ(x ∣ z, T � 0) � 0.5 exp (2z− 1)
2

 ,

λ(x ∣ z, T � 1) � exp (2z− 1)
2

 ,
(3)

leading to a hazard ratio of two for all values of Z.

HR(z) � 2. (4)

Scenario 3. In the third scenario, a true linear interaction
(on the log-hazard scale) between the biomarker of interest
and treatment is present, leading to a hazard ratio between
the treatment groups of one for a biomarker value of Z � 0
and to a hazard ratio of exp(0.75) � 2.12 for a value of Z � 1.

λ(x ∣ z, T � 0) � 0.7 exp(0.5z),

λ(x ∣ z, T � 1) � 0.7 exp(0.5z + 0.75z) � 0.7 exp(1.25z).

(5)

)e hazard ratio increases linearly on a logarithmic scale.

HR(z) � exp(0.75z). (6)

)e scenario is displayed in Figure 1(c)).

Scenario 4. In the fourth scenario, a true qualitative
biomarker-treatment interaction, with a higher risk for an
event under treatment T � 0 as compared to treatment T �

1 for patients with a small value of Z and a higher risk for
an event under T � 1 for individuals with a large value of
Z, is considered (Figure 1(d)). )e hazard ratio is
monotonically, but not linearly increasing over the bio-
marker range.

λ(x ∣ z, T � 0) � 0.9,

λ(x ∣ z, T � 1) � 0.35 exp 1.7
�
z

√
− 0.2z

2 − 0.3z .
(7)

)e qualitative interaction is indicated by a hazard ratio
being smaller than one for values of Z< 0.424 and larger
than one for Z> 0.424.

HR(z) �
0.35 exp 1.7

�
z

√
− 0.2z2 − 0.3z( 

0.9

� 0.389 exp 1.7
�
z

√
− 0.2z

2 − 0.3z .

(8)

Scenario 5. In Scenario 5, the risk for an event is similar
under both treatments for most of the individuals, but the
risk increases under treatment T � 1 for large values of Z
(Figure 1(e)).

λ(x ∣ z, T � 0) � 0.9,

λ(x ∣ z, T � 1) � 0.9 + 1.75z
8
.

(9)

Consequently, the hazard ratio is close to one for small
and moderate values of Z but increases for large values. For
Z � 1, the hazard ratio reaches a value of 2.94.
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Figure 1: Scenarios used in the simulation study for comparison of statistical methods. In scenarios 1 and 2 (a, b), data are generated under
the null hypothesis of no biomarker-treatment interaction. In scenarios 3 to 6, which are illustrated in (c) to (f ), the hazard ratio (illustrated
on a log-scale by the red line) depends on the biomarker value, so biomarker-treatment interactions are present.
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HR(z) � 1 +
1.75z8

0.9
. (10)

Scenario 6. In the sixth scenario, the hazard ratio for group
T � 0 depending on Z follows a U-shape, while the hazard
ratio for T � 1 is inversely U-shaped (Figure 1(f )).

λ(x ∣ z, T � 0) � 0.75 exp 0.4(2z− 1)
2

 ,

λ(x ∣ z, T � 1) � 1.25 exp −0.5(2z− 1)
2

 .
(11)

)is setting leads to a qualitative biomarker-treatment
interaction with lower risks for an event under T � 1 for
small and large values of Z and lower risks under T � 0, else
indicated by an inversely U-shaped hazard ratio over the
range of Z.

HR(z) �
5
3
exp −0.9(2z− 1)

2
 . (12)

2.2.2. Sample Size. In order to evaluate whether properties
of the methods under consideration are related to the sample
size of the trial, three different settings for sample sizes were
chosen. )e generated datasets included 250, 500, or 1000
individuals, which appear to be typical sample sizes for
randomized clinical trials.

2.2.3. Censoring Distribution. In addition to the sample size,
censoring distributions were varied to produce scenarios
with different numbers of observed events. Censoring times
were drawn from exponential distributions with hazard rates
of λcens � 0.3 or λcens � 2, respectively, to produce scenarios
with censoring proportions of about 25% and about 67%,
leading to numbers of about 188, 375, and 750 expected
events for scenarios with low amount of censored obser-
vations and of 83, 167, and 333 expected events for scenarios
with high amount of censored observations.

3. Results

For each of the 36 scenarios described in Section 2.2, 1000
datasets were generated and the methods presented in
Section 2.1 were applied. )e p value of the corresponding
statistical test on biomarker-treatment interaction was
saved and compared to the conventional significance level
of α � 5%. Resulting frequencies of type I errors, i.e., pro-
portions of simulated datasets for which a statistically sig-
nificant biomarker-treatment interaction was found,
although it is not present in the corresponding scenario
(Scenarios 1 and 2), are shown in Figure 2 for all considered
methods and are also tabulated with 95% confidence in-
tervals in Table 1. It can be seen that for the method using the
“optimal” cutpoint to define two subgroups to be compared,
the probability for a false-positive result was about 50% for
both scenarios simulating data under the null hypothesis,
irrespective of sample size and amount of censored obser-
vations. )e Multivariable Fractional Polynomial for

Interaction (MFPI) procedure with the FP1-flex3 strategy
also provided an increased type I error probability of about
10%. )is was mainly caused by those datasets for which
different polynomial transformations for the biomarker
were selected for models with and without consideration of a
biomarker-treatment interaction, leading to a comparison of
nonnested regression models. When only simulated datasets
were considered, in which the same transformations were
used for the models with and without interaction term and
consequently two nested models were compared, the esti-
mated type I error probabilities ranged from 3.8% to 6.6%.
Contrarily, for datasets with different chosen trans-
formations, the null hypothesis was falsely rejected in 14.1%
to 23.8% of the corresponding simulation runs. For the
simulations under Scenario 2 with a low sample size of 250
observations and a high amount of censored observations,
leading to an expected number of about 83 events, type I
error frequencies exceeding the nominal significance level
were observed for all methods.

In Figures 3 (Scenarios 3 and 4) and 4 (Scenarios 5 and 6)
and in Tables 2 (Scenarios 3 and 4) and 3 (Scenarios 5 and 6),
the results of the scenarios with true biomarker-treatment
interaction are presented. Consequently, the frequency of
rejected null hypotheses can be interpreted as an estimate for
the statistical power of themethods under the corresponding
settings. As the procedure using two subgroups defined by
an optimal, data-driven cutpoint (Optimal split) and the
MFPI (FP1-flex3) approach provided type I error proba-
bilities relevantly exceeding the nominal level of α � 5%,
these procedures are not considered in the comparison of
statistical power and are consequently not displayed in
Figures 3 and 4. Nevertheless, the results are presented in
Tables 2 and 3 in italics for completeness.

For the scenario fulfilling the assumption of the standard
Cox regression model with a linear interaction term (Sce-
nario 3), the Cox model with linear interaction out-
performed all the other investigated methods by achieving
the highest observed statistical power (Figures 3(a) and 3(b)
and Table 2). )e MFPI (FP2-flex1) approach performed
slightly better than the approach using two subgroups de-
fined by a split at the median of the variable when the
number of expected events was large, but for the scenario
with 1000 observations and a low amount of censored
observations, the observed power was about 10 percentage
points lower for these methods as compared to the Cox
regression model with an interaction term considering the
biomarker as continuous variable (Cox model with linear
interaction: 83.8%; MFPI (FP2-flex1): 74.7%; Median split:
70.2%). )e method splitting the data into four subgroups
(Quartile split), the STEPP, and the LPLB performed worse
than the other approaches.

In Scenario 4, considering a situation with a slightly
nonlinear interaction, the Cox regression model consid-
ering the continuous biomarker performed best again,
followed (at least for scenarios with a large number of
events) by the MFPI (FP2-flex1) approach. For small to
moderate event numbers, the methods relying on cate-
gorization of the data (Median split and Quartile split)
performed similarly to MFPI (FP2-flex1). With the chosen

6 Computational and Mathematical Methods in Medicine



Median split
Quartile split
Optimal split

STEPP
Cox (linear int.)

MFPI (FP1-flex3)
MFPI (FP2-flex1)

LPLB

Median split
Quartile split
Optimal split

STEPP
Cox (linear int.)

MFPI (FP1-flex3)
MFPI (FP2-flex1)

LPLB

Median split
Quartile split
Optimal split

STEPP
Cox (linear int.)

MFPI (FP1-flex3)
MFPI (FP2-flex1)

LPLB

Sc
en

ar
io

 1

Sample size
250

500

1000

10 20 30 40 500

Estimated type I error probability (%)

Low censoring

(a)

Median split
Quartile split
Optimal split

STEPP
Cox (linear int.)

MFPI (FP1-flex3)
MFPI (FP2-flex1)

LPLB

Median split
Quartile split
Optimal split

STEPP
Cox (linear int.)

MFPI (FP1-flex3)
MFPI (FP2-flex1)

LPLB

Median split
Quartile split
Optimal split

STEPP
Cox (linear int.)

MFPI (FP1-flex3)
MFPI (FP2-flex1)

LPLB

Sc
en

ar
io

 1

Sample size
250

500

1000

10 20 30 40 500

Estimated type I error probability (%)

High censoring

(b)

Sample size
250

500

1000

10 20 30 40 500

Estimated type I error probability (%)

Median split
Quartile split
Optimal split

STEPP
Cox (linear int.)

MFPI (FP1-flex3)
MFPI (FP2-flex1)

LPLB

Median split
Quartile split
Optimal split

STEPP
Cox (linear int.)

MFPI (FP1-flex3)
MFPI (FP2-flex1)

LPLB

Median split
Quartile split
Optimal split

STEPP
Cox (linear int.)

MFPI (FP1-flex3)
MFPI (FP2-flex1)

LPLB

Sc
en

ar
io

 2

Low censoring

(c)

Sample size
250

500

1000

10 20 30 40 500

Estimated type I error probability (%)

Median split
Quartile split
Optimal split

STEPP
Cox (linear int.)

MFPI (FP1-flex3)
MFPI (FP2-flex1)

LPLB

Median split
Quartile split
Optimal split

STEPP
Cox (linear int.)

MFPI (FP1-flex3)
MFPI (FP2-flex1)

LPLB

Median split
Quartile split
Optimal split

STEPP
Cox (linear int.)

MFPI (FP1-flex3)
MFPI (FP2-flex1)

LPLB

Sc
en

ar
io

 2

High censoring

(d)

Figure 2: Results of scenarios simulated under the null hypothesis of no biomarker-treatment interaction. Bars represent relative fre-
quencies of falsely rejected null hypotheses.
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settings, the estimated power for LPLB and STEPP was
smaller than for the other investigated methods
(Figures 3(c) and 3(d) and Table 2).

In the rather complex Scenario 5 with an almost identical
risk for an event under both treatments for most patients
and an increasing difference between treatments for large
values of the biomarker, the MFPI (FP2-flex1) approach
performed best in scenarios with a large number of observed
events. In scenarios with a high amount of censored ob-
servations, the Cox model with linear interaction performed
slightly better (small to moderate sample size) or very similar
(large sample size) to MFPI (FP2-flex1) (Figures 4(a) and
4(b) and Table 3). When censoring was low and sample size
was large, the LPLB approach reached an observed power
that was close to MFPI (FP2-flex1) and slightly better than
the Cox regression model. While categorization using a
Median split was much worse than the other methods for
most settings under Scenario 5 (e.g., with an observed power
for n � 1000 and low amount of censored observations of
46.6%), splitting the study population in four subgroups
(Quartile split) provided results that were relevantly better
than Median split (estimated power for the mentioned
settings of 70.9%), but worse than MFPI (FP2-flex1)

(87.5%), Cox regression with linear interaction (76.2%),
or LPLB (83.4%).

In Scenario 6, the only investigated scenario with
nonmonotonous hazard ratio over the range of the bio-
marker of interest, the Coxmodel with linear interaction and
the procedure defining subgroups at the observed median
(Median split) were not able to identify the present
biomarker-treatment interaction (estimated power between
4.6% and 6.2% for Cox model with linear interaction and
between 3.9% and 6.4% for Median split). )e highest
empirical power was observed for LPLB and the method
defining four subgroups at the observed quartiles (Quartile
split). STEPP and MFPI were able to identify the association
between biomarker and treatment effect in a relevant
amount of generated datasets but performed worse than
LPLB and Quartile split (Figures 4(c) and 4(d) and Table 3).

4. Discussion

It is well known and accepted that different patients react
differently to the same treatment. Consequently, for making
a treatment decision, characteristics of the patient or of the
disease, e.g., of a tumour, should be considered. Predictive

Table 1: Estimated type I error probabilities with exact 95% confidence intervals (in brackets) for Scenarios 1 and 2 for all investigated
methods.

n� 250 n� 500 n� 1000
Low cens. High cens. Low cens. High cens. Low cens. High cens.

Scenario 1

Median split 4.7% 5.3% 4.9% 4.4% 5.0% 6.4%
(3.5–6.2%) (4.0–6.9%) (3.6–6.4%) (3.2–5.9%) (3.7–6.5%) (5.0–8.1%)

Quartile split 6.3% 5.3% 4.2% 5.1% 3.5% 5.7%
(4.9–8.0%) (4.0–6.9%) (3.0–5.6%) (3.8–6.7%) (2.4–4.8%) (4.3–7.3%)

Optimal split 43.6% 39.9% 45.8% 40.9% 45.5% 46.6%
(40.5–46.7%) (36.8–43.0%) (42.7–48.9%) (37.8–44.0%) (42.4–48.6%) (43.5–49.7%)

STEPP 4.8% 5.9% 5.1% 4.2% 4.0% 6.3%
(3.6–6.3%) (4.5–7.5%) (3.8–6.7%) (3.0–5.6%) (2.9–5.4%) (4.9–8.0%)

Cox (linear int.) 4.9% 5.2% 4.8% 4.4% 4.8% 5.8%
(3.6–6.4%) (3.9–6.8%) (3.6–6.3%) (3.2–5.9%) (3.6–6.3%) (4.4–7.4%)

MFPI (FP1-flex3) 10.1% 10.6% 10.4% 12.0% 10.3% 13.5%
(8.3–12.1%) (8.8–12.7%) (8.6–12.5%) (10.1–14.2%) (8.5–12.4%) (11.4–15.8%)

MFPI (FP2-flex1) 4.9% 5.6% 4.9% 4.7% 6.0% 7.0%
(3.6–6.4%) (4.3–7.2%) (3.6–6.4%) (3.5–6.2%) (4.6–7.7%) (5.5–8.8%)

LPLB 4.6% 4.5% 4.2% 4.4% 3.9% 5.8%
(3.4–6.1%) (3.3–6.0%) (3.0–5.6%) (3.2–5.9%) (2.8–5.3%) (4.4–7.4%)

Scenario 2

Median split 4.2% 6.0% 5.7% 4.2% 5.7% 4.3%
(3.0–5.6%) (4.6–7.7%) (4.3–7.3%) (3.0–5.6%) (4.3–7.3%) (3.1–5.7%)

Quartile split 5.3% 6.7% 5.1% 4.5% 5.0% 5.4%
(4.0–6.9%) (5.2–8.4%) (3.8–6.7%) (3.3–6.0%) (3.7–6.5%) (4.1–7.0%)

Optimal split 50.8% 42.8% 53.9% 45.9% 52.0% 47.4%
(47.7–53.9%) (39.7–45.9%) (50.8–57.0%) (42.8–49.0%) (48.9–55.1%) (44.3–50.5%)

STEPP 5.4% 8.2% 6.8% 6.8% 7.8% 6.9%
(4.1–7.0%) (6.6–10.1%) (5.3–8.5%) (5.3–8.5%) (6.2–9.6%) (5.4–8.7%)

Cox (linear int.) 4.5% 8.2% 4.8% 6.4% 5.0% 5.2%
(3.3–6.0%) (6.6–10.1%) (3.6–6.3%) (5.0–8.1%) (3.7–6.5%) (3.9–6.8%)

MFPI (FP1-flex3) 8.1% 12.6% 9.1% 10.3% 8.1% 7.8%
(6.5–10.0%) (10.6–14.8%) (7.4–11.1%) (8.5–12.4%) (6.5–10.0%) (6.2–9.6%)

MFPI (FP2-flex1) 5.5% 6.5% 6.5% 5.6% 4.1% 5.9%
(4.2–7.1%) (5.1–8.2%) (5.1–8.2%) (4.3–7.2%) (3.0–5.5%) (4.5–7.5%)

LPLB 6.2% 5.8% 7.3% 4.8% 7.7% 6.1%
(4.8–7.9%) (4.4–7.4%) (5.8–9.1%) (3.6–6.3%) (6.1–9.5%) (4.7–7.8%)
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Figure 3: Results of scenarios simulated under the alternative hypothesis of a truly present biomarker-treatment interaction. Bars represent
relative frequencies of correctly rejected null hypotheses.
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Figure 4: Results of scenarios simulated under the alternative hypothesis of a truly present biomarker-treatment interaction. Bars
represented relative frequencies of correctly rejected null hypotheses.
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biomarkers, i.e., variables that are associated with the
treatment effect, e.g., a hazard ratio between two treatment
groups, play an important role for treatment selection.
Evidence, whether a biomarker is truly predictive, can only
be derived from randomized trials involving patients with
different values of the biomarker of interest [8]. In practice,
treatment effect heterogeneity over different factors of a
categorical variable or over the range of a continuous var-
iable in data collected in a randomized clinical trial is often
analysed by the means of subgroup analyses, estimating the
treatment effect within patients with similar characteristics
and comparing treatment effects between subgroups using a
test on interaction [14]. While this procedure is straight-
forward for categorical variables, it relies on categorization
of continuous variables. It was shown for different research
questions that categorization leads to a loss of power for
detection of true associations [41, 42], and the interpretation
of subgroup analyses based on categorized continuous
variables was often criticized due to its lack of biological
plausibility and its increased chance of spurious findings
[17, 18, 43]. One common approach to investigate such
interactions between continuous biomarkers and treatment
without categorization is the inclusion of the product of the

biomarker and the treatment indicator as independent
variable in a regression model assuming a linear interaction
term. To allow a more flexible modelling of relationships
between treatment effects and biomarker values, various
methods relaxing the linearity assumption for the in-
teraction term, e.g., the Subpopulation Treatment Effect
Pattern Plot (STEPP), the Multivariable Fractional Poly-
nomials for Interaction (MFPI) [19], or the Local Partial-
Likelihood Bootstrap (LPLB) [27] approach, were
developed.

Comparisons between those methods rarely exist in the
literature. Royston and Sauerbrei applied the MFPI and the
STEPP method to different datasets [44]. Recently, we in-
vestigated the interaction between age and treatment in a
randomized trial comparing carotid artery stenting (CAS) to
carotid endarterectomy (CEA) for patients with symp-
tomatic, severe carotid artery stenosis (SPACE trial [45, 46]).
In this analysis, very similar results were obtained from
different methods including Cox regression with linear
interaction, STEPP, MFPI, and LPLB [47]. To our best
knowledge, only a small number of simulation studies were
performed to compare the properties of the different pro-
cedures under known scenarios. Royston and Sauerbrei

Table 2: Estimated power with exact 95% confidence intervals (in brackets) for Scenarios 3 and 4 for all investigated methods.

n� 250 n� 500 n� 1000
Low cens. High cens. Low cens. High cens. Low cens. High cens.

Scenario 3

Median split 23.5% 14.1% 40.8% 25.1% 70.2% 40.9%
(20.9–26.3%) (12.0–16.4%) (37.7–43.9%) (22.4–27.9%) (67.3–73.0%) (37.8–44.0%)

Quartile split 19.2% 12.4% 36.4% 17.7% 66.0% 31.2%
(16.8–21.8%) (10.4–14.6%) (33.4–39.5%) (15.4–20.2%) (63.0–68.9%) (28.3–34.2%)

Optimal split 71.4% 57.6% 86.4% 71.7% 97.1% 84.6%
(68.5–74.2%) (54.5–60.7%) (84.1–88.5%) (68.8–74.5%) (95.9–98.0%) (82.2–86.8%)

STEPP 13.4% 10.5% 29.2% 15.5% 55.1% 26.4%
(11.3–15.7%) (8.7–12.6%) (26.4–32.1%) (13.3–17.9%) (52.0–58.2%) (23.7–29.2%)

Cox (linear int.) 29.9% 15.2% 54.2% 31.6% 83.8% 51.9%
(27.1–32.8%) (13–17.6%) (51.1–57.3%) (28.7–34.6%) (81.4–86.0%) (48.8–55.0%)

MFPI (FP1-flex3) 30.2% 18.2% 54.2% 32.5% 82.8% 51.1%
(27.4–33.2%) (15.9–20.7%) (51.1–57.3%) (29.6–35.5%) (80.3–85.1%) (48–54.2%)

MFPI (FP2-flex1) 20.4% 12.7% 42.9% 21.0% 74.7% 41.2%
(17.9–23.0%) (10.7–14.9%) (39.8–46.0%) (18.5–23.7%) (71.9–77.4%) (38.1–44.3%)

LPLB 15.2% 9.1% 32.7% 16.2% 61.2% 30.9%
(13.0–17.6%) (7.4–11.1%) (29.8–35.7%) (14.0–18.6%) (58.1–64.2%) (28.0–33.9%)

Scenario 4

Median split 26.8% 14.1% 52.3% 24.4% 78.7% 38.7%
(24.1–29.7%) (12.0–16.4%) (49.2–55.4%) (21.8–27.2%) (76–81.2%) (35.7–41.8%)

Quartile split 22.8% 14.2% 48.6% 24.2% 79.4% 37.6%
(20.2–25.5%) (12.1–16.5%) (45.5–51.7%) (21.6–27.0%) (76.8–81.9%) (34.6–40.7%)

Optimal split 77.6% 57.8% 92.3% 72.6% 99.1% 88.8%
(74.9–80.1%) (54.7–60.9%) (90.5–93.9%) (69.7–75.3%) (98.3–99.6%) (86.7–90.7%)

STEPP 14.8% 8.3% 36.8% 17.6% 68.9% 29.9%
(12.7–17.2%) (6.7–10.2%) (33.8–39.9%) (15.3–20.1%) (65.9–71.8%) (27.1–32.8%)

Cox (linear int.) 33.9% 17.7% 64.4% 32.4% 89.8% 49.2%
(31.0–36.9%) (15.4–20.2%) (61.3–67.4%) (29.5–35.4%) (87.8–91.6%) (46.1–52.3%)

MFPI (FP1-flex3) 40.4% 25.8% 72.0% 38.8% 92.4% 56.3%
(37.3–43.5%) (23.1–28.6%) (69.1–74.8%) (35.8–41.9%) (90.6–94.0%) (53.2–59.4%)

MFPI (FP2-flex1) 22.3% 14.5% 51.2% 25.6% 84.7% 41.3%
(19.8–25.0%) (12.4–16.8%) (48.1–54.3%) (22.9–28.4%) (82.3–86.9%) (38.2–44.4%)

LPLB 19.4% 8.4% 44.1% 20.1% 75.2% 33.8%
(17.0–22.0%) (6.8–10.3%) (41.0–47.2%) (17.7–22.7%) (72.4–77.8%) (30.9–36.8%)

Due to increased type I error probabilities, results for Optimal split and MFPI (FP1-flex3) are presented in italics.
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performed a simulation study to compare different MFPI
strategies to other regression models and approaches relying
on categorization of continuous variables in settings with a
continuous outcome [37, 38]. Under all the different MFPI
strategies investigated there, theMFPI (FP1-flex3) approach,
using one polynomial transformation and allowing for
different functional forms in the models with and without
considering a covariate-treatment interaction, was identified
as the “best” MFPI approach. Bonetti et al. performed a
simulation study to evaluate the impact of the parameter
settings of the STEPP approach on type I error and statistical
power and compared the results to those of a Cox regression
model with linear interaction term [32]. Liu et al. also
compared performance of their proposed LPLB approach to
the Cox regressionmodel with a linear interaction term [27].
Due to the lack of information on the properties of different
available methods proposed in the literature for identifi-
cation of a biomarker-treatment interaction, we performed a
simulation study comparing estimates for type I error
probability and statistical power of relevant methods under
various scenarios. Our aim was to perform a study in the
sense of a “neutral” simulation study as described in [48] as
we do not favour any of the investigated methods and were

not involved in the development or publication of any of
them.

As to be expected, we observed that the procedure using
an optimal cutoff value determined by maximizing theWald
statistic of the interaction term between the dichotomized
biomarker of interest and treatment in a Cox regression
model for definition of the subgroups leads to a tremen-
dously increased type I error probability of about 50%. )is
was observed similarly in simulations presented by Altman
et al. who investigated the naı̈ve use of minimum p value
categorization of a potentially prognostic variable [49].
Interestingly, an increased type I error probability of about
10% in both scenarios with data simulated under the null
hypothesis was also observed for the MFPI (FP1-flex3)
approach irrespective of sample size and censoring distri-
bution. )is was caused by datasets for which different
transformations were selected for the models with and
without an interaction term. In the simulation study by
Royston and Sauerbrei [37], no relevant increase in the
probability of false-positive findings was identified for the
MFPI (FP1-flex3) approach for most of their investigated
scenarios with observed relative frequencies of type one
errors ranging from 5% to 7%. Only for scenarios with

Table 3: Estimated power with exact 95% confidence intervals (in brackets) for Scenarios 5 and 6 for all investigated methods.

n� 250 n� 500 n� 1000
Low cens. High cens. Low cens. High cens. Low cens. High cens.

Scenario 5

Median split 16.1% 10.4% 26.7% 17.7% 46.6% 29.3%
(13.9–18.5%) (8.6–12.5%) (24.0–29.6%) (15.4–20.2%) (43.5–49.7%) (26.5–32.2%)

Quartile split 23.0% 10.5% 41.3% 21.2% 70.9% 40.1%
(20.4–25.7%) (8.7–12.6%) (38.2–44.4%) (18.7–23.9%) (68.0–73.7%) (37.0–43.2%)

Optimal split 79.7% 60.2% 93.8% 78.3% 99.4% 91.9%
(77.1–82.2%) (57.1–63.2%) (92.1–95.2%) (75.6–80.8%) (98.7–99.8%) (90.0–93.5%)

STEPP 15.9% 7.4% 35.0% 14.8% 68.7% 31.0%
(13.7–18.3%) (5.9–9.2%) (32.0–38.0%) (12.7–17.2%) (65.7–71.6%) (28.1–34.0%)

Cox (linear int.) 25.6% 16.3% 47.0% 30.6% 76.2% 51.1%
(22.9–28.4%) (14.1–18.7%) (43.9–50.1%) (27.8–33.6%) (73.4–78.8%) (48.0–54.2%)

MFPI (FP1-flex3) 39.7% 22.6% 67.3% 39.7% 93.8% 66.5%
(36.7–42.8%) (20.0–25.3%) (64.3–70.2%) (36.7–42.8%) (92.1–95.2%) (63.5–69.4%)

MFPI (FP2-flex1) 26.8% 13.2% 50.6% 27.1% 87.5% 51.8%
(24.1–29.7%) (11.2–15.5%) (47.5–53.7%) (24.4–30.0%) (85.3–89.5%) (48.7–54.9%)

LPLB 22.5% 9.3% 46.9% 21.9% 83.4% 45.3%
(19.9–25.2%) (7.6–11.3%) (43.8–50.0%) (19.4–24.6%) (80.9–85.7%) (42.2–48.4%)

Scenario 6

Median split 5.3% 3.9% 5.1% 5.1% 6.4% 4.9%
(4.0–6.9%) (2.8–5.3%) (3.8–6.7%) (3.8–6.7%) (5.0–8.1%) (3.6–6.4%)

Quartile split 24.3% 13.0% 42.0% 16.0% 73.8% 36.5%
(21.7–27.1%) (11.0–15.2%) (38.9–45.1%) (13.8–18.4%) (71.0–76.5%) (33.5–39.6%)

Optimal split 73.8% 56.5% 88.1% 67.1% 97.6% 86.3%
(71.0–76.5%) (53.4–59.6%) (85.9–90.0%) (64.1–70.0%) (96.4–98.5%) (84.0–88.4%)

STEPP 14.8% 7.9% 31.4% 12.7% 61.6% 25.9%
(12.7–17.2%) (6.3–9.7%) (28.5–34.4%) (10.7–14.9%) (58.5–64.6%) (23.2–28.7%)

Cox (linear int.) 6.1% 5.9% 4.8% 5.1% 6.2% 4.6%
(4.7–7.8%) (4.5–7.5%) (3.6–6.3%) (3.8–6.7%) (4.8–7.9%) (3.4–6.1%)

MFPI (FP1-flex3) 23.0% 16.5% 30.6% 18.5% 50.9% 27.3%
(20.4–25.7%) (14.3–18.9%) (27.8–33.6%) (16.1–21.0%) (47.8–54.0%) (24.6–30.2%)

MFPI (FP2-flex1) 20.0% 11.2% 28.6% 12.8% 45.9% 26.9%
(17.6–22.6%) (9.3–13.3%) (25.8–31.5%) (10.8–15.0%) (42.8–49.0%) (24.2–29.8%)

LPLB 22.2% 10.4% 41.5% 17.9% 74.6% 36.7%
(19.7–24.9%) (8.6–12.5%) (38.4–44.6%) (15.6–20.4%) (71.8–77.3%) (33.7–39.8%)

Due to increased type I error probabilities, results for Optimal split and MFPI (FP1-flex3) are presented in italics.
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complex functional forms and a covariate of interest fol-
lowing a skewed distribution (called “badly behaved dis-
tribution of x” in [37]), an increased type I error probability
of up to 20% was found. Maybe this problem is less pro-
nounced in a linear regression setting with quantitative
outcome than for our investigated time-to-event endpoint.
)e originally proposed MFPI (FP2-flex1) approach did not
lead to an increased probability of false-positive results and
performed generally well for all scenarios. While it was
superior to all other methods in a scenario with a hazard
ratio constant over a wide range of the biomarker and in-
creasing for individuals with large values when the number
of events was large, it was slightly less efficient than a Cox
regression model with a linear interaction term in the
presence of a truly linear or close to linear biomarker-
treatment interaction. Generally, the Cox regression
model with a linear interaction term performed better than
the other investigated methods for many scenarios. It
provided an acceptable probability of false-positive results
and higher statistical power than all other methods in the
scenario with a truly linear interaction. For small to mod-
erate event numbers, the Cox regression model also out-
performed the other methods in scenarios with nonlinear
monotonous interaction effects. In one scenario with data
generated to provide a nonmonotonous interaction effect
over the range of the biomarker of interest, the Cox re-
gression model assuming a linear interaction term was not
able to detect this association. For the LPLB procedure, type
I error frequencies did not exceed the nominal significance
level relevantly and adequate statistical power as compared
to the other methods was observed for scenarios with
complex functional form of the hazard ratio over the bio-
marker range. )e procedure splitting the data into two
subgroups (Median split) led to decreased power for most
scenarios, which was also described for other research
questions dealing with categorization of continuous cova-
riates [41, 42]. For complex associations, the split into a small
number of subgroups might be an adequate first step for data
exploration, which was also recommended in the EMA
guideline on subgroup analyses [14], or might be used for
verification of nonlinear associations found by a corre-
sponding method as also recommended in [38].

Our simulation study has several limitations. Due to
limited time and space, only a small number of different
scenarios could be investigated. We considered two sce-
narios in which data were generated under the null hy-
pothesis of no biomarker-treatment interaction and four
settings with true biomarker-treatment interactions of
different shapes. Additionally, we varied the sample size
and used two different amounts of censored observations.
We did not vary further aspects of the data generating
process as the distribution of the covariate of interest or
the influence of further covariates. While some of the
methods as fitting a Cox regression model with linear
interaction to the data or application of the MFPI ap-
proach do not rely on the specification of tuning pa-
rameters, other methods such as STEPP or LPLB allow a
greater level of user involvement by letting the applicant
choose, e.g., the size of the subgroups or the number of

overlapping individuals in STEPP or the number of points
used for local estimation and the bandwidth in LPLB. As
we only used one setting for each of the methods as de-
scribed in Section 2.1, our findings are only valid for these
specific choices, but might not transfer to the methods in
general. Further simulation studies are needed to in-
vestigate the role of the different tuning parameters on the
performance of these methods. In practical applications,
subject knowledge could allow more adequate specifica-
tions, which might improve performance of the methods
compared to our fixed settings. Additionally, we only
investigated one potential predictive biomarker and
treated it as if investigation of interaction of that bio-
marker with treatment was the prespecified primary re-
search question. In practice, these kinds of analyses will
often be performed as exploratory secondary or add-on
analyses, potentially involving multiple biomarkers of
interest, and multiplicity issues typically evolving in these
situations will have to be addressed adequately. If testing
the interaction between a predefined biomarker and
treatment is of major interest, this has to be considered in
the planning phase of a clinical trial and consequently in
the sample size calculation, as often a large sample size is
necessary to detect biomarker-treatment interactions [50].

It has to be considered that our simulation study only
aims at detection of biomarker-treatment interactions.
According to Chen et al., three steps are needed to establish a
predictive biomarker in clinical practice: identification of a
biomarker, selection of adequate subgroups for treatment
stratification, and assessment of clinical utility. Conse-
quently, after identification of a predictive biomarker,
subgroups that should be treated by different treatment
options have to be identified. For continuous biomarkers,
this could be achieved by either application of classification
techniques [51] or by exploring the pattern of the treatment
effect estimate over the range of the biomarker value. In-
tuitive visualization as provided by STEPP or by the
“treatment effect plot” [52] of the MFPI procedure can be
helpful. Additionally, further aspects such as potential risks,
patient acceptance, and costs have to be taken into account.
Clinical utility might be investigated by randomized clinical
trials using biomarker-stratified or biomarker-strategy de-
signs as described by Ondra et al. [53].

As a conclusion of our simulation study, we recommend
to perform more detailed and sophisticated analyses for
detection of biomarker-treatment interactions than the
commonly performed subgroup analyses involving di-
chotomization of continuous variables. Cox regression
models considering linear interaction terms will increase the
probability for detection of true interactions as compared to
the use of dichotomized variables in many applications.
Methods developed for detection of nonlinear interactions
can help to identify predictive biomarkers in the presence of
complex patterns. We believe that better use of available
statistical methods will help to identify and establish pre-
dictive biomarkers and increase the number, up to now
limited [54], of biomarkers used in clinical practice for
treatment stratification and consequently help to improve
health care for individual patients.
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