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Evidence for hypoxia increasing the tempo of evolution in
glioblastoma
David Robert Grimes 1,2, Marnix Jansen3, Robert J. Macauley4, Jacob G. Scott5 and David Basanta6

BACKGROUND: Tumour hypoxia is associated with metastatic disease, and while there have been many mechanisms proposed for
why tumour hypoxia is associated with metastatic disease, it remains unclear whether one precise mechanism is the key reason or
several in concert. Somatic evolution drives cancer progression and treatment resistance, fuelled not only by genetic and
epigenetic mutation but also by selection from interactions between tumour cells, normal cells and physical micro-environment.
Ecological habitats influence evolutionary dynamics, but the impact on tempo of evolution is less clear.
METHODS: We explored this complex dialogue with a combined clinical–theoretical approach by simulating a proliferative
hierarchy under heterogeneous oxygen availability with an agent-based model. Predictions were compared against histology
samples taken from glioblastoma patients, stained to elucidate areas of necrosis and TP53 expression heterogeneity.
RESULTS: Results indicate that cell division in hypoxic environments is effectively upregulated, with low-oxygen niches providing
avenues for tumour cells to spread. Analysis of human data indicates that cell division is not decreased under hypoxia, consistent
with our results.
CONCLUSIONS: Our results suggest that hypoxia could be a crucible that effectively warps evolutionary velocity, making key
mutations more likely. Thus, key tumour ecological niches such as hypoxic regions may alter the evolutionary tempo, driving
mutations fuelling tumour heterogeneity.

British Journal of Cancer (2020) 123:1562–1569; https://doi.org/10.1038/s41416-020-1021-5

INTRODUCTION
While genetic alterations are the fuel of somatic evolution, the
tumour micro-environment is the key contributor to the selection
process that could be described as its engine.1 The tumour micro-
environment consists of multiple elements that impact tumour
cell fitness, thus shaping selection for key cancer phenotypes1–3

that characterise tumour progression. Oxygen is a key element of
the micro-environment, long known to play a pivotal role in
patient prognosis, with ample evidence confirming that tumour
oxygenation has important implications for patient outcome and
treatment response.4,5 Clinically, poorly oxygenated tumours
respond significantly worse to treatment than well-oxygenated
regions,4,6 but in addition, oxygen is a known selection pressure,
favouring aggressive cancer cell phenotypes characterised by
certain traits, including the capacity to endure harsh environments
and to migrate beyond the tissue from whence they arose.7 Such
clones gain the ability to proliferate and survive in hypoxic
environments,8 suggesting that hypoxia can initiate metastasis.
While stable and well supplied in healthy tissue, tumours tend to
have highly heterogeneous microscopic oxygen supply, a direct
consequence of the erratic vasculature encouraged by tumour
angiogenesis.9,10 Improving understanding of the interplay

between the oxygen micro-environment and cancer evolution is
of paramount importance to advancing therapy,11–14 yet it is
notoriously difficult to probe this question with experimental tools
alone. Mathematical modelling allows us to explore the con-
sequences of various assumptions and informs the understanding
of what is clinically observed,15,16 and better understands the
spatio-temporal dynamics to which the study of fixed tissue or
molecular biology is typically blind. In this work, we take a
combined mathematical model and histology approach to
ascertain whether hypoxic regions select for clonogenic cells
and whether an increase in the stress of the tumour cells therein
increases evolutionary tempo relative to normoxic regions.

METHODS
It has become increasingly recognised that the integration of
mathematics and clinical as well as experimental data in oncology
can yield novel insights that are clinically relevant.15

A hybrid discrete-continuous cellular automata (HCA)
approach17 of a proliferative hierarchy was developed, simulating
evolutionary dynamics of clonogenic cells in heterogeneous
oxygen environments. Image analysis and next-generation
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sequencing was performed on human glioblastoma sections,
triple stained with haematoxylin and eosin (H&E), Ki-67, and TP53
mutation markers with regions of necrosis delineated by
pathological examination. All clinical aspects of this study
approved by the Moffitt Cancer Center IRB, with informed consent
given for the anonymised database samples analysed in this work.

Clonogenic cell model outline
To explore stem cell dynamics in a heterogeneous oxygen
environment, we used an agent-based HCA model built upon the
framework developed previously18 with modification. The sche-
matic is outlined in Fig. 1a. Briefly, it consists of clonogenic cells
that can symmetrically divide (with probability α) into two identical
stem cells, or asymmetrically into a clonogenic daughter and a
daughter transient amplifying cell (TAC) with probability 1− α,
provided there is free space for the cells to occupy. Clonogenic cells
are effectively immortal unless killed by anoxia; TACs divide to
other TACs only, and these cells can only undergo β divisions
before undergoing apoptosis. TAC daughter cells inherit the
divisional age of their parent TAC. An alternative explanation of
our assumptions is that any cancer cell can give rise to another
cancer cell. Modelling suggests that the assumptions made have
serious implications for tumour growth,19 and it is worthwhile to
consider both options. To implement the assumption that all cells
would proliferate, the simulation was also run with α= 1 so no TAC
cells would emerge. To factor in the influence of the oxygen micro-
environment, simulations were run with a variety of oxygen maps,
with the addition of conditions for hypoxia-mediated death. These
maps were simulated from previously derived vascular maps/
oxygen kernels,9 scaled up to illustrate typical oxygen hetero-
geneity. Figure 1b–d depicts simulated oxygen maps derived from
1, 15, and 357 vessel configurations, respectively. In regions below
a critical oxygen threshold pC, cells have a probability PD of death
per time-step, simulated with both the Heaviside switch function
and oxygen-dependent death function, as outlined in Supplemen-
tary Appendix S1. The HCA model was run considering these
oxygen maps, following the evolution of cancer cells in the micro-
environment, recording not only cell position but also the divisional

age of cells (i.e. the number of total divisions in their life history).
Divisional age was taken as a proxy for mutational risk, as cells that
undergo more divisions have increased chance of producing an
offspring with a clinically relevant mutation (e.g. conferring
increased therapeutic resistance or metastatic potential). Each grid
position is assumed to be the width of one cell. For simplicity, no
cellular compression was assumed. The model was run 1000 times
over each oxygen maps outlined and output analysed. Simulation
parameters are given in Supplementary Material S1.

Analysis of clinical data
Human glioblastoma sections were obtained from patient biopsy
samples. For each tumour, three adjacent sections were prepared
as follows: (1) H&E; (2) immunohistochemistry (IHC) for the
proliferation marker Ki-67 and (3) IHC for p53 protein. While
overexpression of the latter can sometimes be interpreted as a
surrogate for TP53 gene mutation and gene dysregulation in a
number of cancers,20–24 it is chiefly an indicator of physiological
cellular stress. Gene sequencing was also performed on the
sections to determine whether TP53 gene mutation was present or
not, with all clinical aspects of this study approved by the Moffitt
Cancer Center IRB. To quantify cellular features, microscopy was
performed at high resolution using the Digital Pathology Leica
Biosystems Aperio system. Images were taken at ×20 magnifica-
tion, yielding digital images of the sections with 1 pixel
corresponding to 0.504 μm. Regions of necrosis were identified
by histological examination on the H&E slide and marked by a
specialised neuropathologist (R.M.) using the Aperio Imagescope
software. These annotations were extracted as XML files with the
coordinates of necrotic boundaries. While explicit oxygen con-
centration cannot be determined from this experimental data, a
major benefit of using glioblastoma sections is that necrosis in
these cancers is strongly associated with hypoxia, so that necrotic
boundaries could be treated as a reliable proxy for hypoxia even
without explicit oxygen concentrations. This assumption is justified
in more detail in the ‘Discussion’ section. A co-registration
algorithm was written for this work, which identifies features
in adjacent slides and aligns the images. Once images were
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co-registered, cells staining both positive and negative for Ki-67
were identified automatically on the Ki-67 slide and p53-positive
cells on the p53 slide. The image analysis code determines the
distance from the coordinates of each cell centre to the nearest
boundary of identified necrosis, recording the minimum distance to
necrosis for each cell of interest. An example of the co-registration
and cell identification technique is shown in Fig. 2. A full description
of the image registration algorithm, image analysis protocol and
sample code is included in the Supplementary Material S1.

Evolutionary pressure of hypoxia. From the quantification of
clinical data discussed above, we can now investigate the
hypothesis that cells in the hypoxic niche are at higher risk of
mutation. For a clonogenic cell, we assume that the rate at which
mutations are accumulated per unit time, γ is related to the
division rate g and the intrinsic risk of mutation per division, rd. It
follows that for multiple divisions, γ ¼ 1� ð1� rdÞg. When rd is
small, the binomial approximation allows us to γ ≈ rdg, and thus
the probability of a clonogenic cell acquiring a mutation with time
t is given by Poisson statistics as MðtÞ ¼ 1� expð�rdgtÞ. Under
conditions of high cellular stress, as those in the hypoxic niche, we
can expect a higher intrinsic probability of mutation per division rs,
where rs > rd, reflecting the evolutionary pressures of the micro-
environment on cellular evolution.25 We define the mitotic rate in
the hypoxic niche as gs and thus

MsðtÞ ¼ 1� expð�rsgstÞ: (1)

If hypoxia leads to an increase in mutation rates, then we would
expect Ps(t) > P(t), ∀t > 0, where Ps(t) is the probability of a

mutation under hypoxia and P(t) the probability of mutation
under normoxia. Determining this requires us to probe the mitotic
status of the hypoxic niche. There is evidence that cells in the
hypoxic niche respond to stress by entering a state of
quiescence,26–28 markedly reducing their rate of mitosis (gs≪ g).
In this case, it is possible that Ms(t) <M(t), which would imply that
hypoxia is not a selection pressure for evolutionary change.
Alternatively, if there is evidence that cells in the hypoxic niche
continue to undergo the same approximate rate of mitosis as cells
in well-oxygenated regions, then it follows that mutations will be
much more likely to arise in hypoxic niches. There is good
biological evidence that hypoxia diminishes DNA repair and
elevates mutagenesis.29 Using the histological analysis outlined,
the distribution of both p53-positive (physiologically stressed)
cells and mitotically active Ki-67-positive cells were quantified in
different regions to determine whether the mutational risk was
elevated under hypoxia, and results contrasted with model
predictions.

RESULTS
Model-derived results
Oxygen-dependent distribution of clonogenic cells. Figure 3a–d
depicts the stratification of clonogenic cells relative to oxygen
concentration. High division of clonogenic cells was directly
associated with low oxygen conditions for all configurations, with
clonogenic cells on anoxic borders undergoing far more divisions
than well-oxygenated cells. Qualitative observation of the HCA
reveals that this increase in divisional age is secondary to cyclic
instances of birth and death as cells place daughters into areas of

H&E section Ki-67 (positive and negative) p53 stained

Fig. 2 Co-registration and cell detection analysis. A necrotic boundary is marked on the H&E slide by the pathologist (marked here by the
green line). On the Ki-67 stain, cells that meet the threshold for Ki-67 positive are marked by red dots and those below the threshold by blue
dots. Finally, p53-positive cells are marked by red (+) symbols on the final stain. The region shown above encompasses an area of 87.52 mm2

(15.67 mm× 5.58mm).
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extreme (lethal) hypoxia. As daughters die, clonogenic cells
continue to divide as they sense free space. The same trend was
observed if all cells were presumed to be clonogenic, with visions
on the anoxic border markedly upregulated.

Hypoxic niche as a metastatic avenue. Figure 3e, f depicts the
impact of seeding an initial clonogenic cell in oxygen-rich versus
hypoxic environments. Previous authors30 have shown that
clonogenic cells seeded in high oxygen can experience a ‘firewall’
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effect, where long-lived TACs impede invasion potential. This
simulation suggests that this firewall is overcome when clono-
genic cells colonise hypoxic borders, allowing cells to ‘creep’ along
the edges of the hypoxic niche. This leads to marked differences in
clonogenic population; for the simulation in Fig. 3, high-oxygen
seeding with β= 15 led to only 13 ± 4 stem cells after 10,000 steps.
By contrast, low-oxygen seeding yielded 254 ± 25 clonogenic cells
in the same interim.

Clinical data analysis
Clear necrotic borders were ascertained in 23 sections from 9
patients from the Moffitt Cancer Center, in sections ranging from
0.72 to 108.14 mm2. Image analysis was performed to determine

cells that were both positive and negative for Ki-67, and for cells
positive for p53 mutations, and determine their minimum distance
from the pathologist-specified necrotic boundary, as outlined in
Supplementary Methods. Probability density of spatial distribution
from known necrosis for all these data is shown in Fig. 4, in bins
corresponding to the width of two cells (25 μm). There was no
statistical difference in the distribution of cells both positive
and negative for Ki-67 relative to necrosis (two-sample
Kolmogorov–Smirnov (KS) test p= 0.5668, KS test statistic
0.0802), and accordingly, these are grouped together. Conversely,
p53 mutation-positive cells are far more likely to be found near
necrotic regions, with a markedly different distribution than
grouped Ki-67 cells (two-sample KS test p= 1.21 × 10−7, KS test

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

0.05 0.05

0.04

0.03

0.02

0.01

0

Normalised probability distributiona b

c

Region of interest (< 250 µm)

0.04

0.03

0.02

0.01

0
0 500 1000 1500

Distance from necrosis (µm) Distance from necrosis (µm)

2000 2500

All cells (N = 1,009,493)

p53+ cells (N = 36,070)

p53+ cells

All cells

3000 3500 0 50 100 150

500 μm

200 250

Fig. 4 Physiological evidence of hypoxia effects in glioblastoma samples. Pooled data from 23 regions of 9 patient glioblastoma samples
after image analysis depicting (a) distribution of p53-stained cells versus Ki-67-stained cells relative to known necrotic borders. b Probability
distributions for stained cells close to necrosis. c An example from a patient glioblastoma histologic section. Physiological p53 stress detected
by image analysis is illustrated by blue dots overlaid on the histology section. Green lines depict pathologist-marked necrosis; contour lines
with red opacity show the probability density of p53-positive cells (calculated from a Sheather–Jones smoothing-kernel distribution function).
Near necrotic regions, the probability of finding stress markers increases relative to non-necrotic zones. The mitotic rate appears constant
throughout the tissue, suggesting that these regions are more likely to give rise to mutations. Physiological stress indicates potential
topography of evolutionary velocity. A decoupled version of the figure is available in Supplementary Material S1.
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statistic 0.2941). Gene sequencing showed no indication of TP53
mutation, strongly implying that the p53-positive-stained cells
resulted from hypoxia-driven physiological stress.

Analysis of evolutionary risk. To determine whether cells in the
hypoxic niche displayed greater quiescence, the fraction of Ki-67-
positive cells over the sum of Ki-67-positive and -negative cells in
each 25 μm bin from 0 to 2mm bin was calculated. This fraction
was calculated at 0.2124 ± 0.0104, indicating that the proportion
of mitotic cells in each bin was relatively constant and that gs ≈ g.
By contrast, p53 staining was markedly increased close to regions
of hypoxia (see Supplementary Material S1 for correlation data),
suggesting strongly that cells under physiological stress continued
to undergo unrestricted mitosis. This suggests that cells in the
peri-necrotic niche have increased mutational risk relative to well-
oxygenated cells.

Hypoxia and evolutionary tempo. The clinical data show an
increase in physiological stress associated with hypoxia. Figure 4
depicts a histological section stained with H&E. In the figure, cells
staining strongly positive for p53 mutation as detected by the
image analysis in the p53 section are superimposed at their
corresponding positions, marked by blue dots. Regions of clear
necrosis as demarcated by the neuropathologist (R.M.) are
outlined in green on this image. From the spatial map of p53
mutant cells, a probability distribution function for these points in
space was ascertained by employing a Sheather–Jones data
smoothing kernel. Contour lines of p53 stress density were
superimposed over the image, with greater line density denoting
increased abundance of p53 staining cell, with a red opacity effect
also superimposed to show the highest density of p53 staining
cells corresponding to contour lines of concentration. As can be
seen, the highest density of stressed cells tends to lie on or close
to the line of representing the necrotic anoxic boundary,
illustrating stress near the necrotic hypoxic boundaries. This
echoes the phenomena predicted in our simulations, with the
resultant map yielding likely topography of evolutionary velocity.

DISCUSSION
Evidence to date suggests that hypoxia selects for aggressive and
metastatic phenotypes. In this work, we have investigated the
hypothesis that hypoxia influences speed and evolutionary
potential of cancer, acting as a potential strong selection pressure
for subclonal evolution as defined in recent works by other
researchers.31 We present mathematical evidence that this impact
goes beyond selecting for certain phenotypes more adaptable to
low oxygen levels. As we present evidence that proliferation is not
impeded under hypoxia, this would suggest that hypoxia may
directly modulate the tempo of somatic evolution, so that the
speed of somatic evolution is likely significantly increased near the
anoxic edges surrounding areas of necrosis. To draw a physics
analogy, the presence of hypoxia appears to ‘warp’ evolutionary
velocity, effectively creating a region of increased rate of potential
mutation acquisition, micro-environmentally mediated evolution-
ary hotspots.
We used our HCA agent-based computational model to arrive at

these conclusions, indicating that clonogenic cell division was
substantially more pronounced in regions of hypoxia, as illustrated
in Fig. 3.
Our simulations also revealed that the hypoxic niche facilitates

migration of clonogenic cells along low oxygen regions. Other
authors have found long-lived TAC cells effectively limit cancer
growth, acting as a firewall when these offspring cells are
sufficiently long-lived.30 This model recapitulated that behaviour
in well-oxygenated environments, but found it to be broken down
around anoxic niches. Clonogenic cells colonised necrotic niches,
even when simulated TAC cells were long-lived (β > 15). This ‘edge

effect’ suggests that the hypoxic niche acts as a conduit to cellular
infiltration, effectively changing the way cells interact.32 While
further biological evidence is required to confirm this, it raises a
previously unforeseen potential consequence of hypoxia for
tumour evolution.
Histopathological data from glioblastoma patients were exam-

ined to challenge in silico predictions and to determine whether
modelled behaviour was consistent with it. Image analysis on
sectioned regions from glioblastoma patients strongly suggested
that cells in hypoxic niches do not undergo any noticeable
quiescence, displaying the same fraction of Ki-67 proliferation
marker as well-oxygenated regions. This was observed even in
areas with clear markers of severe physiological stress, suggesting
tumour cells proliferate unimpeded by the stressful conditions
they find themselves in, increasing their risk of mutation.
Given the limited nature of histological data, we are mindful not

to overly infer, but this investigation provides yielded no evidence
of reduced proliferation in severely stressed hypoxic regions in
these glioblastoma samples. Combined with the modelling
findings, this suggests that mitosis is not only unimpeded, but it
is likely increased adjacent to anoxic zones. If this is the case, and
more cell divisions occur on this periphery, this would perhaps
explain the appearance of pseudopalisading necrosis, a hallmark
feature in these brain tumours where regions of profound hypoxia
are surrounded by an accumulation of tumour cells.33 More than
this, the concurrence of these findings suggests that the
combination of increased division and hypoxic stress makes these
regions crucibles for driving mutations, perhaps explaining why
hypoxia is such a risk factor for detrimental mutation. The model
finding of increased proliferation at anoxic edges might also be
related to what is observed with pseudopalisading necrosis, but
further investigation would be needed to confirm this
beyond doubt.
This is not unprecedented—insensitivity to signalling and

persistent proliferation are of course hallmarks of cancer.34 There
is ample evidence that hypoxia elevates mutagenesis,29,35,36 and
modelling results in this work suggest a mechanistic reason why
cells in the hypoxic niche would be far more likely to acquire
mutations than well-oxygenated cells, leading to the eventual
emergence of metastatic- or treatment-resistant types.
It is important to note that there is evidence that hypoxia can,

under different circumstances, either reduce or up-regulate
proliferation through metabolic adaptation.37–39 This is likely to
depend on properties of the tumour cell, and specific micro-
environmental considerations. In tumour spheroids, for
example,4,40 mitosis is seen down to very low oxygen tensions.
This suggests that the biological reality is complicated by other
factors, and results from this work and others cannot be carelessly
generalised
It is worth noting that findings of this work are largely

independent of whether the stem cell hypothesis is considered
or not. This is important, as the generality and exact properties of
cancer stem cells are heavily debated, but has been clearly
demonstrated in some cancers.41–46 As the same result is seen
under either assumption, it is agnostic to whether this hypothesis
is accepted or not. Increased division by clonogenic cells in the
hypoxic niche elevates the probability of a cell acquiring a
mutation (and ultimately metastatic potential), in part explaining
hypoxia’s strong correlation with emergence of metastatic
phenotypes and poor prognosis.7 The biological evidence here
is, of course, indirect due to the limitations of staining analysis,
and specialised experiments would be needed to fully test the
hypothesis. Importantly, however, observed data are in accor-
dance with simulation predictions based on mechanistic princi-
ples, suggesting a fertile avenue for future exploration.
The model presented in this work is a simple agent-based

model. This mode cannot capture all the complexity of the
underlying biology in glioblastoma, but approximates likely
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behaviours emergent in different cancers. In the model, cells can
either be killed off in the hypoxic zones or, in the case of TACs,
undergo apoptosis after β divisions. This prompts the question
of whether small amounts of random death might change the
trends observed. To test this, simulations were also run with
random death.
For biologically reasonable estimates, results were similar to

that presented here, illustrated in Supplementary Material S1.
There are a number of limitations to our approach. In regards to
modelling, chiefly that the model exists on a 2D grid rather than
true 3D space, without consideration of cell motility.47 Increased
detail and consideration of such factors could improve how
precise the model is, but we do not expect main conclusions to be
challenged in light of these considerations.
One major attraction of using glioblastoma sections is that there

is ample evidence that regions of necrosis are hypoxic, and
reference to this can be found in Supplementary Material S1. CA-IX
immunostaining was also performed on some of the cases in this
work, which confirmed that peri-necrotic regions were indeed
hypoxic. That diffusion-limited hypoxia gives rise to necrosis has
long been observed in human tissue and experimental models,4

and there is a known reciprocal relationship between p53 and
hypoxic path.48 Necrotic borders in this work are almost certainly
hypoxic, but for future investigations, quantifying oxygen gradient
may yield further insight into the implications for tumour
evolution.
A number of caveats have to be kept in mind when interpreting

histological data; 2D histology is at best an approximation of
complex 3D behaviour, and can be sometimes misleading.9

Defining necrosis robustly was also challenging—while straight-
forward to demarcate clear regions of necrosis, ambiguous
sections were excluded from the analysis. Accordingly, the extent
of necrosis may in some instances be an underestimate. Even so, a
number of suitable sections were unambiguously identified in the
patient data, with over a million individual cells. In this volume of
data, we expect general patterns to become apparent even with
confounding influences of 2D data.
This work presents modelling evidence that the oxygen micro-

environment plays a fundamental role in ‘warping’ the evolu-
tionary velocity of cells under its influence. We also present clinical
data that adds support to this hypothesis. Combined, this work
highlights the importance of the tumour micro-environment not
only in selecting for certain phenotypes but also in regards to the
velocity and dynamics characterising its somatic evolution.
Hypoxia itself is already detrimental for treatment efficacy,4 and
this work further suggests that this could be compounded by the
ability of this environment to select for phenotypes displaying
both increased treatment resistance, evolutionary and metastatic
potential. This suggests that hypoxic zones are of substantial
pathological interest in terms of tumour evolution, and be a
fruitful avenue for future investigations.

ACKNOWLEDGEMENTS
Prior preprint versions of this article are available at BioRxiv.49

AUTHOR CONTRIBUTIONS
D.R.G., J.G.S. and D.B. conceived the hypothesis and coded the simulations. R.J.M.
performed analysis on the glioblastoma samples and D.R.G. conducted the image
analysis. M.J. undertook staining analysis and assisted in data interpretation. D.R.G.
and D.B. undertook data analysis. All authors reviewed and wrote the manuscript.

ADDITIONAL INFORMATION
Ethics approval and consent to participate Ethics approval for the gathering of the
data used in this study was granted by an Advarra Institutional review board at the
Moffitt Cancer Center, designation MCC18506, with informed patient consent for all

samples analysed. All human data were anonymised, and obtained in accordance
with the code of conduct of research of the MCC and the IRB under national and
international standards.

Consent to publish Not applicable.

Data availability Simulation parameters and details available in the manuscript and
Supplementary Material. Further details of the data analysed in this work are available
from the corresponding author on request.

Competing interests The authors declare no competing interests.

Funding information D.R.G. thanks Cancer Research UK for the travel grant that
made this work possible, and the Wellcome trust for their support. We thank the
Integrated Mathematical Oncology department at the H. Lee Moffitt Cancer Center
and Research Institute. D.R.G. also acknowledges the contributions of NVIDIA
research for their generous hardware donations, while D.B. acknowledges the
National Institute of Cancer (NCI) for Grant U01CA202958-01 and Florida Health’s
Bankhead Coley for 20B06. J.G.S. is grateful to the NIH Loan Repayment programme,
the NIH Case Comprehensive Cancer Center (support grant P30CA043703) and the
Calabresi Clinical Oncology Research Programme, National Cancer Institute (award
number K12CA076917). The funders had no role in study design, data collection and
analysis, decision to publish or preparation of the manuscript.

Supplementary information is available for this paper at https://doi.org/10.1038/
s41416-020-1021-5.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES
1. Scott, J. & Marusyk, A. Somatic clonal evolution: a selection-centric perspective.

Biochim. Biophys. Acta 1867, 139–150 (2017).
2. Basanta, D. & Anderson, A. R. Exploiting ecological principles to better under-

stand cancer progression and treatment. Interface Focus 3, 20130020 (2013).
3. Prabhu, A., Kesarwani, P., Kant, S., Graham, S. F. & Chinnaiyan, P. Histologically

defined intratumoral sequencing uncovers evolutionary cues into conserved
molecular events driving gliomagenesis. Neuro-oncology 19, 1599–1606 (2017).

4. Grimes, D. R., Warren, D. & Warren, S. Hypoxia imaging and radiotherapy: bridging
the resolution gap. Br. J. Radiogr. 90, 20160939 (2017).

5. Barker, H. E., Paget, J. T., Khan, A. A. & Harrington, K. J. The tumour micro-
environment after radiotherapy: mechanisms of resistance and recurrence. Nat.
Rev. Cancer 15, 409 (2015).

6. Grimes, D. R. & Partridge, M. A mechanistic investigation of the oxygen fixation
hypothesis and oxygen enhancement ratio. Biomed. Phys. Eng. Express 1, 45209
(2015).

7. Sullivan, R. & Graham, C. H. Hypoxia-driven selection of the metastatic phenotype.
Cancer Metastasis Rev. 26, 319–331 (2007).

8. Rankin, E. B., Nam, J. M. & Giaccia, A. J. Hypoxia: signaling the metastatic cascade.
Trends Cancer 2, 295–304 (2016).

9. Grimes, D. R. et al. Estimating oxygen distribution from vasculature in three-
dimensional tumour tissue. J. R. Soc. Interface 13, 20160070 (2016).

10. Grimes, D. R. & Currell, F. J. Oxygen diffusion in ellipsoidal tumour spheroids. J. R.
Soc. Interface 15, 20180256 (2018).

11. Scott, J., Fletcher, A., Anderson, A. & Maini, P. Spatial metrics of tumour vascular
organisation predict radiation efficacy in a computational model. PLoS Comput.
Biol. 12, e1004712 (2016).

12. Grogan, J. A. et al. Predicting the influence of microvascular structure on tumour
response to radiotherapy. IEEE Trans. Biomed. Eng. 64, 504–511 (2016).

13. Gomes, A. et al. Oxygen partial pressure is a rate-limiting parameter for cell
proliferation in 3d spheroids grown in physioxic culture condition. PLoS ONE 11,
e0161239 (2016).

14. Leek, R., Grimes, D. R., Harris, A. L. & McIntyre, A. Methods: using three-dimen-
sional culture (spheroids) as an in vitro model of tumour hypoxia. In Tumor
Microenvironment, (Koumenis, C., Coussens, L. M., Giaccia, A. & Hammond, E. eds)
167–196 (Springer, Cham., 2016).

15. Anderson, A. R. & Quaranta, V. Integrative mathematical oncology. Nat. Rev.
Cancer 8, 227 (2008).

16. Altrock, P. M., Liu, L. L. & Michor, F. The mathematics of cancer: integrating
quantitative models. Nat. Rev. Cancer 15, 730 (2015).

Evidence for hypoxia increasing the tempo of evolution in glioblastoma
DR Grimes et al.

1568

https://doi.org/10.1038/s41416-020-1021-5
https://doi.org/10.1038/s41416-020-1021-5


17. Anderson, A. R. & Chaplain, M. Continuous and discrete mathematical models of
tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–899 (1998).

18. Scott, J. G., Hjelmeland, A. B., Chinnaiyan, P., Anderson, A. R. & Basanta, D.
Microenvironmental variables must influence intrinsic phenotypic parameters of
cancer stem cells to affect tumourigenicity. PLoS Comput. Biol. 10, e1003433
(2014).

19. Werner, B. et al. The cancer stem cell fraction in hierarchically organized tumors
can be estimated using mathematical modeling and patient-specific treatment
trajectories. Cancer Res. 76, 1705–1713 (2016).

20. Boyle, J. O. et al. The incidence of p53 mutations increases with progression of
head and neck cancer. Cancer Res. 53, 4477–4480 (1993).

21. Lehman, T. A. et al. P53 mutations, ras mutations, and p53-heat shock 70 protein
complexes in human lung carcinoma cell lines. Cancer Res. 51, 4090–4096 (1991).

22. Rodrigues, N. R. et al. P53 mutations in colorectal cancer. Proc. Natl. Acad. Sci. USA
87, 7555–7559 (1990).

23. Thorlacius, S. et al. Tp53 mutations and abnormal p53 protein staining in breast
carcinomas related to prognosis. Eur. J. Cancer 31, 1856–1861 (1995).

24. Yemelyanova, A. et al. Immunohistochemical staining patterns of p53 can serve
as a surrogate marker for tp53 mutations in ovarian carcinoma: an immunohis-
tochemical and nucleotide sequencing analysis. Mod. Pathol. 24, 1248 (2011).

25. McFarland, C. D. et al. The damaging effect of passenger mutations on cancer
progression. Cancer Res. 77, 4763–4772 (2017).

26. Yao, G. Modelling mammalian cellular quiescence. Interface Focus 4, 20130074
(2014).

27. Ben-Porath, I. & Weinberg, R. A. When cells get stressed: an integrative view of
cellular senescence. J. Clin. Investig. 113, 8–13 (2004).

28. Welford, S. M. & Giaccia, A. J. Hypoxia and senescence: the impact of oxygenation
on tumor suppression. Mol. Cancer Res. 9, 538–544 (2011).

29. Yuan, J., Narayanan, L., Rockwell, S. & Glazer, P. M. Diminished dna repair and
elevated mutagenesis in mammalian cells exposed to hypoxia and low ph.
Cancer Res. 60, 4372–4376 (2000).

30. Enderling, H. et al. Paradoxical dependencies of tumor dormancy and progres-
sion on basic cell kinetics. Cancer Res. 69, 8814–8821 (2009).

31. Sun, R. et al. Between-region genetic divergence reflects the mode and tempo of
tumor evolution. Nat. Genet. 49, 1015 (2017).

32. Kaznatcheev, A., Scott, J. G. & Basanta, D. Edge effects in game-theoretic
dynamics of spatially structured tumours. J. R. Soc. Interface 12, 20150154 (2015).

33. Rong, Y., Durden, D. L., Van Meir, E. G. & Brat, D. J. ‘Pseudopalisading’ necrosis in
glioblastoma: a familiar morphologic feature that links vascular pathology,
hypoxia, and angiogenesis. J. Neuropathol. Exp. Neurol. 65, 529–539 (2006).

34. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144,
646–674 (2011).

35. Luoto, K. R., Kumareswaran, R. & Bristow, R. G. Tumor hypoxia as a driving force in
genetic instability. Genome Integr. 4, 5 (2013).

36. Koi, M. & Boland, C. R. Tumor hypoxia and genetic alterations in sporadic cancers.
J. Obstet. Gynaecol. Res. 37, 85–98 (2011).

37. Peng, W.-X. et al. Hypoxia stabilizes microtubule networks and decreases tumor
cell chemosensitivity to anticancer drugs through egr-1. Anat. Rec. 293, 414–420
(2010).

38. Hubbi, M. E. & Semenza, G. L. Regulation of cell proliferation by hypoxia-inducible
factors. Am. J. Physiol. Cell Physiol. 309, C775–C782 (2015).

39. Eales, K., Hollinshead, K. & Tennant, D. Hypoxia and metabolic adaptation of
cancer cells. Oncogenesis 5, e190–e190 (2016).

40. Grimes, D. R. et al. The role of oxygen in avascular tumor growth. PLoS ONE 11,
1–19 (2016).

41. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy
that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997).

42. Schepers, A. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse
intestinal adenomas. Science 337, 730–5 (2012).

43. Singh, S., Hawkins, C., Clarke, I. & Squire, J. Identification of human brain tumour
initiating cells. Nature 432, 396–401 (2004).

44. Lan, X. et al. Fate mapping of human glioblastoma reveals an invariant stem cell
hierarchy. Nature 549, 227–232 (2017).

45. Al-Hajj, M., Wicha, M., Benito-Hernandez, A., Morrison, S. & Clarke, M. Prospective
identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100,
3983–8 (2003).

46. Luo, Y. et al. Aldh1a isozymes are markers of human melanoma stem cells and
potential therapeutic targets. Stem Cells 30, 2100–13 (2012).

47. Grimes, D. R. & Fletcher, A. G. Close encounters of the cell kind: The impact of
contact inhibition on tumour growth and cancer models. Bull. Math. Biol. 82, 20
(2020).

48. Sermeus, A. & Michiels, C. Reciprocal influence of the p53 and the hypoxic
pathways. Cell Death Dis. 2, e164 (2011).

49. Grimes, D. R., Macauley, R. J., Marnix, J., Scott, J. G. & Basanta, D. Hypoxia increases
the tempo of evolution in the peri-necrotic niche in glioblastoma. bioRxiv https://
doi.org/10.1101/293712 (2018).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

Evidence for hypoxia increasing the tempo of evolution in glioblastoma
DR Grimes et al.

1569

https://doi.org/10.1101/293712
https://doi.org/10.1101/293712
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Evidence for hypoxia increasing the tempo of evolution in glioblastoma
	Introduction
	Methods
	Clonogenic cell model outline
	Analysis of clinical data
	Evolutionary pressure of hypoxia


	Results
	Model-derived results
	Oxygen-dependent distribution of clonogenic cells
	Hypoxic niche as a metastatic avenue

	Clinical data analysis
	Analysis of evolutionary risk
	Hypoxia and evolutionary tempo


	Discussion
	Acknowledgements
	Author contributions
	ADDITIONAL INFORMATION
	References




