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Abstract

We describe an integrate-and-fire (IF) spiking neural network that incorporates spike-timing-dependent plastic-
ity (STDP) and simulates the experimental outcomes of four different conditioning protocols that produce corti-
cal plasticity. The original conditioning experiments were performed in freely moving non-human primates
(NHPs) with an autonomous head-fixed bidirectional brain-computer interface (BCI). Three protocols involved
closed-loop stimulation triggered from (1) spike activity of single cortical neurons, (2) electromyographic (EMG)
activity from forearm muscles, and (3) cycles of spontaneous cortical beta activity. A fourth protocol involved
open-loop delivery of pairs of stimuli at neighboring cortical sites. The IF network that replicates the experimental
results consists of 360 units with simulated membrane potentials produced by synaptic inputs and triggering a
spike when reaching threshold. The 240 cortical units produce either excitatory or inhibitory postsynaptic potentials
(PSPs) in their target units. In addition to the experimentally observed conditioning effects, the model also allows
computation of underlying network behavior not originally documented. Furthermore, the model makes predictions
about outcomes from protocols not yet investigated, including spike-triggered inhibition, g-triggered stimulation
and disynaptic conditioning. The success of the simulations suggests that a simple voltage-based IF model incor-
porating STDP can capture the essential mechanisms mediating targeted plasticity with closed-loop stimulation.
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Significance Statement

Previous experiments have shown that the synaptic connections between neurons in cerebral cortex can be
modified by different activity-dependent stimulation methods. Understanding the mechanisms that mediate
these changes is key to designing effective protocols for producing targeted plasticity in clinical and basic
science applications. We describe a simple but powerful neural network model that replicates a wide range
of experimental results on targeted cortical plasticity. The model consists of integrate-and-fire (IF) spiking
units and incorporates spike-timing-dependent plasticity (STDP). It provides important insights into the
mechanisms underlying induction of plasticity with bidirectional brain-computer interfaces (BCIs). The
model also predicts the outcomes of several novel and untested conditioning protocols.

Introduction
Computational neural network models provide a power-

ful tool for understanding mechanisms of neural computa-
tion and for exploring network behavior in ways that

physiological recordings cannot (Fetz, 1993; Fetz and
Shupe, 1995; Gerstner and Kistler, 2002; Gerstner et al.,
2014). Neural networks consisting of integrate-and-fire
(IF) spiking units have proven useful in studying network
dynamics produced by spiking neurons (for reviews, see
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Jolivet et al., 2004; Burkitt, 2006; Gilson et al., 2009a,b,c,
d; Ponulak and Kasinski, 2011). The IF units typically sum
inputs to produce a simulated membrane potential func-
tion that triggers a spike when it reaches a threshold. The
inputs can simulate postsynaptic potentials (PSPs) with
rise time and decay; the units can also incorporate bio-
physical conductances (Izhikevich, 2003). Spike-timing-
dependent plasticity (STDP) rules (Bi and Poo, 2001;
Caporale and Dan, 2008; Feldman, 2012; Markram et al.,
2012) can be incorporated into IF networks to investigate
consequent changes in synaptic connections on network
dynamics. For example, large networks of biophysically
realistic spiking units with STDP have been shown to form
functional interacting groups (Izhikevich et al., 2004;
Koene and Hasselmo, 2005; Litwin-Kumar and Doiron,
2014; Bono and Clopath, 2017) and capture global
changes induced by conditioning (Song et al., 2013). We
here used an IF network with STDP to simulate experi-
mental results from recent physiological conditioning
studies performed with a closed-loop brain-computer in-
terface (CL-BCI).
The strength of synaptic connections between motor

cortical neurons has been experimentally modified by
several different conditioning protocols. In non-human
primates (NHPs), CL-BCIs have induced plasticity with
spike-triggered stimulation of neighboring cortical sites
during free behavior (Jackson et al., 2006). After a day of
conditioning, the output effects on muscles and isometric
wrist responses evoked by microstimulation of the re-
cording site (labeled A) included the output effects evoked
from the stimulation site (B), consistent with a strengthen-
ing of connections from A to B. Changes occurred only
for spike-stimulus delays of 50ms or less, consistent with
the time course of STDP. These changes lasted for up to
10d postconditioning. A second conditioning protocol
triggered cortical stimulation from pulses generated by
electromyographic (EMG) activity of a forearm muscle
(Lucas and Fetz, 2013). This produced changes in the out-
put effects evoked by stimulating the cortical site (A) that
was associated with the recorded muscle to now include
effects evoked from the stimulated site (B). Again, the re-
sults were consistent with a strengthening of connections
from A to B. A third conditioning protocol used paired se-
quential stimulation of sites A and B and found changes in
the magnitude of potentials at B evoked by stimulation at
A (Seeman et al., 2017). These effects were found at
some, but not all site pairs, and were again seen for stimu-
lus intervals of 30ms or less. A fourth conditioning proto-
col produced cortical plasticity using a CL-BCI to

stimulate site A during specific phases of spontaneous b
oscillations at B (Zanos et al., 2018). This produced tran-
sient changes in the connection from A to B; the connec-
tions increased or decreased, depending on whether
stimuli were delivered during the phase in which neurons
at B would tend to be depolarized or hyperpolarized, re-
spectively. These changes in connectivity were induced
by spontaneous oscillatory episodes with three or more
cycles and decayed within seconds.
We here investigated whether the neural mechanisms

underlying these four conditioning protocols could be
captured by an IF neural network model that incorporates
STDP. This approach differs from a previous neural net-
work model using populations of Poisson firing units to
analytically compute the net effects produced by spike-
triggered stimulation (Lajoie et al., 2017; see Discussion).
Our IF model replicated the results of all four conditioning
protocols with a single set of network parameters and en-
abled derivations beyond the original experimental obser-
vations, providing a more complete picture of conditioned
changes and insights into the effects of relevant network
parameters. Furthermore, the model also provided totally
novel predictions about the outcomes of possible condi-
tioning experiments that have not yet been performed.
Thus, there is a productive symbiotic relation between the
model and physiological experiments. Our IF model pro-
vides a powerful tool for elucidating the synaptic mecha-
nisms underlying cortical plasticity and discovering new
conditioning protocols.

Materials and Methods
IF network model
The IF network model consists of 360 IF units. Each unit

maintains a potential Vi(t) which represents the sum of the
synaptic inputs from units with connections to unit i (Fig.
1A). Vi(t) is calculated at discrete time steps (h) of 0.1ms.
When Vi(t) exceeds a threshold u , the unit “fires” and its
spike function Ui(t) is set to 1 for that time step (Eq. 3).
Each time a unit fires, its potential is reset to zero on the
next time step and an output spike is initiated from that
source unit to all its target units.
The responses of the modeled units to spiking inputs

represent the PSPs of physiological neurons (Fig. 1B).
The form of the PSP is calculated as the difference be-
tween two exponential decay functions as follows:

PSP tð Þ ¼ w e�ðt�tspikeÞ=ts � e� t�tspikeð Þ=t f� �
; if t � tspike;

0otherwise: (1)

The time constants ts (slower decay) and t f were cho-
sen to give reasonably shaped PSPs, rising rapidly from
zero to a maximum, and then decaying more slowly back
toward zero (Fig. 1B). The parameter w is the connection
weight; this parameter is modified by the plasticity calcula-
tions. A related parameter, the connection strength is meas-
ured by the PSP maximum, which represents the synaptic
efficacy in voltage change, relatable to distance to threshold.
The relation between the weight and strength depends on ts
and t f (Fig. 1B). The calculation of Vi(t) is greatly simplified by
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using the same value of ts and t f for all connections. This al-
lows Vi(t) to be represented by two leaky integrators Vsi(t) and
Vfi(t) that decay with these constants (Eqs. 4, 5); they both re-
ceive the same spiking input and reset with the same spike
time function Ui(t). Here, the Euler method is used to estimate
the exponential decay functions. We let Ai(t) be the sum of all
incoming spike activity to unit i at time t (Eq. 6), and then cal-
culate the unit potential Vi(t) and spike time function Ui(t) as
follows:

Vi tð Þ ¼ Vs
i tð Þ � Vf

i tð Þ (2)

Ui tð Þ ¼ 1; if Vi tð Þ.u ;0otherwise (3)

Vs
i t1hð Þ ¼ ð1–h=t sÞVs

i tð Þ1Ai tð Þ; if Ui tð Þ ¼ 0;0 if Ui tð Þ ¼ 1

(4)

Vf
i t1hð Þ ¼ ð1–h=t fÞVf

i tð Þ1Ai tð Þ; if Ui tð Þ ¼ 0;0 if Ui tð Þ ¼ 1:

(5)

Each connection linking source unit j to target unit i at
time t is defined by a weight wij(t). The weight is positive or

negative for excitatory or inhibitory units, respectively.
Non-existent connections assume a weight of 0. Axonal
plus dendritic conduction times are modeled as a global
delay parameter d for all connections. To provide addi-
tional background activity each unit also receives external
input Ei(t) the sum of all external spiking activity arriving at
unit i at time t (Eq. 7). Ai(t) is defined as follows:

Ai tð Þ ¼ Ei tð Þ1
Xn

j¼1

Uj t� dð Þ �wijðtÞ
� �

; (6)

where n equals the total number of units. The units are
subdivided into three populations called “columns,” rep-
resenting recorded, stimulated and control sites (see
Network topology, below). To provide background spon-
taneous activity, each column receives excitatory external
inputs Ei(t) that are a combination of correlated inputs
Ec

i(t) and uncorrelated inputs Eu
i(t):

Ei tð Þ ¼ Ec
i tð Þ1Eu

i tð Þ: (7)

These inputs produce PSPs with the same waveform
as other connections in the network, varying only in

Figure 1. IF model. A, External input (Ej) and spiking input from connected units (U1 to Un) are summed into a target unit’s potential
(Vj). When a unit’s potential reaches threshold it is reset to 0 and the unit sends a spike to all its target units. The spike evokes an
excitatory or inhibitory PSP proportional to synaptic weight wij. B, PSP Shape is calculated as the difference between two exponen-
tial functions (dotted and dashed lines). C, The STDP curve shows how much weight wij is changed given the difference in spike
times between the target unit i and the source unit j.
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amplitude. For each column, the correlated events occur
with a given probability at each time step; every unit in
the column receives the correlated input at a random
time within a Gaussian distribution with a SD of 3ms.
Uncorrelated events occur with a separate independent
probability at every time step for each unit. The delivery
probabilities of correlated and uncorrelated events can be
modulated in time to simulate different dynamics of back-
ground activity (e.g., oscillations). For our networks, Ec

i(t)
and Eu

i(t) assume a fixed connection weight at times of
external spike delivery and are 0 otherwise.

Plasticity rule
When STDP is active, connection weights are modified

based on the relative firing times of the target and source
units. The STDP curve (Fig. 1C) shows how much weight
wij changes as a function of the difference in spike times
between target unit i and source unit j. The curve has two
components: a strengthening portion for positive differen-
ces Dt between time of postsynaptic spike and arrival of
presynaptic spike that will strengthen the weight, and a
weakening portion for negative time differences that will
weaken the weight. Each half of the STDP function was
approximated with exponential decay functions similar to
the PSP function except with longer time constants
(as; af ;bs;bf ) and with amplitudes controlled by the train-
ing factor r and a weakening factor c:

STDPðDtÞ ¼ r e�Dt=as � e�Dt=afð Þ;Dt � 0
�cr eDt=bs � eDt=bfð Þ;Dt, 0

:

�
(8)

The weakening side of the STDP curve has a lower am-
plitude but decays more slowly than the strengthening
side, and has larger overall area (Caporale and Dan,
2008). The same STDP function was used for excitatory
and inhibitory synaptic connections, for which there is
empirical support (Haas et al., 2006). For further discus-
sion of this and alternate STDP functions for inhibitory
synapses, see Discussion.
Choosing the right amount of weakening versus

strengthening is important to the evolution of the network
connections. If the weakening factor is too small, the
greater area of the strengthening side of the STDP curve
will eventually cause all weights to grow to a maximum
limit. If the weakening factor is too high, the greater
area of the weakening side will push all weights strongly
toward zero. We chose a weakening factor of c=0.55,
so that the network sustained low weight values in the
absence of any conditioning stimuli but showed noticea-
ble increases in some weights when conditioning was
applied.
For a single weight wij and time difference between

spikes of unit i and arriving spikes of unit j, the change in
wij is equal to the value taken from the STDP function in
Figure 1C. To facilitate computation of weight changes,
strengthening and weakening potentials are maintained
for each unit similar to the way unit potential Vi(t) sums
PSPs (except with no threshold crossing reset). Sj(t) sums
the strengthening side of the STDP curve for each source
unit j using time constants as and af with input activity

Uj(t–d). Ti(t) sums the weakening side for each target unit i
using time constants bs and bf with input activity Ui(t).
Thus, when a spike occurs, weight changes can be calcu-
lated with respect to previous spikes by taking signed and
scaled values of Sj(t) and Ti(t) (Eq. 15).

Sj tð Þ ¼ Ss
j tð Þ � Sf

j tð Þ (9)

Ss
j t1 hð Þ ¼ ð1–h=asÞSs

j tð Þ1Uj t� dð Þ (10)

Sf
j t1 hð Þ ¼ ð1–h=afÞSf

j tð Þ1Uj t� dð Þ (11)

Ti tð Þ ¼ Ts
i tð Þ � Tf

i tð Þ (12)

Ts
i t1hð Þ ¼ ð1–h=bsÞTs

i tð Þ1Ui tð Þ (13)

Tf
i t1 hð Þ ¼ ð1–h=bfÞTf

i tð Þ1Ui tð Þ: (14)

The change to wij at a given time step is:

Dwij tð Þ ¼ r sgn wij tð Þ
� �

Sj tð ÞUi tð Þ � cTi tð ÞUj t� dð Þ� �
(15)

wij t1 hð Þ ¼ F wij tð Þ1Dwij tð Þ
� �

: (16)

The function F(w) clips excitatory weights to the range
wmin � w � wmax, and inhibitory weights to the range
-wmax � w � -wmin. This function can be modified to
squash weight changes as the weight approaches min
and max limits, but for the simulations here no graded
squashing was performed. The standard parameter val-
ues used in simulations are shown in Table 1.

Network topology
The network contains 240 cortical units grouped into

three columns, A, B, and C, as shown in Figure 2A. Each
column has 40 excitatory units (e) that project only posi-
tive weights, and 40 inhibitory units (i) that project only
negative weights. Excitatory units connect sparsely to all
other units in the network and inhibitory units connect
less sparsely to all units within the same column.
The probability of each possible connection is listed in
Table 1. Unit self-connections are not allowed. Each col-
umn also has a simulated local field potential (LFP) which
is the sum of all PSPs occurring within a column.
To provide background spontaneous activity each col-

umn receives an external excitatory bias input generated
separately for each column. Some bias inputs provide
correlated spikes to each unit in a column, and others pro-
vide independent uncorrelated spikes to all units (Fig. 2A,
C/U), for a combined mean bias rate of 1800 spikes/s to
each unit. The ratio of the number of correlated to uncor-
related spikes each unit receives can be modified to con-
trol the degree of synchronization within a column. The
mean bias rate can also be modulated over time, for ex-
ample to generate oscillatory activity or simulate behav-
ioral activation.
To simulate experiments that involved recording muscle

activity, the network includes pools of motor units driven
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by the cortical columns (Fig. 2B). Associated with each col-
umn is a pool of 40 motoneurons that receive inputs from a
third of the excitatory units of that column, as well as from
uncorrelated external drive to simulate all additional inputs.
Consistent with the size principle (Henneman et al., 1965),
the pool included a range of small to large motoneurons,
with increasing thresholds from 5 to 6mV and increasing
muscle unit potentials from 0.5 to 1.5mV. Multiunit EMG ac-
tivity was simulated by summing all the muscle unit poten-
tials in the same manner as for unit PSPs and then filtering
the result with a 100- to 2500-Hz bandpass filter.
Figure 2C shows the simulated spiking activity of all

units under steady-state conditions. Also plotted are the
corresponding LFPs for each column. The coordinated
bursts of activity are produced by 30% correlated external
bias drive.

Conditioning stimulation
The effect of electrical stimulation on a stimulated unit

is modeled by a large and immediate deflection of its po-
tential toward threshold, computed by adding a large
stimulus pulse to the unit’s Vs

i(t), proportional to stimulus
intensity. The standard conditioning stimulus produces a
step in Vi(t) of amplitude 2mV. The standard testing

stimulus for evoking potentials produces a step in Vi(t) of
amplitude 3mV. Normally a conditioning stimulus is ap-
plied to all units in a column simultaneously, causing
many of them to fire. This burst of spikes will evoke a
measurable response in the LFP of other columns, called
the evoked potential (EP). The EP is a measure of the net
synaptic strengths from the stimulated column to the re-
corded column. The size of each EP is calculated as the
difference between the amplitude of the LFP peak after
the stimulus compared with prestimulation baseline LFP.
The average change in the EP amplitude produced by
conditioning is quantified as the percent increase of the
average EP amplitude after conditioning compared with
before conditioning:

EP Increase%

¼ 100ðPostConditionedAverageEP–PreconditionedAverage EPÞ
PreconditionedAverageEP

:

(17)

Implementation
The network has many modifiable parameters that can

affect the outcome of a simulation (Table 1). Temporal pa-
rameters are generally scaled in milliseconds. The net-
work runs in time steps of 0.1ms to strike a balance
between accuracy and computation time, although other
values of h are available in the code provided online.
Connection strengths, stimulation amplitudes, and PSP-
related parameters are scaled in microvolts to relate such
values to physiological variables. Connection strengths
are initially small values (20–60% of maximum) taken ran-
domly from a uniform distribution.
Most networks were run in 10-s time blocks for 2000 s

of simulated time, divided into four periods of 500 s each
(Table 2). During the preconditioning period STDP is on
and the network settles into an unconditioned steady
state. During the two testing stages before and after con-
ditioning the STDP calculations are turned off, allowing
graphs and tests to be compiled while the network runs
with static weights. The conditioning protocol is run dur-
ing the conditioning period with STDP on.

Tetanic stimulation
To control for the effects of stimulation alone, tetanic

stimulation was performed with a 10-Hz Poisson spike
train with an imposed 10-ms refractory period. This can
have a strengthening effect on connections from the
stimulated column to the other two columns, and a weak-
ening effect in the reciprocal directions (see “Control for
tetanic stimulation”, below). These effects were minimized
by selecting a weakening factor large enough to yield pre-
conditioned networks with small weights that would read-
ily show the effects of conditioned strengthening. There is
substantial variation in the sizes of conditioned EPs be-
cause of differences in initial conditions, the randomness
of the external input, and the magnitude of the training
factor parameter. However, averaging over a set of simu-
lations using 10 different initial conditions yields a reliable

Table 1: Parameter values

Number of excitatory units in each
column

40

Number of inhibitory units in each
column

40

Unit firing threshold 5mV
Conduction delay between cortical
units

3ms

Conduction delay to motor outputs 10ms
External Input PSP strength 350mV
Unit potential time constants ts, t f 3.2, 0.8ms
External input rate 1800 spikes/s
External input correlated spike
percentage

30%

External input correlated spike SD 3ms
Training factor r 100
Weakening factor c 0.55
STDP strengthening curve time con-
stants as, af

15.4, 2ms

STDP weakening curve time con-
stants bs, bf

33.3, 2ms

Conditioning stimulus intensity 2mV
Maximum connection strength (used
to calculate wmax)

500mV

Minimum weight wmin 1
Weight change squashing (weight
dependence)

0 (none)

Probability of excitatory cortical
connections

1/6

Probability of inhibitory connections 1/3
Probability of corticomotoneuronal
connections

1/3

Number of motoneurons 40
Motoneuron thresholds 5–6mV
Motor unit potential size 0.5–1.5mV
Available simulation time step sizes h 0.1 (default), 0.05, 0.025,

0.02, 0.01ms
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measure of the effects of tetanic stimulation. These te-
tanic effects can support or oppose other conditioning. For
example, any protocol to strengthen A!B connections that
employs stimulation on column B must overcome the tend-
ency for tetanic stimulation on B to weaken those connec-
tions. On the other hand, protocols that stimulate column A
(like cycle-triggered stimulation) should be evaluated relative
to simple tetanic stimulation of column A.

Code accessibility
The MATLAB (v. 2019a) code for the IF network model

is available online at https://github.com/lshupe/spikenet.

Online material includes documentation and instructions
on running the model under Windows 10, as well as fur-
ther explanation of effects of network parameters. The
code includes options not exercised in these simulations,
such as including a squashing function for graded weight
changes and running with finer temporal resolution (which
did not significantly alter the main results).

Results
Spike-triggered stimulation
To simulate conditioning with spike-triggered stimula-

tion (Jackson et al., 2006; Rebesco et al., 2010), each

Table 2: Sequential training periods

Period Preconditioning Preconditioning testing Conditioning Postconditioning testing
Plasticity On Off On Off
Conditioning Off Off On Off

Figure 2. Network connectivity. A, Cortical network configuration. Units are grouped into three columns A–C. Each column contains
40 excitatory units (e.g., Ae1 ... Ae40) and 40 local inhibitory units (Ai) all sparsely interconnected. Only excitatory units project to
other columns. Columns also receive external input, consisting of correlated and uncorrelated (C/U) exponentially distributed spikes.
B, Column configuration. Associated with each cortical column is a pool of motor units that produce muscle potentials (EMG). The
dashed lines designate unmodifiable connections and solid lines represent modifiable connections. C, Example spiking activity of
excitatory (e), inhibitory (i), and motor units (m) associated with each column. LFP is the sum of within-column PSPs in e and i units.
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time the first excitatory unit (Ae1) in column A fired, a con-
ditioning stimulus was applied to all units in column B at a
given delay (Fig. 3A). Conditioning effects were observed
as increased connection strengths between column A
and column B. Figure 3C shows color-coded strengths of
all connections after spike-triggered stimulation with a
spike-stimulus delay of 10ms, showing strengthened
connections from Ae to B units compared with connec-
tions between other columns. Connectivity between col-
umns A and B was also documented by the average EP
(Fig. 3D, insets) in the LFP of column B produced by a test
stimulus to A (Fig. 3A).
After conditioning for 500 s of simulation time, the con-

ditioning unit (Ae1) showed near maximum connection
strengths to its target units in column B. Other units in A
also show increased connections to B depending on the
percent of correlated bias inputs to A. Networks with 30%
correlated bias inputs show a moderate conditioned re-
sponse in other column A!B connections. Networks with
20% correlated bias inputs show little conditioned re-
sponse except for connections from unit Ae1. Figure 3B
shows the average firing rates of the Ae and Be populations
relative to the triggering Ae1 spike times (T). The sharp peak
at 0ms represents the trigger spikes and the broad peri-trig-
ger peak reflects the synchrony between Ae units imposed
by 30% external correlated bias. Figure 3B also shows the
times of spikes in column B (red); the large peak at 10ms re-
flects the occurrence of stimulus pulses in B.
Figure 3D shows the size of A!B EPs after spike-trig-

gered stimulation at various spike-stimulus delays. The
peak in the curve reflects the effect of the STDP rule. At

long delays, the spike-triggered conditioning effect ap-
proaches the small effect of tetanic stimulation applied to
column B (dashed line). At “zero” delay the size of the EP
is decreased (Fig. 3D). In this case the spike-stimulus
delay is shorter than the conduction delay and connec-
tions from A to B become weaker. This decrease in syn-
aptic strength is consistent with the STDP rule and with
experimental results obtained for corticospinal connec-
tions (Nishimura et al., 2013).
The original experiments of Jackson et al. (2006) could

not document the conditioning effects by recoding short-
latency EPs because of stimulus artifacts, so instead
measured conditioning effects indirectly by using cortical
microstimulation to evoke EMG responses. To simulate
these experimental observations, the motor unit pools
were activated by trains of cortical stimuli delivered at
separate times to each column (Fig. 4). This simulation
shows that after conditioning, stimulation of column A
now also evoked responses in the muscle of column B,
mediated by the strengthened A!B connections and as
reported by Jackson et al. (2006; their Fig. 2).

EMG-triggered stimulation
Cortical conditioning effects could also be produced in

NHPs by triggering cortical stimulation from muscle activ-
ity (Lucas and Fetz, 2013). To simulate these experimental
results the trigger pulses were obtained from threshold
crossings of multiunit EMG activity of muscle A (Fig. 5A).
The threshold was chosen such that triggered stimuli
were delivered to column B at a rate comparable to that

Figure 3. Spike-triggered stimulation. A, A Conditioning stimulus (ST) is applied to all units in column B at a delay from each trigger
spike (T) detected on the first excitatory unit (Ae1) of column A. Testing shows stimulus applied to all column A units to evoke a po-
tential (EP) in LFP of column B. B, Histogram of excitatory A and B unit firings aligned with spikes on Ae1 (T) during conditioning
with a 10-ms delayed stimulus. C, Final connection strengths (calibrated in mV) between units after conditioning. D, Average percent
increase in the EP as a function of the delay between trigger spike and stimulation. Insets show average EPs before and after condi-
tioning for two delays. Gray dashed line shows the EP response in column B after tetanic stimulation of column B.
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used for other conditioning methods (;3000 conditioning
stimulations over a 500-s conditioning period). This proto-
col strengthened the synaptic connections from A to B, as
shown by the connectivity matrix (Fig. 5C) and by the
A!B EPs (Fig. 5D). The conditioning effect is explained
by the computed histogram of spikes in the Ae units
aligned with the EMG threshold detection (Fig. 5B). This
shows a peak in firing of A units (blue curve) that gener-
ated the coincident input to the motor units and that pre-
ceded the triggered responses in B (red peak). The delay
between these peaks represents the 10-ms cortico-
motor-unit conduction time plus a minor effect of EMG
rise to trigger threshold.

Paired-pulse stimulation
Paired pulse conditioning (Rebesco and Miller, 2010;

Seeman et al., 2017) was simulated by stimulating column
A followed by stimulation of column B at a fixed delay
(Fig. 6A). The resultant connection strengths are shown in
Figure 6C for a stimulus delay of 10ms. Conditioning ef-
fects were also documented by delivering test stimuli to
column A and measuring the average EPs in columns B
and C. Figure 6D plots the change in amplitudes of the
A!B EPs and A!C EPs as a function of interstimulus
delay. Consistent with the bidirectional STDP function,
there is a decrease in the size of the EPs for negative con-
ditioning delays (i.e., B stimulated before A), but this is
shallower than the peak for positive delays because of the
choice for the weakening parameter, which tended to
keep synaptic weights small. The histograms of unit

firings show the peak in A spikes produced by the stimu-
lus in A (blue trace) and two peaks in B firing (red trace):
the first peak is due to a synaptically relayed response to
the A burst and the second is because of the delayed
stimulus of B.
For the same stimulus amplitude, paired pulse condi-

tioning tends to be stronger than spike-triggered condi-
tioning (see below, Testable outcomes) and does not
require correlated bias inputs, since the stimulation
pulses themselves evoke strong correlated activity be-
tween A and B. The conditioning effect is seen with far
fewer stimuli than used for spike-triggered stimulation, for
the same stimulus intensity. Our 500-s conditioning time
yielded only 700 paired pulse conditioning stimuli, com-
pared with over 3000 stimuli when using the spike-trig-
gered stimulation protocol.
In these simulations, conditioning effects were obtained

by delivering pairs of single pulses. However, in the physi-
ological experiments it was necessary to use a triplet of
pulses to obtain effects (Rebesco and Miller, 2010;
Seeman et al., 2017). In the model, conditioning with
paired triplets of stimuli shows a more potent conditioning
effect, which became evident for a range of lower inten-
sities where single stimuli were insufficient (Fig. 10).

Cycle-triggered stimulation
To simulate cycle-triggered conditioning (Zanos et al.,

2018), episodes of oscillatory beta activity were gener-
ated by modulating the bias input to column B (episodes
of six oscillations at 20Hz occurred four times during

Figure 4. Simulation of output effects on muscles before and after spike-triggered stimulation. Averages of rectified EMG responses
evoked by repetitive stimulation of column A (containing conditioning trigger unit, left), column B (stimulus column, middle), and col-
umn C (control, right) for preconditioning (blue) and postconditioning (orange) periods (compare Jackson et al., 2006; Fig. 2) For this
simulation, intercolumn connection probability was doubled to 1/3, and the correlated bias drive was set to 50%. The test stimulus
train was 1mV, 25 pulses, 500Hz delivered during intervals marked by black bars (the response delay is due to the 10-ms cortico-
spinal conduction time). Ordinate scale is in millivolts.
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Figure 5. EMG-triggered stimulation. A, A conditioning stimulus is applied to all units in column B at a delay after threshold crossing
(u ) in EMG of A motor units. B, Firing rate histograms of Ae and Be units during conditioning aligned with EMG A threshold detec-
tion and stimulation (0ms). C, Connection strengths between presynaptic and postsynaptic units after conditioning. D, The average
percent increase in the EPs evoked in column B (orange) and column C (blue) from stimulating A as function of delay between EMG
threshold crossing and delivered stimulation.

Figure 6. Paired-pulse stimulation. A, Pairs of pulses delivered sequentially to A and B with fixed delay. B, Firing rate histograms of
Ae and Be units during conditioning aligned with times when the first of the paired stimuli occurred (10-ms conditioning delay). C,
Connection strengths after conditioning. D, Average percent increase in the EP between the conditioned and unconditioned effect
as a function of the interstimulus delay. Insets show the shape of the average EP at conditioning delays of �30 and 10ms. Gray
trace plots same for EPs in column C.
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each 10-s simulation time block). The LFPs from column
B were filtered with a 15- to 25-Hz band pass and when
this filtered LFP exceeded a given level, the next zero
crossing was either taken as a 0° phase (when rising
through zero) or 180° phase (falling through zero) to define
the phase of the cycle trigger. During conditioning a stim-
ulus was applied on all units in column A whenever the
cycle trigger for the specified phase occurred in B (Fig.
7A). To measure conditioning effects, we applied test
pulses on column A before and after the oscillatory epi-
sodes, as in the original experiments. These test pulses
could cause a certain amount of tetanic conditioning, but
this was lower than the changes caused by the cycle-trig-
gered stimulation.
As shown in Figure 7C, cycle-triggered stimulation at 0°

phase shift increased connections from column A!B and
to a lesser extent the connections from column A!C. In
addition, the B!A connections were reduced. Cycle-trig-
gered stimulation at 180° phase shift decreased connec-
tions from column A!B and increased connections from
column B!A (Fig. 7D).
Figure 7B shows histograms of unit firings relative to

the trigger for stimuli delivered at 0° phase shift. The Ae
units fired in response to the stimuli (peak at zero in blue
curve). The Be units (red) show the broad oscillatory in-
crease and response to the stimuli.
Conditioning was also performed with stimuli delivered

at other phases. Figure 7D shows how evoked responses
vary with stimulation phase for A!B, A!C, and B!A
connections. Maximum evoked responses for A!B oc-
curred at about �15°, which matches the phase differ-
ence between the bias input modulation and the resulting

modulation in the filtered LFP of column B. Maximum
B!A EP responses occurred at approximately 150°
phase shift. The A!C connections showed a very weak
modulation, which is consistent with experimental results
for control sites whose LFPs were not entrained with B.

Control for tetanic stimulation
An important control for conditioning effects is the ef-

fect of a comparable amount of open-loop stimulation not
triggered by preceding activity. To reduce the effects of
such tetanic stimulation, the amount of external bias drive
and the area difference between the weakening and
strengthening sides of the STDP curve were chosen such
that tetanic stimulation, at rates similar to rates for condi-
tioning protocols, did not cause large conditioning ef-
fects. The results of tetanic stimulation are shown in
Figure 8, for Poisson-distributed stimulation delivered to
column B during the conditioning period. The connection
matrices for tetanic stimulation show slight increases over
the “no stimulation” network in the connectivity from col-
umn B to A and B to C (Fig. 8A). The changes in connec-
tivity between columns as measured by EP amplitudes
are illustrated in Figure 8B and plotted in Figure 8C as a
function of stimulus frequency. Tetanic stimulation of B
has the greatest effect on connections from B for frequen-
cies between 8 and 16Hz. The EP increases for other
connections are small or slightly negative (Fig. 8B,C).
Most of the conditioning protocols modified the A!B
connections with triggered stimulation of column B. In
these cases, the conditioned A!B effects were clearly
larger than the tetanic effect, which had the opposite

Figure 7. Cycle-triggered stimulation. A, A stimulus is applied to column A at a particular phase of LFP oscillations in column B. B,
Peristimulus time histogram of Ae and Be units during cycle-triggered stimulation at 0° phase. C, Connection strengths after condi-
tioning (0° phase). D, Increase of the evoked responses as a function of stimulation phase. Legend identifies traces for stimulated
and recorded columns. Dashed line shows A!B EP increase for tetanic stimulation on column A with a rate approximately matching
that for cycle-triggered stimulation.
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effect of decreasing A!B EPs. For cycle-triggered stimu-
lation of column A, the conditioned effect was larger than
the effect of tetanic stimulation of A alone (Fig. 7D).

Testable outcomes
Importantly, our IF model can simulate variables and

procedures that were not documented in the original
physiological experiments. Notably, the strength of syn-
aptic connections in the model was documented by
computing stimulus-EPs (Figs. 4D, 5D, 6D, 7D, 8C), a
test that could in principle be performed experimentally,
but is technically difficult. Another comprehensive mea-
sure of conditioning effects on synaptic strength is the
sum of all the synaptic weights connecting one column
to another. There is no feasible physiological or ana-
tomic experiment to measure these weights directly in
vivo, but they can be readily calculated from the model.
Significantly, Figure 9A shows that the computed
weight changes closely track the changes in the EPs.
Moreover, the weights can be tracked with high tem-
poral resolution, during and after the conditioning to
document the induction and decay of the conditioned
weight changes. Figure 9B shows the time course of
the weight changes in the A!B connections during
and after a period of spike-triggered stimulation with
STDP. The stimulation is applied during the first 4 s of
each 10-s time block. The plot of the average time
course over 50 blocks shows how the weights tend to

increase during the stimulation and then decay toward
their preconditioned values after stimulation is turned
off. Figure 9C tracks these weight changes during and
after two spike-triggered stimulation periods to show
that weight changes can be induced and decay in a mi-
nute or two of simulated time. This figure also shows
the variability in conditioning because of the training
factor and firing rates of the units. A smaller training
factor would reduce the variability of the conditioned
weights but would also extend both the training and
decay times.
Another testable property that the model can predict is

the relative efficacy of conditioning as a function of stimu-
lus intensity and number, as shown for the spike-triggered
and paired pulse protocols in Figure 10. The curve for
spike-triggered stimulus pairs rises faster than the curve for
spike-triggered single stimuli; this is partly because of the
pairs acting as a higher intensity stimulus, but that does not
entirely explain the higher asymptote achieved. The curve
for paired single-pulse stimulation initially rises more slowly
than that for spike-triggered single stimuli, but then sur-
passes it at 2mV, our standard conditioning simulation in-
tensity. The curve for paired triplet stimuli (which had to be
used experimentally) rises much faster than that for paired
single-pulse stimulation, revealing a stimulus range over
which the triplets are more effective than single pulses. The
curves asymptote at high stimulus intensities when most of
the units in the stimulated column respond.

Figure 8. Tetanic stimulation. A, Effect on connection strengths of tetanic stimulation of column B at 5 and 9Hz (intensity of
2.0mV), compared with no stimulation. B, Examples of averaged EPs before and after tetanic stimulation of B at 9Hz. C, Mean
(over 10 randomized networks) of averaged EP changes produced by tetanic stimulation of B at different frequencies. Legend identi-
fies traces for test-stimulated ! EP-recorded columns.
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Testable predictions for novel protocols
Our IF model can also be used to predict outcomes of ex-

periments not yet performed. For example, it is possible to
trigger a pulse of inhibition of column B from action poten-
tials of a cell in column A, which could be achieved by opto-
genetic spike-triggered inhibition (Fig. 11A). The inhibitory
effect was modeled as a negative deflection (�2mV) to the
slow decaying part of the membrane potential. The results
of this simulation show that the connections from A to B
would be reduced (Fig. 11D). The trigger-aligned histograms
in Figure 11B document the pairing of increases in Ae units
with subsequent decreases in B units. The time course of
conditioned reduction in connections as a function of spike-
pulse delay roughly resembles the inverse of the increase
with spike-triggered stimulation.

A second untested conditioning protocol involves
triggering stimuli from threshold crossings of g range
LFPs. On the rationale that g LFP reflects multiunit
activity, these threshold crossings should detect coin-
cident spiking activity that should also produce plastic-
ity. Figure 12 shows the effects of stimuli in B triggered
from band-passed mid-g LFP in column A (in 50- to 80-
Hz range, using 30% correlation in the bias spikes). The
histogram of Ae unit spikes aligned with the falling g
threshold crossings (Fig. 12B) shows a robust prestimu-
lus peak in Ae units (and in LFP A) that generates the
threshold crossing. The increase in A!B connections is
shown in both the connection matrix (Fig. 12C) and in
the size of EPs (Fig. 12D). Similar effects were found for
triggers from high (80–100Hz) and low range (30–50Hz)

Figure 9. Network weight measurements. A, Comparison between EP increase and mean A!B weight increase for conditioning
with spike-triggered stimulation as function of spike-stimulus delay. B, Average evolution of A!B weights during and after 4 s of
spike-triggered stimulation at 10-ms conditioning delay (averaged over 50 time blocks). C, Mean A!B connection strengths calcu-
lated at the end of each 10-s time block and plotted over two passes through the preconditioning, testing, and spike-triggered stim-
ulation periods.

Research Article: New Research 12 of 22

March/April 2021, 8(2) ENEURO.0333-20.2021 eNeuro.org



g (Fig. 12D). Triggering from the rising slope of the g ac-
tivity is associated with a later peak in Ae activity (Fig.
12B), consistent with a later latency and a smaller con-
ditioning effect (Fig. 12D) than triggering from the falling
slope.

Relative efficacy of conditioning protocols
To compare the relative efficacy of different condition-

ing protocols, the resulting change of the A!B connec-
tions was tested by the change in the EP in B evoked by
stimulating A. The results, plotted for different amplitudes
of the conditioning stimuli, are shown in Figure 13 (the
standard amplitude was 2mV). These simulations were
run with the standard 30% correlated bias drive to each
column. As a control for stimulation alone, the solid gray
curve shows the effects of tetanic stimulation of column B
with exponentially distributed stimulation intervals, at the
same average rate as the spike-triggered stimulation (blue
curve). Above 1.5mV, the other four protocols all produce
stronger effects than spike-triggered stimulation, prob-
ably because the stimuli involve larger numbers of Ae
spikes. In particular, triggering from EMG and g produce
larger effects than spike-triggered stimuli above 1mV be-
cause they are selective for coincident Ae spikes (as
shown in the histograms in Figs. 5B, 12B).
Tetanic stimulation of column B (gray solid curve) is the

control for spike-triggered, g-triggered and EMG-trig-
gered stimulation of B. Tetanic stimulation of column A
(gray dashed curve) is the control for cycle-triggered
stimulation of A (here performed at a phase of 0° in b
cycles). Both tetanic curves are relevant to paired-pulse
stimulation.
The conditioning effects asymptote at stimulus inten-

sities above 2.5mV because of maximal activation of
units in the stimulated column. The asymptote for spike-
triggered stimulation (blue curve) is lower than those of
the other conditioning protocols, but this was a function
of the synchrony input driving the Ae units and could be

Figure 11. Spike-triggered inhibition. A, Spikes in one unit in column A (Ae1) trigger an inhibitory effect on all units in column B. B,
Perispike histogram of Ae and Be units. C, Postconditioning connectivity matrix for 10-ms delay. D, The standard network parame-
ters yield a relatively mild EP decrease (orange curve). A more active network with 45% correlated bias drive, a weakening value of
0.5, and a �3-mV stimulus produces a more robust poststimulus inhibition (brown).

Figure 10. Effect of conditioning stimulus amplitudes and
trains. Stimulating with pulse trains (33-ms interstimulus in-
terval) instead of single pulses increases the efficacy of con-
ditioning for spike-triggered stimulation (spike-triggered 2
vs 1) and for paired-pulse stimulation (paired pulse 3 vs 1) at
all stimulus amplitudes. n is the total number of stimuli deliv-
ered during each simulation. Running the paired pulse 1
conditioning longer (n = 3500 compared with n = 700) does
not provide the same increase in efficacy as paired pulse 3
(n = 714) until efficacy approaches an upper limit at stimulus
amplitudes�2.5mV.
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increased by increasing the amount of synchronous rela-
tive to asynchronous input drive.

Strengthening disynaptic pathways
The preceding conditioning protocols focused on

changes induced in monosynaptic connections. The de-
gree to which polysynaptic pathways can be modified
would be of basic interest and clinical relevance for induc-
ing targeted plasticity to treat lesions. Disynaptic condi-
tioning was investigated for paired stimulation of A and B
in the absence of direct connections between A and B
(Fig. 14). The conditioning protocol is identical to that

shown in Figure 6A for paired stimulation of intact net-
works, but now the most direct pathway between A and B
is disynaptic, via column C (Fig. 14A). The weight matrix
shows clear increases in A!C and C!B connections
after conditioning (Fig. 14C). This increase in the disynap-
tic path was a function of the intensity of the two stimuli,
as shown by the increases in A!B EP size plotted for dif-
ferent combinations of intensity in Figure 14B. To produce
conditioned changes with pairs of single pulses the stimu-
lation intensity of A had to be at least 2.5mV, higher than
the typical 2mV used in other simulations. This was likely
necessary so that some tetanic conditioning from A!C
would occur (as in Fig. 13, tetanic column A). However, te-
tanic stimulation of A alone did not produce a sizeable di-
synaptic EP (Fig. 14B, B stim=0). The A!B EPs increase
appreciably for conditioning with interstimulus delays
above 8ms (Fig. 14D), about twice the minimal delay of
4ms for direct connections (Fig. 6D).
Although larger than standard stimuli were necessary

to produce disynaptic conditioning with paired single
pulses (Fig. 14B), paired triplet stimulation with stand-
ard intensities of 2mV did produce clear disynaptic ef-
fects (see below, Fig. 16).
Cycle-triggered stimulation could also be used to

strengthen disynaptic connections (Fig. 15). The conditioning
protocol is identical to normal cycle-triggered stimulation
shown in Figure 7A, but now connections between column A
and column B have been removed (Fig. 15A). Therefore, any
EP in column B caused by a stimulus in column A must be
mediated disynaptically, through column C. Oscillatory drive
was applied only to column B (Fig. 15B). The weight matrix
again shows that conditioning produced clear increases in

Figure 12. g-Triggered stimulation. A, Stimuli were triggered from threshold crossings of LFP filtered in the g frequency
ranges shown. B, Firing rate histograms of Ae units (blue) and Be units (red) relative to triggers from falling and rising mid-
range g filtered LFP in A. Gray curve shows simultaneous LFP in A. C, Connection strength matrix for falling LFP filtered in
mid g range (50–80Hz). D, changes in EPs for rising and falling threshold crossings for different g frequency ranges. Circled
points used for histograms in B.

Figure 13. Relative efficacy of conditioning protocols. Curves
show increase in A!B EP as function of stimulus intensity
using standard network parameters. Tetanic stimulation was
randomly spaced with rates approximating that for spike-trig-
gered stimulation. Paired pulse interval was 10ms, same as the
spike-trigger delay, while rising EMG and falling g-trigger delay
was 0ms.
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A!C and C!B connections (Fig. 15C). The stimulation in-
tensity had to be increased to 3.5mV, more than the typical
2.0mV used in other simulations. This was probably neces-
sary so that some tetanic conditioning from A!C would
occur (as in Fig. 13, tetanic column A). However, tetanic stim-
ulation of A alone did not produce a sizeable disynaptic A!B
EP (Fig. 15D, green line).
Disynaptic A!B connections could not be strengthened

with spike-triggered or g-triggered A!B stimulation, nor with
stimulation of B triggered from EMG of muscle A, even with
larger than standard stimulus intensities. These protocols did
strengthen A!C connections, but they did not produce the
necessary increase in C!B connections.
The above tests involved disynaptic conditioning with

A$B connections deleted. A related question is whether
comparable disynaptic conditioning occurs in intact net-
works as well. Intact networks conditioned with paired
triplets using standard 2 mv stimuli (Fig. 16A) showed a
clear disynaptic bump in the A!B EP (Fig. 16B, arrow).
Lesioned networks without A$B connections that were
conditioned with the same paired triplets (Fig. 16C)
showed a disynaptic A!C!B EP (Fig. 16D) whose timing
coincided with the delayed bump produced in the intact
network. However, their amplitudes differed. To measure
the size of the disynaptic EP produced in the intact net-
work we computed the A!C!B EP evoked with the
A$B connections removed for testing. The disynaptic EP
produced by conditioning the lesioned networks was
;1.6 times larger than the recovered disynaptic compo-
nent of the EP in the intact networks, with the identical
conditioning protocol.

To investigate the reason for this difference we exam-
ined the sizes of disynaptic A!C!B EPs and the mono-
synaptic A!B and C!B EPs for the two networks. To
elucidate the effects of initial weight choices on these val-
ues, this comparison was done for 10 intact networks,
each starting with different initial synaptic weights and 10
lesioned networks that had identical initial weights except
with A$B connections deleted before conditioning (with
paired triplets). Figure 16E plots the relative sizes of these
EPs produced in the 10 networks. The disynaptic
A!C!B EPs in the intact and lesioned networks (blue
points) are proportional, with a linear slope of 1.57. The
monosynaptic A!C and C!B connections (orange and
black points) were also proportional, with slopes of 0.81
and 1.61, respectively. The two dotted triangles connect
three corresponding EPs for two initial conditions (the
ones that produced the largest and smallest EPs). The
plots illustrate the variation in absolute sizes that can
emerge from different starting points and also show that
the sizes of the three EPs covary. These plots show that
the larger disynaptic EP in the lesioned network can be at-
tributed to a larger increase in the C!B connections.

Intracolumn connections
Applying the STDP rule to our standard networks tends

to suppress connections that are not specifically targeted
by conditioning, including recurrent intracolumn connec-
tions. This leads to networks in which these connections
seem to serve little purpose because similar results can
be obtained by completely leaving out inhibitory units and

Figure 14. Disynaptic paired-pulse stimulation. A, Circuit connections between columns with standard A$B connections removed.
B, Size of A!B EP as a function of stimulus intensities for the two pulses (for delay of 12ms). C, Postconditioning connection matrix
(for A and B stimulus intensities of 3mV and delay of 12ms). D, Size of conditioned A!B EPs as a function of interstimulus delays
(A and B stimulus intensities of 3mV).
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intracolumn connections. To explore how these connec-
tions might play a role in conditioning, we ran simulations
in which within-column units were strongly intercon-
nected to each other with fixed connections. We found
that these networks could show conditioning effects with
reduced or no correlated bias input. For example, by fully
connecting intracolumn units with connection strengths
of 200–300 mV and preventing the STDP rule from modify-
ing them, the various triggered stimulation protocols
could mediate conditioning without any external corre-
lated input bias. Moreover, in these networks the inhibi-
tory units do play a functional role in preventing run-away
recurrent activity.
Figure 17 shows such a network with fixed intracolumn

connections (FICs) operating with the same spike-trig-
gered stimulation protocol used in our standard networks
(Fig. 3). However, this FIC network does not employ any
correlated bias inputs and instead relies on recurrent ac-
tivity in column A to create sufficient correlated unit firings
to facilitate the conditioning effects. The FIC in column A
(Fig. 17A, dashed arrows) cause secondary peaks in the
610-ms range in the triggered averages of the Ae units
(Fig. 17B, blue trace), in contrast to the single correlation
peak normally created by correlated bias inputs (Fig. 3B).
The triggered average of the Be units (Fig. 17B, red trace)
shows the column B spike response to the 10-ms delayed
stimulus followed by a second peak produced by the FIC

in column B. Further recurrent effects are damped out by unit
refractory periods and the inhibitory intracolumn connections
(but can become noticeable if the excitatory intracolumn con-
nections significantly outweigh the inhibitory connections).
Changes in EPs at different spike-stimulus delays (Fig. 17D)
are fairly comparable to those in our standard network (Fig.
3D); however, many EPs have a secondary peak caused by
the FIC in column B (Fig. 17D, inset). These secondary effects
in column B can be eliminated by removing the FIC in column
B, while conditioning effects are still obtained via the FIC in
column A.
Similar results were obtained for the other conditioning

paradigms tested with FIC networks without correlated
bias spikes, namely EMG-triggered, g-triggered, cycle-
triggered, and paired-pulse stimulation. In general, the
conditioning effects were somewhat weaker and the te-
tanic effects (Fig. 17D, gray dashed line) were stronger for
these FIC networks than for the standard networks.
Spike-triggered, EMG-triggered, and g-triggered stimula-
tion must overcome the more negative than usual effect
from tetanic stimulation on column B, while cycle-trig-
gered and paired-pulse stimulation must be compared
with the stronger than usual conditioning from tetanic
stimulation on column A.
These conditioning effects can be strengthened by

adding varying amounts of correlated bias inputs to the
FIC network. Figure 18 shows the conditioned increase in

Figure 15. Disynaptic cycle-triggered stimulation. A, Circuit connections between columns A and B are removed. A stimulus (CT) on
column A is triggered on phases of an oscillatory episode in LFP B. B, The oscillatory episode in column B (during bar starting at
0.5 s) is produced by modulating the probability of external bias spikes to B with a sine wave (seven cycles at 20Hz). C,
Postconditioning connection matrix shows absence of A$B connections, and the strengthened A!C and C!B connections that
mediate the A!B EP. D, Conditioned EP sizes for conditioning with different stimulation phases (w ). In contrast to cycle-triggered
stimulation with full networks, the B!A EP was slightly depressed and unmodulated with phase. Inset shows A!B EP before (blue)
and after (orange) conditioning.
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the A!B EP for different proportions of FIC and corre-
lated external input for spike-triggered stimulation.
These results suggest that a modified STDP rule for in-
tracolumn connections, one that maintains robust intra-
column weights, could be combined with more modest
correlated bias inputs to produce the same conditioning
effects as obtained with our standard networks using
30% correlated bias inputs.

Discussion
Our IF model captures the experimental outcomes from

four different conditioning protocols experimentally inves-
tigated in motor cortex of awake NHPs. A powerful feature
of the model is to explore estimates of many variables
that were not measured in the original experiments, such
as changes in the connection matrices, sizes of EPs
(which measure the synaptic strength of intercolumn con-
nections), and peristimulus histograms of neural activity.
Furthermore, the model predicts the outcomes of novel
experiments not yet performed.
In comparison, a previous neural network model used

populations of Poisson firing units and STDP to analytically

compute the population effects produced by spike-trig-
gered stimulation (Lajoie et al., 2017). That model replicated
the experimental results on net changes in connectivity and
showed that the amount of conditioning was dependent on
the correlations between units. That model predicted that
conditioning efficacy would be greater when cross-correla-
tion peaks were wider, as they typically are during sleep
compared with waking. In contrast, our IF model is based
on simulating the synaptic connections between excitatory
and inhibitory spiking neurons that integrate synaptic inputs
to firing threshold. Our IF network provides cellular resolu-
tion of conditioning effects and their dependence on net-
work parameters and simulates many different conditioning
protocols.
A similar approach was used to model conditioning

with spike-triggered stimulation in somatosensory cortex
of NHPs (Song et al., 2013). That study examined the ef-
fect of spike-triggered and random microstimulation on
firing rates and mutual information in S1. A large network
of biophysical units with STDP reproduced many of the
global physiological findings. In contrast, our smaller net-
work of much simpler IF units was sufficient to replicate

Figure 16. Disynaptic effects with paired triplet stimulation with standard 2-mV stimuli. A, Intact network. B, A!B EP after condi-
tioning the intact network with 10-ms delay between paired triplets (red) and before conditioning (blue). Arrow points to disynaptic
component of EP. C, Lesioned network trained without A$B connections but other connections identical to intact network in A. D,
A!B EP after conditioning the lesioned network. E, Sizes of intercolumn EPs in 10 conditioned intact and lesioned networks, with
different starting weights. X!Y EP refer to monosynaptic A!C and C!B connections (orange and black points) and disynaptic
A!C!B EPs (blue points); for the conditioned intact network, the disynaptic A!C!B EPs were obtained after removing A$B con-
nections. Dotted triangles connect corresponding EPs from two starting conditions.
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more detailed spatiotemporal measures of conditioning
effects.
Other modeling studies have combined IF networks

with STDP to investigate related issues. Adding a STDP
rule to large populations of conductance-based units
(Izhikevich, 2003) led to the emergence of interconnected
groups under steady-state conditions (Izhikevich et al.,
2004). Our model had fewer units, with predetermined

connections between groups, and reached an equilibrium
steady state under STDP before conditioning procedures
were introduced. Other large-scale cortical network mod-
els showed that realistic synaptic plasticity rules coupled
with homeostatic mechanisms led to the formation of
neuronal assemblies that reflect previously experienced
stimuli (Litwin-Kumar and Doiron, 2014) or recall sequen-
ces (Klos et al., 2018).
Bono and Clopath investigated STDP and dendritic

spike mechanisms in producing plasticity in biophysically
realistic neural models (Bono and Clopath, 2017). Another
study showed that STDP rules had to be augmented with
mechanism for heterosynaptic competition to generate
networks capable of producing sequences of neural activ-
ity (Fiete et al., 2010). On the behavioral level, a model of
orbitofrontal networks of IF units with STDP learned the
rules of goal-directed actions (Koene and Hasselmo,
2005). These studies investigated various functional is-
sues, in contrast to our focus on neural mechanisms of
synaptic plasticity.

Differences between the IF model and physiological
mechanisms
It seems remarkable that our simple voltage-based

IF model could replicate the results of many different
physiological conditioning experiments. This robust per-
formance raises the question of where the model has

Figure 17. FICs with spike-triggered stimulation. A, A conditioning stimulus (ST) is applied to all units in column B at a delay from
each trigger spike (T) detected on the first excitatory unit (Ae1) of column A. Uncorrelated external bias spikes (U) and all intracolumn
connections have fixed connection strengths (dashed arrows) leaving only the connections between columns trainable (solid arrows).
There are no correlated bias inputs as in previous networks. Column C had similar connectivity (data not shown). B, Histograms of ex-
citatory A and B unit firings aligned with spikes of Ae1 (T) during conditioning with a 10-ms delayed stimulus. Secondary peaks occur
because of the FICs. C, Final connection strengths (calibrated in mV) between units after conditioning. D, Average percent increase in
the A!B EP as a function of the delay between trigger spike and stimulation. Insets show average EPs before and after conditioning
for two delays. Gray dashed line shows the EP response in column B after tetanic stimulation of column B.

Figure 18. Conditioning effects with different proportions of
FICs and correlated external bias input. Curves plot the mean
A!B EP increases (averaged over five randomized networks)
for spike-triggered stimulation (10-ms spike-stimulus delay).
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limitations that would inform further refinement. There are
several differences between the performance of our model
and the original physiological conditioning experiments. First,
in the cortical spike-triggered stimulation experiments, not all
site pairs developed strengthened connections (Jackson et
al., 2006; Rebesco et al., 2010). This may simply be because
of a lack of sufficient synaptic connections between those
sites to strengthen. However, this explanation would not
apply to the original paired stimulation experiments (Seeman
et al., 2017), in which many pairs of sites did seem to have
sufficient synaptic connections to mediate EPs, but these did
not show conditioned changes.
Second, with paired stimulation in vivo a minimum of

three pulses was required to produce conditioned changes
(Rebesco and Miller, 2010; Seeman et al., 2017). In con-
trast, our IF model exhibited reliable conditioning even with
pairs of single pulses, although triplet stimulation was sub-
stantially more potent than pairs of single stimuli over a
range of intensities. The need for triplet instead of single
pulses in vivo and the lack of conditioning effects for cer-
tain cortical sites remain to be better understood before
these physiological observations can inform a change in
the model.
A third difference between the model and physiological

mechanisms concerns the duration of the conditioned ef-
fects. In vivo, the duration of effects was related to the
amount of conditioning. The briefest conditioning effect
(2 s) was produced by triggering stimuli from several
cycles of b oscillations (Zanos et al., 2018) and the lon-
gest conditioning effect (threeweeks) occurred in the
behavioral recovery produced by 13weeks of EMG-trig-
gered spinal stimulation (McPherson et al., 2015). Other pro-
tocols involved intermediate durations of conditioning, and
these produced correspondingly intermediate durations of
effects (Jackson et al., 2006; Lucas and Fetz, 2013;
Nishimura et al., 2013; Seeman et al., 2017). In contrast, the
time course of the induction and decay of conditioning ef-
fects in the model were similar for the different protocols
(Fig. 9) and was determined by parameters such as training
factor r, shape of STDP function and connectivity.
It seems possible that more sophisticated models, such

as a network of biophysically more realistic units would
help address some of these differences between the
model and physiology. For example, the conductance-
based units of Izhikevich capture biophysical properties
that can replicate the complex firing properties of many
types of cortical neurons in response to prolonged current
injection (Izhikevich, 2003; Song et al., 2013). It will be in-
teresting to use the conductance-based units with STDP
to simulate the different conditioning protocols investi-
gated here. This will require decisions about the number
and connectivity of specific types of units in such a model
as well as their biophysical parameters. The fact that our
simple voltage-based IF network replicates the overall ex-
perimental observations may be related to two factors. It
may represent an effective and sufficient average of the
different types of biophysical neurons involved in the in
vivo experiments. Second, the different response proper-
ties of biophysical units that can be demonstrated with
prolonged intracellular or synaptic drive may be less

critical for the phasic events that underly these condition-
ing protocols.
Our model used a STDP rule that required presynaptic

and postsynaptic spikes to generate a change in synaptic
connections. Physiologic synapses could also be strength-
ened when the postsynaptic cell is merely depolarized
after arrival of the presynaptic spike (Markram et al., 2012).
This would represent a plasticity paradigm that does not
require postsynaptic spikes. This mechanism would con-
tribute to conditioning with cycle-triggered stimulation, for
example. Intracellular recordings in vivo indicate that many
cortical neurons show periodic membrane depolarization
during b oscillations that do not reach threshold for spiking
(Chen, 1993; Fetz et al., 2000). Phase-locked stimulation
would modify the strength of synaptic connections to
these depolarized neurons as well as to spiking neurons.
Our simulations did not track the depolarization level of
each unit, so the results of this STDPmechanism remain to
be investigated in a future study.
There was a difference between the phase of maximum

enhancement for A!B connections for cycle-triggered
stimulation: the model showed a maximum at �15° (Fig.
7B) and experiments (Zanos et al., 2018) at around �90°.
This difference could be due to differences in conduction
times, stimulation effects, possible periodicity in activity
at other sites, physiological delays and plasticity mecha-
nisms (above) not accounted for in the model.

Parameter choices
The performance of our IF model depends of course on

the choice of parameters. One choice involves the
strength of baseline synaptic connections. To capture the
small unitary synaptic potentials between cortical neurons
(Matsumura et al., 1996; Markram et al., 1997) the plastic-
ity parameters chosen for our model tend to produce a
steady-state network with small connections when no ac-
tivity-dependent conditioning protocol is in effect. This
limits the effects produced by tetanic stimulation alone
and makes conditioned increases in weights relatively ro-
bust. However, it also limits conditioned decreases in
weights, since the starting size for most weights is already
small. A possible future direction would be to develop a
method to encourage a steady state of moderate weights
so that both strengthening and weakening effects can
manifest more equitably. This might also allow for more
effects to emerge from inhibitory units, which play very lit-
tle role in the network simulations shown here. We found
that our standard IF networks that were run without inhibi-
tory units showed conditioning responses similar to net-
works that had many inhibitory connections.
A second choice in our model was using the same

STDP function for inhibitory and excitatory units. The
STDP function for inhibitory neurons has been found to
vary, depending on the specific types of source and target
neurons (Caporale and Dan, 2008; Kullmann and Lamsa,
2011; Vogels et al., 2011; Markram et al., 2012). We de-
cided to use the same STDP function for both, which has
empirical support (Haas et al., 2006), and to leave the
consequences for different functions for inhibitory units,
such as symmetric functions, to be explored in another
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study. Moreover, our STDP rule is based on pairs of pre-
synaptic and postsynaptic spikes; models with “multi-
spike” STDP interactions can produce different network
dynamics (Babadi and Abbott, 2016).
A third choice in our model involved the relative amount

of external versus intracolumnar drive on units. Because
of the small intracolumn weights the input from local re-
current connections is a small fraction of a unit’s total
input, which is dominated by external drive. Thus, each
column should be understood as a group of units with
similar relations to the recording and stimulation parame-
ters of the conditioning protocols rather than a network of
units with sufficient self-connections to sustain substan-
tial dynamics. Other studies have described the network
dynamics emerging in populations of more strongly inter-
connected IF units (Brunel, 2000; Izhikevich et al., 2004;
Grytskyy et al., 2013; Wieland et al., 2015; Bos et al.,
2016), but the focus of our simulations was on the effects
of conditioning protocols on the involved units. Note that
the online code for our model does support exploration of
different connection strategies.
A fourth choice in our model involved the relative

amount of external correlated input bias. High amounts of
correlated input can cause sufficient synchrony to
strengthen connections from that column even in the ab-
sence of conditioning protocols. As the percent of corre-
lated biases increases, the weakening portion of the
STDP curve may be increased to prevent this effect from
interfering with the manifestation of conditioning effects.
For example, in networks with a weakening value of 0.55,
using correlated bias ratios above 50% can show more
spontaneous conditioning effects because of higher var-
iance in connection strengths over time as compared with
networks with our chosen 30% correlated biases.
A related choice in our model was to control intracol-

umn unit synchrony with external correlated bias. Since
intracolumnar weights were reduced by the STDP rule the
correlations mediated by intracolumnar connectivity were
also reduced. To explicitly investigate the effects of syn-
chrony produced by robust intracolumnar connections we
tested networks with strong and FICs and no correlated
external bias. These FIC networks also produced condi-
tioning effects for all five conditioning paradigms, albeit
somewhat weaker, and showed stronger tetanic effects.
Moreover, the FIC produced short-latency secondary
peaks in the test EPs (Fig. 17D) that generally do not ap-
pear in vivo. The FIC networks maintained robust intracol-
umn connections at the cost of artificial inconsistencies in
applying the STDP rule to intercolumn but not to intracol-
umn connections. Similar conditioning results were ob-
tained with FIC and our standard networks, as well as with
combinations of FIC and correlated input bias (Fig. 18).
Thus, the results obtained with the standard networks
manifest the same basic effects, to which stronger intraco-
lumnar connectivity could contribute synergistically.
In general, our choice of network parameters was

guided by achieving realistic physiological performance.
Notably, the same set of parameters was used to simulate
all conditioning protocols. Network performance was
generally stable for modest deviations from the chosen

parameters. The consequences of larger variations in dif-
ferent parameters would be interesting to explore but are
beyond the scope of this report.

Modeled connectivity and activity
An informative use of the model is to simulate activity

and network connectivity that were not measured in the
original experiments but that elucidate associated mecha-
nisms. For example, calculating the EPs provides an easy
and experimentally feasible measure of net connectivity
between sites and can reveal its dependence on condi-
tioning parameters like stimulus amplitude and delay,
synchrony, etc. The changes to connection weights them-
selves can be computed in the model (but not experimen-
tally), these weights closely tracked the EP measure (Fig.
9A). The weights further revealed a better time-resolved
prediction of the induction and decay of these synaptic
connections (Fig. 9B).
A particularly useful insight from the model is the activ-

ity of relevant units around the stimulus trigger events.
Their stimulus-aligned histograms reveal why EMG-trig-
gered and g-triggered stimulation are such effective con-
ditioning protocols: they both select for coincident unit
activity, as shown by the preceding peak in activity of the
A units (Figs. 5B, 12B). This peak preceding the stimulus-
evoked postsynaptic activity in B is responsible for the
strengthening of the A!B connections.

Testable predictions
A possible therapeutic application of closed-loop con-

ditioning is to strengthen polysynaptic pathways as well
as strengthen direct connections. Such targeted plastic-
ity could restore functional pathways lost to injury
or stroke (Guggenmos et al., 2013). The model was used
to examine conditioning of disynaptic links by perform-
ing A!B paired-pulse stimulation in a network without
direct A!B connections and looking for development of
A!C!B connections. This did occur, as shown by de-
velopment of relevant disynaptic EPs after conditioning
and by the connectivity matrix (Fig. 14). Similarly, cycle-
triggered stimulation could also strengthen disynaptic
connections (Fig. 15); however, this protocol would be
significantly more challenging to apply in vivo than paired
stimulation. Both protocols involved sufficient stimula-
tion of A to strengthen A!C connections. The other
three protocols involved only stimulation of B and did not
strengthen disynaptic A!C!B links. Another significant
prediction of the model is that disynaptic effects are con-
ditioned more robustly between sites that lack direct
connections as compared with sites that also have direct
connections. These simulations provide useful predic-
tions of effective targeted plasticity paradigms and pa-
rameters to strengthen polysynaptic pathways.
The model also predicts several conditioning protocols

that improve on methods used to date. Instead of spike-
triggered single stimuli, the use of spike-triggered bursts
of stimuli is more effective, increasing with the number of
stimuli (Fig. 10). Second, g-triggered stimulation is more
effective than spike-triggered stimulation because it
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detects coincident spikes that produce the g threshold
crossing. Importantly, g-triggered stimulation is experi-
mentally much easier to perform in vivo because it does
not require long-term isolation of single action potentials.
An important caveat here is that the model assumes that
g is generated in a large number of A units that are
synchronized and also connected to the B units. The effi-
cacy of g-triggered stimulation would decrease if fewer
units generating the g LFP in A sent connections to the
stimulated units. Preliminary tests of this protocol by R.
Yun (unpublished observation) indicate that conditioning
effects are less robust in vivo in NHP motor cortex than in
the model. This indicates that the connectivity of our net-
work, designed to separate the recorded, stimulated and
control groups may be too simple to accurately predict
experimental outcomes for more complex biological net-
works in which these functional groups are intermingled
with many neurons with other connectivities.
In conclusion, the simple IF spiking network described

here has proven remarkably effective in capturing experi-
mental results previously obtained in NHPs with four dif-
ferent conditioning protocols, including three with closed-
loop activity-dependent stimulation. In addition to repli-
cating the observed phenomena, the model also allows
computation of underlying network behavior and corre-
lated changes not originally documented. The model also
makes significant predictions about protocols not yet in-
vestigated, including triggering bursts instead of single
stimuli and g-triggered stimulation. The success of these
simulations suggests that a simple voltage-based IF
model incorporating STDP is sufficient to capture the es-
sential mechanisms that produce targeted plasticity.
Further detailed comparisons with physiological experi-
ments will likely inform development of models with more
realistic connectivity and biophysical properties.
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