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A B S T R A C T   

Pork stands out as the most extensively produced and consumed meat globally. With advance
ments in technology, genetics, and management, the structure of the pig supply chain has 
transformed from the traditional birth-to-slaughter raising method to incorporate four primary 
specialized operations: breeding, farrowing, nursery, and fattening. Fattening, constituting 
approximately 70% of a market pig’s entire life cycle, heavily relies on resources, notably in feed 
consumption. Despite the integration of feed production with pig farming in modern industrial 
setups through farming contracts, separate decision-making processes for production planning in 
both stages often result in overall inefficiency. This research proposes an optimization-based 
methodology to plan production for a vertically integrated setting of three supply chain eche
lons: a feed mill, fattening farms, and a slaughterhouse. Key coordinated decisions include 
creating production plans for specific feed formulations at the feed mill and organizing farming 
cycles at fattening farms to meet the demand of the slaughterhouse The aim is to optimize pig 
growth while minimizing the overall costs. The methodology includes a mixed-integer linear 
programming model for the pig supply chain, and a Lagrangian heuristic as method to make 
coordinated production plans. Computational experiments were conducted using diverse case- 
study data based on pig supply chains in Thatland. Compared with the results using a commer
cial software, Lingo’s Simplex method, our proposed heuristic could find optimal solutions 
quicker for smaller problem instances and produce more effective feasible solutions within 
limited time frames for larger scenarios.   

1. Introduction 

In the meat industry, pork stands out as the most widely produced and consumed meat globally. According to Ref. [1], worldwide 
pork consumption is projected to increase by 11% by 2032. Recently, pork producers around the world have encountered significant 
challenges, especially regarding the rising expenses linked to feed and labor. The cost of feed represents a substantial portion of the 
overall expenditure in pork production. Approximately 6.5 kg of dry matter feed are required to produce 1 kg of edible pork. This 
emphasizes the significant impact that fluctuations in feed costs can exert on the financial sustainability of pork producers, as indicated 
in Refs. [1,2]. The surge in worldwide pork demand has driven the rapid growth of modern industrial farming, often referred to as 
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Concentrated Pig Feeding Operations (CAFOs). These operations predominantly depend on internationally traded feed concentrates 
instead of utilizing locally available feed resources [3]. 

The pig supply chain has undergone substantial structural changes since the early 1990s, as reported in Ref. [4]. Technological, 
genetic, and managerial advancements, notably contract farming, have played a pivotal role in consolidating operations, leading to 
fewer, larger, and geographically concentrated production units. The modern pig supply chain comprises four primary operations: 
breeding, farrowing, nursery, and fattening, which span approximately six months from birth to slaughter weight, as illustrated in 
Fig. 1. Breeding involves selecting quality breeding stock and mating. Farrowing is the birthing stage, where sows deliver piglets and 
nurse them. The nursery phase involves caring for post-birth piglets. Finally, fattening focuses on feeding and monitoring pigs until 
they reach market weight. 

As emphasized in Ref. [5], effective management of pig supply chains can benefit from coordinated decision-making strategies to 
optimize productivity, reduce costs, and uphold product quality. For instance, meticulous breeding plan and genetic selection are 
aligned with market demands to ensure high-quality pigs. Nutrition and health management play a crucial role in ensuring pig welfare 
through balanced diets, vaccinations, and veterinary care. Additionally, logistical decisions across the supply chain ensure efficient 
resource utilization and prompt deliveries. Finally, robust risk management involves establishing contingency plans for potential 
threats, such as disease outbreaks or disruptions in the supply chain, to maintain a consistent supply of pork products. 

Our study focuses on the vertically integrated pork production supply chain, specifically focusing on two critical production stages: 
feed production and pig production (fattening) [6]. These stages are interconnected; the pig farms must decide the starting time of each 
production cycle, resulting in pigs at various ages during each period, requiring specific feed formulations [7]. Due to resource 
constraints, the feed mill must accordingly set up production plans for these feed formulations [8]. Our goal is to address these 
challenges by introducing a mathematical model that specifically represents a supply chain comprising a feed mill, multiple 
pig-fattening farms, and a pork processing plant (slaughterhouse). We develop methodologies to create integrated production plans for 
both stages. The empirical data used in this study is derived from extensive research conducted on real-world pig supply chains in 
Thailand, as documented in Refs. [7,8], and [9]. 

The paper’s structure is outlined as follows: Section 2 presents the literature review, Section 3 elaborates on the problem 
description and assumptions, and Section 4 introduces the mathematical formulation. The solution approach is discussed in Section 5, 
followed by computational experiments on multiple case studies in Section 6. Section 7 initiates discussions and limitations. Finally, 
Section 8 summarizes the main conclusions and potential avenues for future research. 

2. Literature review 

The modern pig supply chain is considered a cost-efficient production system [10]. It represents an optimized meat production 
chain that comprises a series of specialized operations. Typically, this system demonstrates vertical integration, extending from 
production to retail, with each production stage dedicated to specific pig species, age groups, and life cycles. Comparable to other 
segments within the agri-food industry, the pork sector encounters considerable variability and uncertainty, differing from the rela
tively stable manufacturing sector. Furthermore, unforeseen events such as the recent COVID-19 and African swine fever pandemics 
can profoundly impact the supply chain due to abrupt fluctuations in pig demand [11]. Although research on supply chain models 
applied to the pork industry is relatively limited, the complex decision-making processes and distinctive challenges within the 

Fig. 1. A three-echelon supply chain of pork production.  
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agri-food sector have paved the way for the development of integrated decision-making frameworks [12]. 
A literature survey [5] highlighted the scarcity of research on supply chain models specific to the pork industry due to challenges in 

quantifying variables such as environmental impact, pig welfare, pork quality, and perishability. However, there are few significant 
studies addressing livestock production. For instance, Solano-Blanco et al. [13] analyzed a vertically integrated broiler chicken supply 
chain, emphasizing collaboration between farms and slaughterhouses to optimize production. Their approach involved two models: a 
two-stage stochastic model for production and inventory decisions amid chicken growth uncertainties and a mixed-integer linear 
programming model for chicken allocation and fattening supply procurement. The study’s key feature is the thorough examination of 
uncertainties in chicken weight gain. Notably, the model does not account for the feed intake factor, a substantial cost element. 
Nadal-Roig et al. [14] conducted an in-depth investigation into multi-farm vertically integrated pig companies, placing a specific 
emphasis on the analysis of pig production decisions in response to the uncertainties related to future selling prices. Villalba et al. [15] 
created a decision-support system that combines simulation and multi-objective optimization to facilitate integrated planning in sheep 
farming systems. Early contributions include [16], who developed quantitative models for the poultry supply chain, addressing farm 
selection at various chicken ages using Lagrangian relaxation (LR)-based heuristics. Similarly [8], focused on pig fattening farms and 
pork processing units, dealing with multi-period planning problems for specific pig sizes through dynamic programming techniques. 
Further investigations, such as pig farm scheduling and worker assignment problems [9], utilized an Adaptive Large Neighborhood 
Search (ALNS) heuristic to optimize profits over finite periods. 

In solving integrated production problems, two main approaches have been commonly employed: metaheuristics and Lagrangian 
relaxation. Although metaheuristics are not inherently tied to specific problems, they often require customization to incorporate 
problem-specific knowledge [17]. On the other hand, Lagrangian relaxation techniques require a mathematical formulation of the 
problem, whereby selected constraints are relaxed or removed to transform the problem into a relaxed or decomposed form. This 
approach is particularly relevant to this study as it integrates two variants of the capacitated lot-sizing problem (CLSP), which has been 
extensively studied in the literature, with several existing solution algorithms [18–22]. 

Numerous studies have employed Lagrangian relaxation techniques to address supply chain problems across various industries. For 
instance, researchers have adeptly applied this approach to solve scheduling challenges in hospital settings [23], multi-depot loca
tion-routing problems [24], a vehicle routing problem [25], multi-period inventory/distribution planning problems [26], and 
multi-item lot-sizing problems [27]. Lagrangian relaxation has also proven valuable in optimizing inventory/distribution plan [26], 
resolving the multilevel lot-sizing problem [28], designing an integrated location-inventory system [29], and designing integrated 
distribution networks [30]. 

These prior studies provide valuable insights and serve as a foundation for the development of the proposed method in this 
research, which aims to address the complexities and challenges within the pig supply chain. 

3. Problem description and assumptions 

This study focused on a vertically integrated supply chain consisting of three distinct echelons. The first echelon consists of a feed 
mill responsible for producing feed supplied to the pig fattening farms. The second echelon comprises a network of pig fattening farms 
that vary in size. The third echelon encompasses a meat processing plant tasked with the meat production process for the pigs. 
Commonly practiced within the pig industry, as documented in Refs. [4,6], this vertically integrated supply chain is typically overseen 
by an integrator who maintains control over the entire supply chain. This control involves ownership of both the feed mill and the pork 
processing plant, while the pig farmers are contracted under the integrator’s authority. The primary objective is to ensure an adequate 
supply of market-sized pigs essential for the meat processing plant during each period, all while minimizing operational expenses. 

The problem in this study involves determining plans for two consecutive production stages simultaneously. The first stage, 
referred to as Stage 1, involves pig fattening across several farms that vary in size and capacity. Each pig undergoes a fattening cycle 
spanning six periods (weeks) at the farm before reaching the desired market size. The farms require resources like land, facilities such 
as barns and pens, feed, water, veterinary care, and labor. Resource requirements per farm are contingent upon farm size and specific 
operational procedures. The resource requirements per farm depend on both the farm size and specific operational procedures. A 
crucial decision in this stage involves determining the optimal scheduling for the start of the pig production cycle at each farm. The 
planning horizon spans multiple periods, allowing each farm the flexibility to initiate several production cycles during this duration. 
Specific details concerning the assumptions of the pig production are sourced from Refs. [4,6,8], and [5]. 

The second stage, known as Stage 2, involves producing various feed formulations tailored for different pig age groups and growth 
stages. The feed mill operates continuously, manufacturing batches of feed formulations aligned with the specific requirements of the 
pig farms. The production schedule depends on demand from pig farms and the feed requirements for different growth phases. Re
sources essential for production include raw materials such as grains, protein sources, minerals, and vitamins. Essential resources for 
production include raw materials like grains, protein sources, minerals, and vitamins. The feed mill also relies on specialized 
equipment for formulation and processing purposes. Labor, energy, and transportation logistics are critical resources for this stage. Key 
decisions here focus on determining optimal quantities and schedules for producing all the necessary feed formulations. The details 
regarding the assumptions about feed production in Stage 2 are sourced from Refs. [3,4]. 

4. Mathematical formulation 

The mathematical formulation of the proposed mixed-integer linear programming model for the supply chain is presented in this 
section. The supply chain consists of two integrated production stages, as illustrated in Fig. 1. Stage 1 represents the higher production 
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stage where the pigs are fattened. The decisions to be made in this stage include the starting period of farm m, the herd size of farm m, 
and the ending inventory of pigs at the end of each period. Stage 2 is the lower stage, where the feed mill produces multiple feed 
formulations for the pig farms. The decisions in this stage involve determining the quantity of feed formulation f to be produced in 
period t. 

The objective function of the model incorporates several cost components. It includes the holding cost of the pig inventory in Stage 
1, which accounts for the cost of storing and maintaining the pigs over time. Additionally, it includes the holding cost of all the feed 
formulations in Stage 2, which represents the cost associated with storing the feed formulations. Lastly, the objective function considers 
the setup cost to produce each feed formulation, which captures the cost of switching between different feed formulations. 

The subsequent sections will present the detailed formulation of the decision variables, constraints, and parameters, which will 
enable solving the model and obtaining valuable insights for effective management of the pig supply chain. 

4.1. Notation 

The sets, indices, and parameters notation presented in Table [18] will be consistently used throughout this paper. 

4.2. Model 

In this section, a mixed-integer linear programming model is formulated as follows: 
(LP) Original Problem: 

Minimise ZLP = h
∑

t∈T
It +

∑

f∈F

∑

t∈T

(
ĥ Î ft + sf Sft

)

(1.1) 

Subject to 

Ymft =
∑

u∈T
AmfutXmu,∀m ∈ M, ∀f ∈ F,∀ t ∈ T (1.2)  

∑

p∈P
Xm,t+p− 1 ≤ 1,∀m ∈ M,∀t ∈

{

t|t ≤ |T| − |P|} (1.3)  

∑

t∈T
Xmt ≥ 1, ∀m ∈ M (1.4)  

∑

t∈{t|t≥|T |− |P|+1}

Xmt = 0, ∀m ∈ M (1.5)  

Qt =
∑

m∈M
LmXm,t− |P|, ∀t ∈

{

t|t > |P|} (1.6)  

It = It− 1 + Qt − Dt, ∀t ∈ {t|t ≥ |P|+1} (1.7)  

D̂ft = wf

∑

m∈M
LmYmft,∀f ∈ F,∀t ∈ T (1.8)  

Î t = Î f ,t− 1 + Q̂ft − D̂ft,∀f ∈ F, ∀t ∈
{

t|t ≥ 1} (1.9)  

∑

f∈F
Q̂ft ≤ C,∀t ∈ T (1.10)  

Q̂ft ≤ GSft,∀f ∈ F,∀t ∈ T (1.11)  

Xmt ∈ {0, 1},∀m ∈ M,∀t ∈ T (1.12)  

Sft ∈ {0, 1}, ∀f ∈ F,∀t ∈ T (1.13) 

The model starts with the objective function (1.1), which minimizes the total cost of holding the market-size pigs at the farms, 
setting up the production of feed formulations required for the pigs, and holding the remaining feed at the mill. Constraint (1.2) 
ensures that the feed production in period t must begin after the associated farm m has already started production in period u. 
Constraint (1.3) ensures that each farm must complete all the pig production phases before beginning a new round. Constraint (1.4) 
ensures that each farm must start pig production at least once during the planning horizon. Constraint (1.5) ensures that each farm can 
start production only if it can complete all the production stages within the planning horizon. Constraint (1.6) determines the number 
of market-size pigs by period t. Constraint (1.7) is the inventory balance constraint for the farms. It determines the inventory quantity 
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of the fully-grown pigs at the end of period t. Constraint (1.8) determines the demand for feed formulation f in period t. Constraint (1.9) 
is the inventory balance constraint for the feed mill. It determines the inventory quantity of feed formulation f at the end of period t. 
Constraint (1.10) ensures that the amount of all feed the feed production in period t does not exceed the production capacity of the feed 
mill. Constraint (1.11) ensures that the production of feed formulation f in period t needs to be set up if it is produced in period t. 
Constraint (1.12) ensures that the opening decision of farm m in period t is a binary variable. Constraint (1.13) ensures that the setup 
decision of formulation f in period t is a binary variable. 

5. Solution approach 

In this section, we propose a Lagrangian relaxation and decomposition approach with subgradient heuristics, drawing from 
techniques described in Refs. [31,32], and [33]. Lagrangian relaxation simplifies the problem by relaxing specific constraints, 
rendering it more manageable and relatively easier to solve than the original one. These relaxed constraints are incorporated into the 
objective function through penalty terms, adjusted by non-negative constants known as Lagrangian multipliers. The solution to the 
relaxed problem provides a lower bound for the original problem [34]. By relaxing specific constraints, the problem can be decom
posed into independent subproblems, which may align with well-studied problems for which effective solution methods are available 
[35–37]. The benefits of decomposition were addressed in Ref. [38], emphasizing its capacity to unveil hidden structural patterns and, 
as a result, lead to enhanced solution methodologies. 

This approach was chosen because it effectively addresses the complexities of our problem, which involves two interconnected 
production stages. The decomposition method exploits the problem’s structure, breaking it down into two distinct production stages 
that can be conceptualized as two Capacitated Lot-Sizing problems (CLSP) [21]. The first subproblem corresponds to the CLSP for pig 
farming, referred to as Stage 1, while the second subproblem pertains to the CLSP for the feed mill, referred to as Stage 2. 

In each iteration of this heuristic, we established both a lower bound and an upper bound for the optimal solution. The lower bound 
was acquired by solving the relaxed problem, whereas the upper bound was determined as the best feasible solution available at that 
moment, built upon the lower bound. The algorithm terminates when when the lower and upper bounds converged or upon reaching a 
predefined time threshold. Further information about the heuristic’s implementation is available in subsequent sections. 

5.1. Lagrangian relaxation and decomposition 

The complicating constraints (1.8) in (LP) were selected and relaxed by introducing a new set of decision variables called Lagrange 
multipliers λft. The selected constraints were multiplied with the associated multipliers and then added to the objective function of 
(LP). The resulting Lagrangian relaxation problem (LR) can be described as follows: 

(LR) Lagrangian relaxation problem of (LP): 

Minimise LR
(
λft
)
= h
∑

t∈T
It +

∑

f∈F

∑

t∈T

(
ĥ Î ft + sf Sft

)

+
∑

f∈F

∑

t∈T
λft

(
∑

m∈M
wf LmYmft − D̂ft

) (2.1) 

Subject to (1.2), (1.3), (1.4), (1.5), (1.6), (1.7), (1.9), (1.10), (1.11), (1.12) and (1.13) 
The objective function (2.1) of the Lagrangian relaxation problem (LR) minimizes the combined cost of the original linear program 

(LP) and the penalties incurred for relaxing the constraints (1.8). The Lagrange multipliers λft capture the effect of relaxing these 
constraints within the objective function. This relaxation facilitates the decomposition of LR into two distinct Lagrangian subproblems, 
denoted as (SUB1) and (SUB2). Equation (2.2) defines the objective function for (SUB1), representing the cost associated with pig 
production, while Equation (2.3) defines the objective function for (SUB2), reflecting the cost linked to feed production. 

(SUB1) Subproblem 1: 

Minimize ZSUB1 =
∑

t∈P
hIt +

∑

f∈F

∑

t∈P

∑

m∈M
λftwf LmYmft (2.2) 

Subject to (1.2), (1.3), (1.4), (1.5), (1.6), (1.7), and (1.12). 
(SUB2) Subproblem 2: 

Minimize ZSUB2 =
∑

f∈F

∑

t∈P

(
ĥ Î ft + sf Sft − λft D̂ft

)

(2.3) 

Subject to (1.9), (1.10), (1.11), and (1.13). 
The first subproblem (SUB1) represents the pig production planning problem in Stage 1 and the second subproblem (SUB2) rep

resents the feed production planning problem in Stage 2. 

5.2. Subgradient heuristic 

Let ZCLB be the current lower bound, ZCUB be the current upper bound, ZLB be the maximum lower bound found, ZUB be the best 
feasible solution found, ZSUB1 and ZSUB2 be the optimal values to subproblems 1 and 2, respectively, N be the number of improving 
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subgradient iterations, gft be the subgradients and λft be the Lagrange multipliers for farm f in period t (f ∈ F, t ∈ P), and α be the step 
length parameter and θ be the step size for the subgradient method. 

Step 1. Initialize ZLB = - ∞, ZUB = ∞, ZSUB1 = 0, ZSUB2 = 0, N = 0, α = 2, λft = 0 (f ∈ F, t ∈ P). 

Step 2. Solve SUB1 and SUB2 with the current set of multipliers λft (f ∈ F, t ∈ P) and assign the resulting objective values to ZSUB1 and 
ZSUB2, respectively. 

Step 3. Set the subgradients gft =
∑

m∈M
LmYmft − D̂ft (f ∈ F, t ∈ P). 

Step 4. Set ZCLB = ZSUB1 + ZSUB2. 

Step 5. If ZCLB > ZLB, set ZLB = ZCLB and set N = 0, else set N––N + 1. 

Step 6. Set the values of Ymft (m ∈ M, f ∈ F, t ∈ P) in the original problem LP to the optimal values of Ymft found from solving SUB1in 
Step 2, then solve LP and assign the resulting objective value to ZCUB. 

Step 7. If ZCUB < ZUB, set ZUB = ZCUB. 

Step 8. If N = 5, then 5 iterations of the subgradient procedure have been performed without an improvement in the maximum lower 
bound (ZLB) found, so set N = 0 and halve the step length parameter α by setting α = 1 /2 α. 

Step 9. Set the step size θ =
α(ZUB − ZCLB)∑

fϵF

∑

tϵP
gft2 and update the Lagrange multipliers by setting λft = λft + (θ • gft) (f ∈ F, t ∈ P). 

Step 10. Terminate if the solution time reaches 120 min or if the gap between ZUB and ZLB becomes smaller than a certain threshold. 
Otherwise, repeat Step 2. 

6. Computational experiments 

In this section, we apply our proposed methods to several case studies, demonstrating their application within the agri-food in
dustry and highlighting the effectiveness of these methods. Our experiments are conducted using simulated data derived from Refs. [7, 
8], and [9], which examined challenges encountered by large pig farming companies in Thailand. 

Table 1 
Sets, indices, parameters, and decision variables.  

Sets 

T Set of time periods in the planning horizon 
F Set of feed formulations produced in Stage 2 
M Set of farms in Stage 1 
P Set of production phases in Stage 1 (total 6 phases until the pig reaches market size) 
Indices 
t, u Index of the time periods 
P Index of the production phases 
F Index of the feed formulations 
M Index of the farms 
Parameters 
h Inventory holding cost of each pig per period (in Stage 1) 
ĥ Inventory holding cost of any feed formulation per unit per period (in Stage 2) 
sf Setup cost for feed formulation f 
Amfut A binary to ensure that, for any farm m, the production period t of feed formulation f must be greater than the starting period u of farm m. (For example, if 

farm 1 starts in period 2, the production of feed formulation 1 must begin only after period 2). If the value of A is 1, the feed formulation f is produced. 
Otherwise, the value is 0 

Lm Production capacity of farm m (farm size) 
Dt Demand for pigs in period t (in Stage 1) 
wf Consumption rate of feed formulation f (in Stage 2) 
C Production capacity of the feed mill to produce any feed formulation per period (in Stage 2) 
G A large positive number 
Decision Variables 
Xmt = 1; farm m starts production in period t  

= 0; otherwise 
Ymft = 1; the feed mill produces feed formulation f for farm m in period t  

= 0; otherwise 
Qt Production quantity of pigs in period t (in Stage 1) 
It Ending inventory of pigs in period t (in Stage 1) 
Î ft Ending inventory of feed formulation f in period t (in Stage 2) 
Sft = 1; if feed formulation f is produced in period t  

= 0; otherwise 
D̂ft Demand for feed formulation f in period t (in Stage 2) 

Q̂ft Production quantity of feed formulation f in period t (in Stage 2)  
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In the farming stage, farm sizes were simulated using the data from Ref. [8], encompassing small, medium, and large farms ranging 
from 50 to 100, 100 to 300, and 300 to 500 pigs per farm, respectively. Additionally, the farm setup costs and holding costs were 
estimated in relation to the farm size. In the feed production stage, the production capacity, the number of feed formulations, and their 
associated setup costs are estimated based on the feed consumption rates of pigs at various ages, as discussed in Ref. [7]. 

Computational tests were conducted on these case studies, and the results and analysis are presented in this section. All tests were 
carried out on a computer equipped with an Intel i5 3.40 GHz processor and 8 GB of RAM. The models and algorithms were imple
mented using the modeling language Lingo v.13 [39]. Subsequent subsections provide comprehensive information about the case 
studies and present the computational results. 

In terms of computational effort, we expect the computation time to increase exponentially as the problem size increases because 
our problem is a more complex variant of the classical capacitated lot-sizing problem, classified under the class of NP-hard problems. 
The solving complexity for such problems typically grows exponentially, as explained in Ref. [40] (see Table 1). 

6.1. Case-study information 

The case studies in this research consist of 1 feed mill, 8 pig production farms, and 1 meat processing plant. The feed mill has a 
production capacity of 192,000 kg per period and a holding cost of 3.5 unit cost per kg per period. There are 2 small-sized, 3 medium- 
sized, and 3 large-sized farms. Each farm has a holding cost of 337.31 unit cost per pig per period. The fattening cycle for each pig lasts 
six periods until the pig reaches the market size. The pigs are fed with feed formulations A1 to A6 during periods 1 to 6, respectively. 
Table 2 presents the setup cost, consumption rates, and initial inventory levels of each feed formulation at the feed mill. Table 3 
provides the size of each farm. 

6.2. Computational results 

In the computational result tables presented in this section, Lingo (LB) and Lingo (UB) refer to the results obtained by applying 
Lingo’s built-in linear programming solver to the original problem (LP). Lingo (LB) represents the best lower bound of the objective 
value obtained when the Lingo solver terminates, while Lingo (UB) represents the objective value of the best feasible solution obtained 
before the Lingo solver terminates. In cases where the optimal solution is found, Lingo (LB) and Lingo (UB) merge into a single number. 
However, if the optimal solution cannot be found within 2 h, Lingo (LB) and Lingo (UB) may differ. OPT denotes the objective value of 
the optimal solution, if found. HEU represents the objective value of the solution obtained using our proposed heuristic algorithm. 

6.2.1. Results of 8-farm cases from period 12 to period 18 
Table 4 displays the objective values and solution times for seven different problem instances. All instances feature eight farms but 

vary in planning periods, ranging from 12 to 18. Fig. 2 presents comparison graphs depicting the objective values of Lingo (LB), Lingo 
(UB), OPT, and HEU as obtained from Table 4. Similarly, Fig. 3 illustrates comparison graphs representing the solution times of Lingo 
(LB), Lingo (UB), OPT, and HEU, also derived from Table 4. 

6.2.2. Results of 10-farm cases from period 12 to period 18 
Table 5 displays the objective values and solution times for seven different problem instances. All instances feature ten farms but 

vary in planning periods, ranging from 12 to 18. Fig. 4 presents comparison graphs depicting the objective values of Lingo (LB), Lingo 
(UB), OPT, and HEU as obtained from Table 5. Similarly, Fig. 5 illustrates comparison graphs representing the solution times of Lingo 
(LB), Lingo (UB), OPT, and HEU, also derived from Table 5. 

6.2.3. Results of 12-farm cases from period 12 to period 18 
Table 6 displays the objective values and solution times for seven different problem instances. All instances consist of twelve farms 

but vary in planning periods, ranging from 12 to 18. Fig. 6 presents comparison graphs depicting the objective values of Lingo (LB), 
Lingo (UB), OPT, and HEU as obtained from Table 6. Similarly, Fig. 7 illustrates comparison graphs representing the solution times of 
Lingo (LB), Lingo (UB), OPT, and HEU, also derived from Table 6. 

According to the computational results of all three case studies (8-farm, 10-farm, and 12-farm), our proposed heuristic algorithm 
was able to find optimal solutions, particularly when the number of planning periods was below 15. However, in instances where the 
optimal solution could not be found within 2 h, the objective values obtained using our proposed algorithm were slightly better than 

Table 2 
Setup cost, consumption rates, and initial inventory levels.  

Feed formulation A1 A2 A3 A4 A5 A6 

Setup Cost (sf) 1771 1594 1853 1603 1938 1979 
Consumption rate (wf) 8.4 25.6 48.6 78.0 114.0 133.2 
Initial inventory (̂I0) 2957 7172 5879 2879 3724 2587 

Unit of measure for sf: unit cost; wf: kg./period; ̂I0: kg.  
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the objective value of the best feasible solution obtained using Lingo. Furthermore, in the majority of cases, the solution time of our 
proposed heuristic algorithm was shorter than that of Lingo. These results demonstrate the efficiency and effectiveness of our heuristic 
approach in solving the given problem instances. 

7. Sensitivity analysis 

In this section, a sensitivity analysis was conducted to validate the proposed algorithm and gain managerial insights by varying 
some input parameters of the model. Two case studies with 10 and 12 farms, respectively, and 12 planning periods from Section 6 were 
selected. These case studies were used to generate four additional case studies by modifying the pig’s average demand rate per period 
by 10% and 20% for each case. 

For each case study, five simulated instances of data were generated, and our proposed heuristic algorithm was employed to solve 
these instances. The average values of various cost measures, including the total inventory cost at the farm, the total inventory cost at 
the feed mill, the setup cost at the feed mill, the total cost at the feed mill, and the total cost of the supply chain, were recorded for each 
case study. The results of the sensitivity analysis are presented in Table 7. The corresponding charts and analyses of the results are 
provided in the subsequent subsections, offering insights into the performance of the proposed algorithm under different parameter 
variations. 

Table 3 
Farming capacities.  

Farm 1 2 3 4 5 6 7 8 

Size S S M M M L L L 
Capacity (Lm) 59 73 75 147 232 498 424 458 

Unit of measure for Lm: number of pigs per farm.  

Table 4 
Objective values and solution time of 8-farm cases from period 12 to period 18.    

Objective value (unit cost) Solution time (sec.) 

Problem Instances Period Lingo (LB) Lingo (UB) OPT HEU Lingo (UB) HEU 

8F–12P 12 714020 714020 714020 714020 13 40 
8F–13P 13 702898 702898 702898 702981 35 48 
8F–14P 14 709285 709285 709285 709662 68 57 
8F–15P 15 681264 681264 681264 681596 821 94 
8F–16P 16 698942 698942 698942 698942 701 107 
8F–17P 17 631255 646806 a 646806 3755 222 
8F–18P 18 685145 694729 a 694729 3480 219  

a No optimal solution found within 2 h. 

Fig. 2. Objective value comparison between Lingo (LB), Lingo (UB), OPT and HEU.  
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7.1. Inventory cost at the farms 

The graphs in Fig. 8 depict the results of the sensitivity analysis for both the 10-farm and 12-farm cases. They illustrate the 
relationship between the total inventory cost at the farm and the demand for pigs. The graphs demonstrate that as the demand for pigs 
increases, the total inventory cost at the farm decreases. This is because the proposed model does not consider the setup cost at the 
farm, and the quantity of pigs in inventory is solely determined by the farm size and the pigs’ demand. Consequently, as the demand for 
pigs increases, farms can reduce their inventory levels, resulting in lower inventory costs. 

Fig. 3. Solution time comparison between Lingo (UB) and HEU.  

Table 5 
Objective values and solution time of 10-farm cases from period 12 to period 18.    

Objective value (unit cost) Solution time (sec.) 

Problem Instances Period Lingo (LB) Lingo (UB) OPT HEU Lingo (UB) HEU 

10F–12P 12 624411 624411 624411 624411 31 47 
10F–13P 13 557160 557160 557160 557160 113 77 
10F–14P 14 633693 633693 633693 633693 378 79 
10F–15P 15 605843 605843 605843 606582 662 107 
10F–16P 16 542424 550939 a 552146 3715 221 
10F–17P 17 495584 518455 a 515558 5960 357 
10F–18P 18 493273 512845 a 509247 5959 1767  

a No optimal solution found within 2 h. 

Fig. 4. Objective value comparison between Lingo (LB), Lingo (UB), OPT and HEU.  
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Additionally, it can be observed that the 12-farm graph lies above the 10-farm graph. This is because as the number of farms 
increases, the total inventory cost also increases. This is intuitive since more farms imply a greater number of pigs and hence higher 
inventory levels, leading to increased inventory costs. Overall, these findings highlight the inverse relationship between the total 
inventory cost at the farm and the demand for pigs, as well as the positive relationship between the number of farms and the total 
inventory cost. 

Fig. 5. Comparison between Lingo (UB) and HEU.  

Table 6 
Objective values and solution time of 12-farm cases from period 12 to period 18.    

Objective value (unit cost) Solution time (sec.) 

Problem Instances Period Lingo (LB) Lingo (UB) OPT HEU Lingo (UB) HEU 

12F–12P 12 781482 781482 781482 781482 34 47 
12F–13P 13 768791 768791 768791 768889 96 70 
12F–14P 14 628925 628925 628925 628925 197 143 
12F–15P 15 665235 665235 665235 665235 1063 167 
12F–16P 16 580220 580220 580220 580220 3878 336 
12F–17P 17 677556 696670 a 696328 7026 536 
12F–18P 18 448200 481232 a 477501 7200 3677  

a No optimal solution found within 2 h. 

Fig. 6. Comparison between Lingo (LB), Lingo (UB), OPT and HEU.  
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7.2. Inventory cost at the feed mill 

The chart in Fig. 9 presents the results of the sensitivity analysis for both the 10-farm and 12-farm cases, focusing on the rela
tionship between the total inventory cost at the feed mill and the demand for pigs. According to the chart, it is evident that as the 
demand for pigs increases, the total inventory cost at the feed mill decreases. This can be attributed to the fact that when there is a 
higher demand for pigs, the feed inventory depletes more rapidly since more pigs are remaining on the farm. Consequently, the feed 

Fig. 7. Comparison between Lingo (UB) and HEU.  

Table 7 
Sensitivity analysis results.  

Types Farm Cost from different demand variations (unit cost) 

of cost variations − 20% − 10% 0% 10% 20% 
Inventory 10-Farm 416240 392696 357346 321591 270725 
Cost (Farm) 12-Farm 608575 567262 518310 436884 436884 
Inventory 10-Farm 215880 211651 208520 207542 207564 
Cost (Feed) 12-Farm 204645 201719 204024 203203 203203 
Setup Cost 10-Farm 56084 54626 58545 58864 60303 
(Feed) 12-Farm 56008 55560 59147 60174 60174 
Total Cost 10-Farm 271965 266278 267065 266406 267867 
(Feed) 12-Farm 260652 257279 263171 263377 263377 
Total Cost 10-Farm 688205 658974 624411 587997 538592  

12-Farm 869227 824542 781482 700261 700261  

Fig. 8. The total inventory cost at the farm.  
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consumption rate increases, leading to a reduction in the total inventory cost at the feed mill. 
Furthermore, the chart also indicates that the 10-farm graph is positioned above the 12-farm graph. This disparity is due to the fact 

that the 10-farm cases involve a smaller number of pigs compared to the 12-farm cases. As a result, the feed consumption rate is higher 
in the 12-farm cases, resulting in a lower total inventory cost at the feed mill for the 10-farm cases. 

7.3. Setup cost at the feed mill 

The chart in Fig. 10 illustrates the sensitivity analysis results for the total setup cost in both the 10-farm and 12-farm cases, 
considering the variation in the demand for pigs. According to the chart, there is an initial negative trend in the total setup cost as the 
demand for pigs increases. This suggests that when the demand for pigs rises the feed mill will need to switch between different feed 
formulations more frequently. As a result, the total setup cost decreases initially. 

However, as the demand for pigs continues to increase, the trend in the total setup cost turns positive and begins to slow down 
towards the end. This indicates that there is a limit to the number of feed formulations that can be effectively switched between. Once 
this limit is reached, the increase in the demand for pigs leads to a higher total setup cost as the feed mill has to employ additional 
setups to accommodate the demand. 

Furthermore, the chart also shows that the 12-farm graph is positioned above the 10-farm graph. This is because, in the 12-farm 
cases, there is a greater diversity of pigs of different ages. As a result, more setups are required to cater to the varying needs of these 
different age groups, resulting in a higher total setup cost compared to the 10-farm cases. 

Fig. 9. The total inventory cost at the feed mill.  

Fig. 10. The total setup cost at the feed mill.  
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7.4. Total cost at the feed mill 

The graphs in Fig. 11 represent the sensitivity analysis results for the total costs in both the 10-farm and 12-farm cases, considering 
the variation in the demand for pigs. According to the graphs, there is a slight decline in the total costs at the beginning, followed by an 
upswing near the end. This can be attributed to the opposing trends of the inventory holding cost and the setup cost. The decline in total 
costs at the beginning can be attributed to the decrease in the inventory holding cost as the demand for pigs increases. As more pigs are 
consumed and fewer remain in inventory, the inventory holding cost decreases. 

However, as the demand for pigs continues to increase, the setup cost begins to dominate the total costs. This leads to an upswing in 
the total costs as the feed mill needs to perform more frequent setups to meet the demand for different feed formulations. Additionally, 
the graphs indicate that the costs of the 10-farm cases are higher compared to the 12-farm cases. This is because the inventory holding 
cost significantly outweighs the setup cost, and the 10-farm cases have higher inventory holding costs due to fewer pigs in inventory 
compared to the 12-farm cases. 

7.5. Total cost 

The chart in Fig. 12 presents the sensitivity analysis results for the total supply chain cost, considering the variation in the demand 
for pigs. According to the chart, the total supply chain cost exhibits a negative trend as the demand for pigs increases. This can be 
attributed to the combined effect of the individual cost trends at the farm and the feed mill. This is due to the fact that the inventory 
holding cost at the farm decreases when more pigs are sold, resulting in lower costs. On the other hand, the total cost at the feed mill 
has a primarily flat trend. This indicates that the changes in the feed mill’s costs do not vary significantly with the demand for pigs. 
When these individual cost trends are combined, the overall effect is a negative trend in the total supply chain cost. The decreasing cost 
at the farm outweighs the relatively stable cost at the feed mill, resulting in a net reduction in the total supply chain cost as the demand 
for pigs increases. 

8. Discussion and limitations 

The study’s methodology involved computational experiments applied to address challenges in a vertically integrated pig supply 
chain. We explored case studies consisting of various farm sizes, and various planning periods. Problem instances are defined by the 
number of farms (8, 10, and 12) and planning periods (12–18), leading to diverse scenarios for analysis. We generated comparative 
results between Lingo’s Simplex solver [39] and our proposed heuristic. The proposed heuristic finds optimal solutions, especially for 
planning periods below 15, and in cases where Lingo fails to find an optimal solution within 2 h, the proposed heuristic demonstrates 
slightly better objective values. Additionally, the solution time for the proposed heuristic is observed to be generally shorter than that 
of Lingo’s Simplex solver. Sensitivity analysis was conducted by adjusting the pig’s average demand rate per period by 10% and 20% 
across various case studies. The outcomes unveiled crucial insights into the correlation among demand, inventory costs, and the 
number of farms. It was observed that an increase in pig demand resulted in reduced inventory costs at both farm and feed mill levels. 
Additionally, while the inventory cost of pigs tended to rise with a greater number of farms, the feed inventory cost demonstrated a 
tendency to decrease. 

The study is subject to some limitations. Firstly, the problem’s NP-hard classification contributes to increased computational 
complexity and solution time, especially concerning larger instances, thereby presenting scalability challenges for the proposed 
heuristic. This could limit the practicality of the proposed method. Moreover, the sensitivity analysis, although informative regarding 
cost parameters, was limited in scope as it concentrated solely on particular cost measures. This approach might have disregarded 

Fig. 11. The total cost at the feed mill.  
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other crucial elements such as market dynamics or governmental policies. Lastly, the evaluation and comparison of the proposed 
heuristic with Lingo’s solver were focused on specific performance metrics such as solution times and objective values. There might be 
additional metrics or criteria relevant to the supply chain (e.g., robustness, adaptability to dynamic scenarios) that were not thor
oughly addressed. 

9. Conclusion and future research 

In conclusion, this study explored the complexities of a vertically integrated pork production supply chain consisting of a feed mill, 
multiple fattening farms responsible for delivering market-size pigs based on demand. The aim was to optimize production plans for 
these entities by proposing a mixed-integer linear programming model. Furthermore, a Lagrangian heuristic was developed to address 
this problem. Computational experiments were executed on diverse case studies involving various farm sizes and planning periods, 
facilitating a comparison between the proposed heuristic and Lingo’s Simplex solver using identical datasets. Notably, it showed the 
capability to find optimal solutions quicker for smaller problem instances, and to produce more effective feasible solutions within 
limited time frames for larger scenarios. This study not only tackled the supply chain challenges effectively but also introduced an 
efficient heuristic approach, offering significant insights for supply chain managers and decision-makers. 

In this study, we have proposed a mathematical model for integrating two production stages in a pig supply chain and employed a 
Lagrangian heuristic as the solution method. Our research has revealed limitations, including scalability issues in handling larger 
networks, which necessitate further investigation in future studies through exploration of alternative solution methods. Recent ad
vancements in optimization algorithms, including hybrid heuristics, metaheuristics, and other adaptive algorithms, have gained 
prominence in addressing complex decision problems across domains that were previously deemed computationally infeasible. 
Notably, the Self-adaptive Fast Fireworks Algorithm (SF-FWA) offers a computationally efficient, general-purpose optimization 
approach suitable for large-scale tasks [41]. Another promising method is the Adaptive Polyploid Memetic Algorithm (APMA) [42], 
designed for truck scheduling in cross-docking environments, surpassing well-known metaheuristics in solution quality. Recent 
heuristics based on exact optimization methods, as seen in Ref. [43] addressing multi-objective vehicle routing problem, and [44] 
tackling level crossing safety issues with conflicting objectives, hold potential for addressing complex supply chain problems with 
limited resources. 
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