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Transcriptomic and metabolomic 
analyses of Lycium ruthenicum 
and Lycium barbarum fruits during 
ripening
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Red wolfberry (or goji berry, Lycium barbarum; LB) is an important agricultural product with a high 
content of pharmacologically important secondary metabolites such as phenylpropanoids. A close 
relative, black wolfberry (L. ruthenicum; LR), endemic to the salinized deserts of northwestern China, 
is used only locally. The two fruits exhibit many morphological and phytochemical differences, but 
genetic mechanisms underlying them remain poorly explored. In order to identify the genes of interest 
for further studies, we studied transcriptomic (Illumina HiSeq) and metabolomic (LC-MS) profiles of the 
two fruits during five developmental stages (young to ripe). As expected, we identified much higher 
numbers of significantly differentially regulated genes (DEGs) than metabolites. The highest numbers 
were identified in pairwise comparisons including the first stage for both species, but total numbers 
were consistently somewhat lower for the LR. The number of differentially regulated metabolites in 
pairwise comparisons of developmental stages varied from 66 (stages 3 vs 4) to 133 (stages 2 vs 5) 
in both species. We identified a number of genes (e.g. AAT1, metE, pip) and metabolites (e.g. rutin, 
raffinose, galactinol, trehalose, citrulline and DL-arginine) that may be of interest to future functional 
studies of stress adaptation in plants. As LB is also highly suitable for combating soil desertification 
and alleviating soil salinity/alkalinity/pollution, its potential for human use may be much wider than its 
current, highly localized, relevance.

Goji berry (also known as red wolfberry), used in China as food and medicine for millennia, recently achieved 
almost global popularity due to it being advertised as a healthy, ageing-preventing food. In the traditional Chinese 
medicine, goji is traditionally consumed for its alleged anti-aging, tranquilizing and Yin strengthening proper-
ties1,2. Although the clinical efficacy remains to be fully confirmed, there is some evidence that goji extracts may 
be beneficial for the prevention and treatment of age-related disorders, diabetes, hyperlipidaemia, cancer, hepati-
tis, immune disorders, thrombosis, and male infertility1,3. Specifically, Lycium fruits have relatively high content 
of bioactive components believed to be pharmacologically important, e.g. possessing immuno-enhancement and 
antioxidative activities, such as polyphenols, phenylpropanoids, carotenoids and polysaccharides3–6.

Two closely related species are sometimes sold as goji berries, Lycium barbarum and L. chinense (Chinese 
boxthorn) but nearly 90% of all commercially available goji berries belong to the former species2. Although the 
native range of this species is probably in the Mediterranean Basin, a majority of global commercial production 
takes place in arid and semi-arid areas of two provinces in Northwest China, Ningxia and Xinjiang1. Lycium 
ruthenicum (Russian box thorn or black wolfberry), a very close relative of L. barbarum and L. chinense7, is a wild 
perennial thorny shrub native to Northwest China, whose resistance to the harsh environment of saline deserts 
makes it a popular choice plant for combating soil desertification and for alleviating soil salinity/alkalinity8,9. It is 
also used in the local folk medicine and as food8, and studies indicate that it has notable pharmaceutical effects9,10. 
As these two species, and their fruits, are referred to by a range of (often overlapping) names1, to avoid confusion 
we refer to the fruit of L. barbarum (LB) as red wolfberry, and fruit of L. ruthenicum (LR) as black wolfberry. 
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Despite their close phylogenetic relationship, the fruits of these two species exhibit distinct phenotypic profiles 
of during all developmental stages, including their shape, size, colour, taste, nutritional value and pharmacolog-
ical properties3,4,11. As opposed to the red and elongated mature red wolfberry, black wolfberry is dark-purple 
or black, round, and smaller. It is also known that metabolic phenotypes of these two fruits differ significantly, 
particularly in the content of fatty acids, phenols and antioxidant capacities, which are much higher in black 
wolfberry, while the content of carotenoids, sugars, amino acids and osmolytes is higher in the red wolfberry3,4.

Fruit ripening is a complex developmental process, coordinated by a network of interacting genes and signal-
ling pathways12, so genetic mechanisms underpinning these phenotypic differences remain only partially under-
stood. The objective of this study was to contribute to our understanding of the complexity of ripening processes 
of these two fruits in different environments. To achieve this, we collected L. barbarum and L. ruthenicum fruits at 
five developmental stages, from young to ripe fruit, and sequenced their transcriptomes and metabolomes. These 
data shall help us better understand genetic underpinnings of both within- and between-species phenotypic dif-
ferences that fruits of these two species exhibit during their respective ripening processes.

Materials and methods
Sample collection.  Fruits were collected between July 1st and August 20th 2017 from nine wild L. ruthenicum 
(LR) shrubs growing in the vicinity of Bayan Taolaisu Wooden, Ejina, Alxa, Inner Mongolia, China (38 °38′49″ 
N; 106 °91′10″E; elevation = 1162 m) and nine 5-year-old cultured L. barbarum (LB) shrubs from the germplasm 
nursery of the Ningxia Academy of Agriculture and Forestry Science, Lu Hua Tai plantations, Xixia District, 
Yinchuan, Ningxia, China (41 °84′86″N; 100 °97′69″E; elevation = 948 m) (Fig. 1). Environmental characteristics 
of the two locations are (respectively): the average annual rainfall is <40 and <150 mm, the average temperature 
in July and August is 26.3 and 23.4 °C, soil types are salinized meadow and light sierozem, and surface salinity is 
1.11% and 0.09%. The LB shrubs were regularly watered, so they did not undergo a major drought stress. As the 
two species have slightly different and variable fruit ripening periods, to be able to compare different ripening 
stages, we roughly divided the ripening period into five stages, and collected samples in the following time-win-
dows after the flowering (anthesis): S1 - young fruit (9–12 days); S2 - green fruit (14–19 days); S3 - colouring fruit 
(20–26 days); S4 - immature fruit (30–37 days); S5 - mature fruit (34–45 days). Each sampling was conducted in 
the morning between 9am and 10am, from the south-facing side of the tree, approximately from the same spot on 
the same branch. At each sampling time-point several fruits were collected from three trees of each species. The 
three trees represented biological replicates in the transcriptome analysis. All samples were frozen immediately in 
liquid nitrogen and stored at −80 °C for further use.

Figure 1.  The studied species and sampling localities. (A) Cultured Lycium barbarum and (B) wild Lycium 
ruthenicum shrubs growing at the sampling locations.
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Transcriptome analysis.  RNA extraction and sequencing.  All fruit samples were ground to a powder in 
liquid nitrogen, and total RNA was extracted using MiniBEST Universal RNA Extraction Kit (Takara, Dalian, 
China). The extracted total RNA was treated with RQ1 DNase (Promega), and its quality and quantity then deter-
mined by measuring the absorbance at A260/A280 and A260/A230 using Smartspec plus (BioRad) spectropho-
tometer. RNA integrity was further verified by agarose gel electrophoresis. For each sample, 10 μg of total RNA 
was used for RNA-seq library preparation. Polyadenylated mRNAs were purified and concentrated with oligo 
(dT)-conjugated magnetic beads (Invitrogen) before being used for directional RNA-seq library preparation. The 
cDNA libraries were prepared from the purified mRNAs using the TruSeq Stranded Total RNA LT Sample Prep 
Kit (Illumina, CA, USA). Briefly: purified mRNAs were iron-fragmented at 95 °C, followed by end repair and 5′ 
adaptor ligation. Reverse transcription was then performed with RT primer included in the kit, harbouring a 3′ 
adaptor sequence and a randomized hexamer. The cDNAs were purified and amplified, and PCR products in the 
range 200–500 bp were purified, quantified and stored at −80 °C until the sequencing step. For high-throughput 
sequencing, the libraries were prepared following the manufacturer’s instructions and Illumina HiSeq. 2000 sys-
tem used for 150 nt single-end sequencing.

Gene annotation.  Raw reads were filtered using Cutadapt 1.7.113: firstly we discarded all reads containing more 
than two N bases, then reads were processed by clipping the adaptor, removing low quality bases, and discard-
ing short (<16 nt) reads. Uniquely localized clean reads were used to analyse the data quality with dupRadar14 
with default parameters, and to calculate the read number and FPKM value (fragments per kilobase of tran-
scripts per million mapped fragments) for each unigene according to reads and their genomic location15. De 
novo transcriptome assembly was conducted using Trinity program16, with default settings. The assembled tran-
scriptomes were clustered using Corset17, a software designed for obtaining gene-level counts from any de novo 
transcriptome assembly. Unigenes were annotated by querying them against several public databases: Nr (NCBI 
non-redundant protein sequences), Nt (NCBI non-redundant nucleotide sequences), Pfam (Protein family)18, 
KOG/COG (Clusters of Orthologous Groups of proteins)19,20, Swiss-Prot (manually annotated and reviewed pro-
tein sequences)21, KO (KEGG Ontology)22, and GO (Gene Ontology)23. To further analyse the metabolic path-
ways different between the two sets of samples, all unigenes were queried against the KEGG pathway database. All 
BLASTx24 searches were performed with the e-value of 1E−5.

Differentially expressed genes (DEGs).  As our samples represented a time-series experiment, to explore tempo-
ral profiles of DEGs during the fruit development, we analysed the gene expression patterns using a time-series 
analysis tool maSigPro, an R package designed for identification of significantly different temporal expression 
profiles in RNA-seq data and microarray experiments25. The fold–changes in gene expression were also estimated 
with this package, and False Discovery Rate (FDR) thresholds were set to 0.01 and 0.7 R2. After obtaining the 
expression level of all genes in all of the samples, differentially expressed genes (DEGs) between the two fruits in 
the same developmental stages were analysed using Edge R26 with TMM normalization27. The following param-
eters were used to set the threshold for identifying DEGs: FDR < 0.01 and |fold change| ≥ 2.0. For each gene, the 
p-value was obtained on the basis of the model of negative binomial distribution. Benjamini-Hochberg proce-
dure28 was used to control the false discovery rate (FDR) and infer the q-value (an adjusted p-value, taking in to 
account the FDR).

Functional analysis of differentially expressed genes (DEGs).  Cluster analysis of gene expression 
patterns was performed with Cluster29 and Java Treeview30 software programs. To predict gene functions and cal-
culate the functional category distribution frequency, KEGG analyses were employed using DAVID bioinformat-
ics resources31. Functional networks were constructed by calculating the Pearson correlation coefficient (PCC) of 
the DEGs, and Cytoscape 3.0.2 was used to display the co-expression network32. Reliability of the RNA-seq data 
was corroborated by studying the expression of five randomly selected DEGs by qPCR (all details are provided in 
the Supplementary file: Supplementary Results).

Metabolome analyses.  Five fruit samples were used for each stage (5 biological replicates). About 100 
mg of fruit tissue was crushed using a mixer mill (MM 400, Retsch) with a zirconia bead for 1.5 min at 30 Hz 
and extracted overnight at 4 °C with 0.6 ml 70% aqueous methanol. Following centrifugation at 10,000 g for 10 
min, the extracts were absorbed (CNWBOND Carbon-GCB SPE Cartridge, 250 mg, 3 ml; ANPEL, Shanghai, 
China) and filtrated (SCAA-104, 0.22 μm pore size; ANPEL) before LCMS analysis. The sample extracts were 
analysed using an LC-ESI-MS/MS system (HPLC, Shim-pack UFLC SHIMADZU CBM30A system; MS, Applied 
Biosystems 4500 Q TRAP). The analytical conditions were as follows: HPLC column, Waters ACQUITY UPLC 
HSS T3 C18 (1.8 µm, 2.1 mm × 100 mm); and the mobile phase consisted of solvent A (pure water with 0.04% 
acetic acid) and solvent B (acetonitrile with 0.04% acetic acid). Sample measurements were performed with a 
gradient program that employed the starting conditions of 95% of solvent A and 5% of B solvent. Within 10 min, 
a linear gradient to 5% A / 95% B was programmed, and 5% A / 95% B was maintained for 1 min. Subsequently, 
a composition of 95% A / 5.0 % B was adjusted within 0.1 min and maintained for 2.9 min. The column oven 
was set to 40 °C, and the injection volume was 4 μl. The effluent was alternatively connected to an ESI-triple 
quadrupole-linear ion trap (QTRAP)-MS. LIT and triple quadrupole (QQQ) scans were acquired on a triple 
quadrupole-linear ion trap mass spectrometer (Q TRAP), API 4500 Q TRAP LC/MS/MS System, equipped with 
an ESI Turbo Ion-Spray interface, operating in positive and negative ion mode and controlled by Analyst 1.6.3 
software (AB Sciex). The ESI source operation parameters were as follows: ion source, turbo spray; source tem-
perature 550 °C; ion spray voltage (IS) 5500 V (positive ion mode)/-4500 V (negative ion mode); ion source 
gas I, gas II, and curtain gas were set at 50, 60, and 30.0 psi, respectively. The collision gas was high. Instrument 
tuning and mass calibration were performed with 10 and 100 μmol/L polypropylene glycol solutions in QQQ 
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and LIT modes, respectively. QQQ scans were acquired as MRM experiments with collision gas (nitrogen) set 
to 5 psi. DP and CE for individual MRM transitions was done with further DP and CE optimization. A specific 
set of MRM transitions were monitored for each period according to the metabolites eluted within this period. 
Feature extraction and pre-processing of the raw data were conducted using XCMS33, and then normalized and 
edited into a two-dimensional data matrix in Excel 2010. Retention index (RT), mass-to-charge ratio (MZ), 
observations (samples) and peak intensity were calculated. Multivariate analysis (PCA) was performed using 
SIMCA-P 13.0 software (Umetrics AB, Umea, Sweden). Metabolites were assigned to pathways using the KEGG 
database. Significantly different metabolic pathways were identified using the PLS-DA (Partial Least Squares 
Discrimination Analysis), and the following criteria: VIP (Variable Importance in the Projection) value > 1 and 
P-value < 0.05. Data were processed and analysed by the Wuhan Metware Biotechnology Co., Ltd. (Wuhan, 
China).

Statistical analyses.  All values are presented as mean ± SD. The significance of differences between means 
was determined in Excel using Student’s t-test, with P < 0.05 as the threshold.

Results
We collected fruits of L. barbarum and L. ruthenicum at five developmental stages, from young fruit (≈10 
days post-flowering) to mature (ripe) fruit (34–45 days post-flowering), and studied their transcriptome and 
metabolome.

RNA-seq de novo assembly and functional annotation of unigenes.  We prepared a total of 30 
cDNA libraries from fruits of L. barbarum and L. ruthenicum, with three biological replicates (three fruits from 
three trees) at each time point: 2 species × 5 time-points × 3 biological replicates. Samples were labelled LB/
LR(1–5)-(1–3), where LB is L. barbarum and LR is L. ruthenicum, 1–5 are developmental stages of fruit (S1–S5), 
and 1–3 are individual samples (biological replicates); so for example LB1-1 represents L. barbarum, 1st sampled 
developmental stage (S1), fruit sample No.1 (out of three). We generated over 1.72 billion pair-end reads for these 
30 cDNA libraries, corresponding to an average of 57.2 million reads per sample (Supplementary Dataset S1). 
Stringent quality assessment and data filtering yielded a total of 801,766 high-quality reads with the average 
length of 730 and N50 of 1107 bp (Table 1). Finally a total of 326,276 unigenes with the average length of 596 bp 
and N50 of 847 bp were obtained from the transcripts (Table 1). Correlation coefficients for RNA-seq data for the 
30 samples indicate very good consistency of results among biological replicates (Fig. 2).

Among all 326,276 unigenes queried against public databases, a total of 193,021 (59.15%) matched genes 
and/or proteins in at least one database, and 12,171 (3.73%) were annotated in all databases. The largest number 
of unigenes (149,863, 45.93%) was annotated in the NT database, and the lowest number (24,017; 7.36%) in the 
KOG database.

Lycium barbarum (LB): pairwise interstage analyses.  LB Transcriptome.  The highest numbers 
of DEGs were identified in all pairwise comparisons of the 1st stage, and in the 2nd vs. 5th stage comparison 
(all > 10,000 DEGs; Table 2). The smallest numbers were identified in 3rd vs. 4th and 4th vs. 5th stage comparisons 
(255–257). Heatmap analysis of DEGs in LB shows that fairly different sets of genes were highly upregulated in 
the early developmental stages (1 + 2) and in later stages (3 to 5) (Fig. 3A). Sample relatedness analysis indicates 
that the samples could be divided into two clades (stages 1 + 2 and 3 + 4 + 5), with the latter clade further sub-
divided into two clades: stages 3 + 4 and stage 5. Intraspecific KEGG functional classification analysis of these 
DEGs identified 15 pathways significantly (P < 0.05) differentially regulated among different developmental 
stages (Supplementary Dataset S2). Particularly strongly differentially regulated were ‘plant hormone signal trans-
duction’, ‘phenylpropanoid biosynthesis (b.)’, ‘linoleic acid metabolism (m.)’, ‘starch and sucrose m.’, and ‘zeatin 
b.’ (Fig. 3A).

For a more in-depth analysis of the data, we focused on the comparison of most significantly regulated path-
ways in successive developmental stages. In the first pairwise comparison (S1 vs S2), ‘phenylpropanoid b.’ was 
the most highly differentially regulated pathway, followed by ‘starch and sucrose m.’ (Fig. 4). Very large num-
bers of DEGs (>100) were identified in both pathways. A similar result was observed in the following pairwise 

Length (bp) Transcripts Unigenes

200–500 437,035 213,009

500–1 kbp 189,544 65,557

1 k–2 kbp 124,529 34,372

>2 kbp 50,658 13,338

Total 801,766 326,276

N50 1,107 847

Average 730 596

Min 201 201

Median 450 354

Max 17,104 17,104

Total nucleotides 585,430,380 194,467,186

Table 1.  Characteristics of assembled transcripts and unigenes.
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comparison, S2 vs. S3, but despite the fairly large number of DEGs (>80) ‘starch and sucrose m.’ exhibited some-
what lower q-value. In the In the S3 vs. S4 comparison, ‘carbon fixation in photosynthetic, organisms’ was the 
most significantly regulated pathway, but the numbers of genes were much lower. In the last pair, S4 vs. S5, ‘zeatin 
b.’, flavonoid b.’, fatty acid b.’ and ‘galactose m.’ were the most significantly regulated pathways, but none of the 
pathways exhibited more than two DEGs.

LB Metabolome.  We conducted pairwise developmental stage comparisons to identify the enrichment of metab-
olites between all stage pairs. The number of differentially regulated metabolites in pairwise comparisons of devel-
opmental stages in LB varied from 66 (stages 3 vs 4) to 129 (stages 2 vs 5). The largest number in successive stage 

Figure 2.  Heatmap of correlation coefficients for RNA-seq data for 30 samples of L. barbarum (LB) and L. 
ruthenicum (LR) fruits at five different developmental stages. Samples are labelled LB/R1–5_1–3, where LB is L. 
barbarum, LR is L. ruthenicum, 1–5 are fruit developmental stages, and 1–3 individual samples. Samples were 
grouped by hierarchical clustering; dendrograms above and left of the heatmap indicate relatedness of samples.

Stages

Transcriptome Metabolome

Lycium barbarum Lycium ruthenicum Lycium barbarum Lycium ruthenicum

All Down Up All Down Up All Down Up All Down Up

1 vs 2 11327 5809 5518 966 159 807 117 35 82 117 36 81

1 vs 3 19590 9273 10317 7743 2979 4764 117 42 75 117 44 73

1 vs 4 13565 5293 8272 7047 2922 4125 117 38 79 119 39 80

1 vs 5 16066 6209 9857 9328 2970 6358 97 47 50 98 48 50

2 vs 3 8046 3787 4259 2574 1383 1191 100 57 43 102 59 43

2 vs 4 5528 1953 3575 2899 1703 1196 108 56 52 114 61 53

2 vs 5 11193 4406 6787 5973 2233 3740 129 87 42 133 90 43

3 vs 4 257 23 234 39 11 28 66 28 38 66 27 39

3 vs 5 5284 1611 3673 3111 1073 2038 102 66 36 105 67 38

4 vs 5 255 114 141 783 103 680 104 72 32 104 71 33

Table 2.  Total numbers of significantly regulated genes and metabolites in pairwise comparisons of 
developmental stages in the two studied species.
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comparisons was observed between 1st and 2nd stage (117). These were assigned to a large number of pathways; 
with the largest number of metabolites assigned to ‘b. of secondary metabolites’ (also the lowest p-value), followed 
by ‘protein digestion and absorption’ and ‘b. of amino acids’ (Fig. 5; Supplementary Figures). In the successive 
stage pair comparison (S2 vs. S3), ‘ABC transporters’ was the most significantly enriched pathway, followed by 
‘purine m.’. In the S3 vs. S4 pair comparison, ‘microbial m. in diverse environments’ was the most significantly 
enriched pathway, followed by ‘carbapenem m.’. In the S4 vs. S5 pair comparison, a relatively large number of 
pathways exhibited similar results (two metabolites and similar p-values), but notable is the appearance of ‘isofla-
vonoid b.’ and ‘flavonoid b.’ among them (Fig. 5; Supplementary Figures).

As regards individual metabolites, in the S1 vs. S2 comparison, the list of metabolites upregulated in the S1 
was topped by Trehalose, Glactinol and L-Malic acid (all ≈20 log2FC). Oleic acid, 2-Oxoadipic acid and Stearic 
acid were the most highly upregulated metabolites in S2 (all ≈15 to 18 log2FC). The list of most highly upregu-
lated metabolites in S2 compared to S3 was topped by Dihydroxyacetone, LysoPC(18:1(9Z)), and Adenine (all 
≈16 to 17.5 log2FC). The list of most highly upregulated metabolites in the S3 (compared to S2) was topped 
by Trehalose, Galactinol and L-Malic acid (all ≈19 to 20 log2FC). In the S3 vs. S4 comparison, the list of most 
highly upregulated metabolites in the S3 was topped by L-Malic acid, DL-Arginine and Oleic acid (all ≈18 
to 19 log2FC), whereas the list of most highly upregulated metabolites in the S4 was topped by D-Mannose, 
N-Acetyllactosamine and LysoPC(18:1(9Z)) in LB (all ≈16 log2FC). In the S4 vs. S5 comparison, the list of 
most highly upregulated metabolites in the S4 was topped by Trehalose, Palmitic acid, N-Acetyllactosamine (all 
≈17 to 18 log2FC) in LB. The list of most highly upregulated metabolites in the S5 was topped by L-Norleucine, 
Anthranilic acid (Vitamin L1) and DL-Arginine (all ≈16 to 18 log2FC) (Supplementary Dataset S3).

Figure 3.  Heatmaps and functional pathway analyses of differentially expressed genes (DEGs) in Lycium 
barbarum (panel A) and L. ruthenicum (panel B) fruits. Heatmaps were generated by a hierarchical analysis 
of DEGs (y-axis) and individual samples (x-axis), where dendrograms above and left of the heatmap indicate 
relatedness of samples. Samples are labelled LB/R_1–5_1–3, where the species acronym (LB or LR) is followed 
by the developmental stage of fruit (1–5), and the sample number (1–3). Intraspecific KEGG pathway analyses 
of DEGs in all five developmental stages in the two species are shown to the right of the heatmaps. Only the top 
15 enriched pathways are listed. q-value is an FDR-adjusted p-value.
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Figure 4.  LB transcriptome: pairwise interstage KEGG metabolic pathway enrichment. (A) Stage 1 vs. stage 
2. (B) Stage 2 vs. stage 3. (C) Stage 3 vs. stage 4. (D) Stage 4 vs. stage 5. Top 15 (or all if total <15) significantly 
enriched pathways are shown. Colour of the bar represents the magnitude of the q-value (an FDR-adjusted 
p-value). Colour chart is shown in the figure.

Figure 5.  LB metabolomic data: pairwise interstage KEGG metabolic pathway enrichment. (A) Stage 1 vs. stage 
2. (B) Stage 2 vs. stage 3. (C) Stage 3 vs. stage 4. (D) Stage 4 vs. stage 5. Rich factor is the ratio of the number 
of significantly regulated metabolites in the pathway and the total number of metabolites annotated in that 
pathway (range = 0 to 1.0). The size of the point represents the number of significantly enriched metabolites 
in the corresponding pathway, and the colour of the point represents the P-value (both legends shown in the 
figure).
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Lycium ruthenicum (LR): pairwise interstage analyses.  LR Transcriptome.  Heatmap analysis of 
DEGs in LR shows that almost completely different sets of genes were highly upregulated in the early develop-
mental stages (1 + 2) and in ripe fruit (stage 5), with an apparent transcriptomic reset occurring after the second 
stage (Fig. 3B). Sample relatedness analysis indicates that the samples could be divided into two clades (stages 
1 + 2 and 3 + 4 + 5), with the latter clade further subdivided into two clades: stages 3 + 4 and stage 5. Intraspecific 
KEGG functional classification analysis of these DEGs identified 35 pathways significantly (P < 0.05) differen-
tially regulated among different developmental stages (Supplementary Dataset S2). Particularly strongly differ-
entially regulated were ‘photosynthesis’, ‘linoleic acid m.’, ‘isoquinoline alkaloid b.’, ‘flavonoid b.’ and ‘starch and 
sucrose m’ (Fig. 3B). The highest numbers of DEGs were identified in most pairwise comparisons of the stage 
1 (1 vs. 2 was an exception), and in the stage 2 vs. 5 comparison (all >5,000 DEGs; Table 2). By far the smallest 
number was identified in the S3 vs. S4 comparison (39). In the S1 vs S2 pairwise comparison, ‘amino sugar and 
nucleotide sugar m.’ was the most highly differentially regulated pathway, followed by ‘linoleic acid m.’ (Fig. 6). 
In the S2 vs. S3 pairwise comparison, the most significantly differentially regulated pathways were ‘isoquinoline 
alkaloid b.’, ‘tyrosine m.’, ‘phenylpropanoid b’, and ‘flavonoid b.’. In both pairwise comparisons, the highest number 
of DEGs (>15 and >35 respectively) was identified in the ‘starch and sucrose m.’. In the S3 vs. S4 comparison, 
‘(alpha-)linoleic acid m.’ was the most significantly regulated pathway, but the numbers of genes were much lower. 
In the S4 vs. S5 comparison, ‘phenylpropanoid b’ (also the largest number of DEGs), and ‘linoleic acid m.’ were the 
most significantly regulated pathways.

LR Metabolome.  The number of differentially regulated metabolites in pairwise comparisons of developmental 
stages in LR varied from 66 (stages 3 vs 4) to 133 (stages 2 vs 5) (Supplementary Dataset S3). In successive stage 
comparisons, the largest number was observed between 1st and 2nd stage (117). These were assigned to a large 
number of pathways; with the largest number of metabolites assigned to ‘b of secondary metabolites’, followed by 
‘protein digestion and absorption’, ‘b. of amino acids’, and ‘flavonoid b’. In the S2 vs. S3 comparison, ‘ABC trans-
porters’ was the most significantly enriched pathway, followed by ‘purine m’. In the S3 vs. S4 pair comparison, 
‘microbial m. in diverse environments’ was the most significantly enriched pathway, followed by ‘carbapenem m.’. 
In the S4 vs. S5 pair comparison, a relatively large number of pathways exhibited similar results (2 metabolites 
and similar p-values), but notable is the appearance of ‘isoflavonoid b.’ and ‘flavonoid b.’ among them (Fig. 7; 
Supplementary Figures).

Figure 6.  LR transcriptome: pairwise interstage KEGG metabolic pathway enrichment. (A) Stage 1 vs. stage 
2. (B) Stage 2 vs. stage 3. (C) Stage 3 vs. stage 4. (D) Stage 4 vs. stage 5. Top 15 (or all if total <15) significantly 
enriched pathways are shown. Colour of the bar represents the magnitude of the q-value (an FDR-adjusted 
p-value, colour chart shown in the figure).
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As regards individual metabolites (Supplementary dataset S3), in the S1 vs. S2 comparison, the list of metabolites 
upregulated in the S1 was topped by Trehalose, Galactinol and L-Malic acid (≈19–21 log2FC), whereas Oleic acid, 
2-Oxoadipic acid and Stearic acid were the most highly upregulated metabolites in S2 (≈15–18 log2FC). In the S2 
vs. S3 comparison, Dihydroxyacetone, Indoxyl sulphate and N-Acetyllactosamine were most highly upregulated 
metabolites in the S2 (≈17–19.5 log2FC), and Trehalose, Galactinol and L-Malic acid (≈19–21 log2FC) in the S3. 
In the S3 vs. S4 comparison, L-Malic acid, DL-Arginine and Oleic acid were upregulated in the S3 (≈16–19 log2FC), 
and 1,7-Dimethylxanthine, D-Mannose and N-Acetyllactosamine (≈15–17 log2FC) in the S4. In the S4 vs. S5 com-
parison, Flavin mononucleotide, Trehalose and Isoferulic acid were upregulated in the S4 (≈18–20 log2FC), whereas 
PG(16:0/18:1(9Z)), D-Proline, and DL-Arginine were most highly upregulated (all ≈16 to 18 log2FC) metabolites.

Interspecific comparative analysis of DEGs at different developmental stages.  Total DEGs dur-
ing the fruit development.  Interspecific pairwise stage comparison (LR1 vs. LB1, LR2 vs.LB2, etc.) shows that 928 
DEGs were shared by all five pairs (Fig. 8A). The highest number of DEGs was identified in stage 3 (3989), and the 
lowest in stage 4 (2825) (Fig. 8B); whereas the highest numbers of DEGs unique to a pair were observed in stages 
3 (574), 1 and 5 (both 554), and the lowest in stage 4 (126) (Fig. 8A). The numbers of up- and down-regulated 
DEGs were relatively similar in each of the pairwise stage comparisons; e.g., in stage 5, 1668 DEGs were upregu-
lated and 1670 DEGs were downregulated in LR in comparison to LB (Fig. 8B). However, in the other four stages 
the number of upregulated genes was slightly (93 to 189 DEGs) higher.

Transcriptome – pathways.  Heatmap analysis of DEGs indicates that the fruits of two species exhibit very dif-
ferent gene expression profiles during all developmental stages, but biological replicates exhibited very simi-
lar profiles, indicating a limited amount of individual variability in each developmental stage (Supplementary 
Figures: Fig. S9). Comparative analysis of KEGG pathway enrichment shows that only some pathways were 
consistently highly enriched (in terms of gene regulation) in LR in comparison to LB throughout all five devel-
opmental stages (Fig. 9). Notably, plant hormone signal transduction (2nd-highest in S1, 8th-highest in S2, the 
highest in S3, S4 and S5) and plant-pathogen interaction (the highest in S1, 3rd-highest in S2, 2nd-highest in S3, 
4th-highest in S4, and 15th-highest in S5) were relatively highly upregulated in all stages. Phenylpropanoid biosyn-
thesis (not in top 15 in S1, the highest in S2, 3rd-highest in S3, 7th-highest in S4, 11th-highest in S5), ubiquinone 
and other terpenoid-quinone biosynthesis (not in top 15 in S1, 6th-highest in S2, 7th-highest in S3, 2nd-highest 
in S4, 6th-highest in S5) were also relatively highly upregulated in all stages except the first one. Flavonoid biosyn-
thesis pathway was not highly enriched in early stages (not in top 15 in S1, 14th-highest in S2), and highly enriched 
in late stages (3rd to 4th-highest during stages 3 to 5). (alpha-)Linoleic acid metabolism was highly enriched in 
middle stages (9th-highest in S1, 2nd-highest in S2, 5th and 6th-highest in S3, 8th-highest in S4, not in top 15 in S5).

Among the pathways downregulated in L. ruthenicum in comparison to L. barbarum (Fig. 9) notable changes 
were observed between the early stages (1 and 2), when cyanoamino acid metabolism and carotenoid biosynthe-
sis were most highly downregulated, and late stages (4 and 5), when SNARE interactions in vesicular transport, 
nicotinate and nicotinamide metabolism, and porphyrin and chlorophyll metabolism were consistently relatively 
highly downregulated.

Figure 7.  LR metabolomic data: pairwise interstage KEGG metabolic pathway enrichment. (A) Stage 1 vs. stage 
2. (B) Stage 2 vs. stage 3. (C) Stage 3 vs. stage 4. (D) Stage 4 vs. stage 5. Rich factor is the ratio of the number of 
significantly regulated metabolites in the pathway and the total number of metabolites annotated in that pathway 
(range = 0 to 1.0). The size of the point represents the number of significantly enriched metabolites in the 
corresponding pathway, and the colour of the point represents the P-value (both legends shown in the figure).
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Transcriptome – individual genes.  Among the most highly differentially expressed genes, some were develop-
mental stage-specific (i.e. highly differentially regulated only in early or in late developmental stages), but some 
were consistently highly differentially regulated throughout all five studied stages (Supplementary Dataset S4). 
Several immunity-related genes very highly upregulated in LR in comparison to LB in the early developmen-
tal stages are among the examples of the developmental stage-specific expression pattern: chitinase was the 
2nd highest upregulated DEG in S1 (13.43-fold), the highest in S2 (13.89-fold), but in later stages it was not a 
DEG. Similarly, EIX receptor 1/2 was also very highly upregulated in early stages, the highest in S1 (13.70) and 
2nd-highest in S2 (10.90), but it was also not identified as DEG in later stages. Some growth-related genes also 
exhibited a similar expression pattern: phosphoglycerate kinase (PGK) was among the handful of most highly 
upregulated genes in the first three stages (13.14, 12.87 and 12.77 respectively), but it was also not identified 
as DEG in later stages. CCR4-NOT transcription complex subunit 7/8 (CNOT7/8) also exhibited a very similar 
expression pattern: highly upregulated in first three stages, and not a DEG in stages 4 and 5. Several flavonoid 
and phenylpropanoid biosynthesis-associated genes exhibited a reversed developmental stage-specific expression 
pattern, with relatively low expression in early stages, and very high in later stages. Examples are: bifunctional 
dihydroflavonol 4-reductase/flavanone 4-reductase (DFR), which was slightly upregulated in LR in S1 (2.25), not 
a DEG in S2, highly upregulated in S3 (7.79), and 3rd-highest upregulated gene in S4 (14.25) and S5 (16.03). A 
paralogue of this gene exhibited an almost identical pattern: slightly upregulated in S1 (2.44), not a DEG in S2, 
highly upregulated in S3 (7.40), 6th-highest upregulated DEG in S4 (13.26) and 5th in S5 (14.59). Similarly, flavo-
noid 3′,5′-hydroxylase (F3′5′H) was not a DEG in the first two stages, highly upregulated in S3 (6.69), 5th-highest 
upregulated gene in S4 (13.42), and 4th-highest in S5 (15.05). Flavonoid O-methyltransferase (OMT) was not a 
DEG in the S1, but in S2 it already exhibited a medium-high upregulation level (4.32), by the S3 it was already 
the third-highest upregulated DEG (13.30), and it was the highest-upregulated gene in S4 (18.73) and S5 (18.10). 
Leucoanthocyanidin dioxygenase (LDOX; anthocyanin biosynthesis) was not a DEG in S1 and S2, followed by 
high to very high upregulation in later stages (5.63, 9.44, 11.56, respectively). Two chalcone synthase paralogues 
(CHS and CHS2; flavonoid biosynthesis) were also not highly regulated in S1 and S2 (CHS2: not a DEG, CHS: 
−1.14 in S1, not a DEG in S2), but in S3–S5 both genes exhibited a medium-high to high upregulation (CHS2: 
5.32, 7.84, 6.00; and CHS: 4.67, 7.01, 6.82; respectively). We selected these genes for qPCR analysis, and the results 
are highly congruent with the RNA-seq data (Supplementary Results; Supplementary Dataset S5). Finally, cyto-
kinin dehydrogenase, a zeatin biosynthesis-related gene, was also increasingly upregulated during the last three 
stages (2.6–5.7).

However, some genes were consistently differentially expressed throughout all five studied stages. Examples 
also included some immunity-related genes, such as two paralogues of glutathione S-transferase, highly upreg-
ulated in LR in comparison to LB in all stages: 9.38 and 8.58 (all values presented as fold-changes in respective 
order) in S1, 6.30 and 6.34 in S2, the 2nd and 7th highest upregulated DEGs in S3 (14.08 and 12.70), 2nd and 4th 
highest in S4 (15.71 and 14.16) and 2nd and 6th highest in S5 (16.48 and 14.40). Plant disease resistance protein 
RPM1 was also highly upregulated in all five stages (S1 = 13.15; S2 = 12.08; S3 = 13.11, S4 = 12.81; S5 = 13:94). 
Among the consistently differentially expressed genes throughout all developmental stages were also some related 
to the amino acid metabolism, but their pattern was reversed in comparison to previous examples: they exhib-
ited high downregulation in LR compared to LB. Examples are acetyl-CoA acyltransferase 1 (AAT1; valine, leu-
cine and isoleucine degradation), with a temporal profile of increasingly high downregulation, starting from 
−7.0 in the S1 to <−10-fold in the last three stages. Proline iminopeptidase, associated with arginine and proline 
metabolism, was highly downregulated in LR in all stages: S1 = −9.75, S2 = −10.89 (3rd-highest), S3 = −11.05 
(4th-highest), S4 = −10.01, and S5 = −11.98 (3rd-highest). Finally, 5-methyltetrahydropteroyltriglutamate–homo-
cysteine methyltransferase (metE) was consistently extremely highly downregulated in LR in all stages: 2nd-highest 

Figure 8.  Genes differentially expressed (DEGs) between fruits of L. barbarum (LB) and L. ruthenicum 
(LR). (A) Detailed stagewise (1 to 5) comparisons (LB vs. LR). (B) The number of upregulated (red) and 
downregulated (green) DEGs in LR in comparison to LB in five studied developmental stages.
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in S1 (−11.76), the highest in S2 (−11.74), 3rd-highest in S3 (−11.43), the highest in S4 (−12.36), and 2nd-highest 
in S5 (−12.83). Two DNA replication and transcription-associated genes were also highly downregulated in LR 
in all stages: GTP-binding nuclear protein Ran (RAN; −10.0 to −12.0) and replication factor A1 (RFA1) (−8.0 to 
−12.0). Some growth and stress-related genes were also consistently highly downregulated in LR: heterogeneous 
nuclear ribonucleoprotein A1/A3 (hnRNP; −7 to −11) and heat shock 70 kDa protein 1/8 (HSPA1_8) S1 = −4.95, 
S2 = −8.88, S3 = −11.48 (2nd-highest), S4 = −9.36, S5 = −12.89 (the highest). Intriguingly, a phenylpropanoid 

Figure 9.  Comparative analysis of KEGG metabolic pathway enrichment. The top 15 pathways enriched in L. 
ruthenicum in comparison to L. barbarum are shown on the left (red), and the ones enriched in L. barbarum 
in comparison to L. ruthenicum on the right (green). Developmental stages (1–5) are indicated in the figure. 
q-value is an FDR-adjusted p-value.
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biosynthesis-related gene, shikimate hydroxycinnamoyltransferase (HCT), was also consistently highly down-
regulated in LR: S1 = −6.82, S2 = −8.14, S3 = −11.71 (the highest), S4 = −11.00 (3rd-highest), S5 = −11.91 
(4th-highest). However, a key regulator of anthocyanin biosynthesis, transcription factor MYB114, was highly 
upregulated in LR during all five developmental stages: 6.11, 4.69, 7.47, 9.05, and 8.95 (S1–S5 respectively).

Metabolome – pathways.  We also conducted a comparative interspecific stage-wise analysis of metabolic path-
ways (Fig. 10). In the first developmental stage (S1), we identified 39 differentially regulated metabolites. Among 
the top 20 pathways these metabolites were associated with, several of them were associated with amino acids, 
but total numbers of metabolites per pathway were relatively small (1–2), and P-values did not suggest a high 
level of significance (Fig. 10 - panel 1). Notably vitamin B6 metabolism (m) and microbial m in diverse environ-
ments both exhibited comparatively high P-values, enrichment factor (EF) of 1.0, and 2 identified metabolites. In 
the S2, we identified 58 differentially regulated metabolites, associated with only four pathways: tryptophan m, 
phenylpropanoid biosynthesis (b), b of phenylpropanoids (these are two different pathways in the KEGG data-
base), and phenylalanine, tyrosine and tryptophan b (all EF = 1.0, 2–3 metabolites, and p < 0.5; Fig. 10 - panel 
2). In the S3, we identified 59 differentially regulated metabolites, associated with 19 pathways, most all with the 
EF 1.0, but relatively non-significant P-values (>0.5; Fig. 10 - panel 3). Pathways with relatively high number of 
metabolites (n = 5) were: protein digestion and absorption, b of plant secondary metabolites, b of antibiotics, and 
b of amino acids. In the S4, we identified 58 differentially regulated metabolites, associated with a large number 
of pathways, mostly with the EF 1.0, and comparatively high significance values (mostly P > 0.5; Fig. 10 - panel 
4). Pathways with relatively high number of metabolites (n ≥ 3) were: phenylpropanoid b, phenylalanine, tyrosine 
and tryptophan b, glucosinate b, b of alkaloids derived from shikimate pathway, and 2-oxocarboxylic m. In the 
ripe fruit (S5), we identified 39 differentially regulated metabolites, associated with a large number of pathways, 
but mostly with low P-values and only 1 metabolite per pathway (Fig. 10 - panel 5). Pathways with more than 1 

Figure 10.  Comparative analysis of KEGG metabolic pathway enrichment. The top 15 pathways enriched in 
L. ruthenicum in comparison to L. barbarum are shown on the left (red), and the ones enriched in L. barbarum 
in comparison to L. ruthenicum on the right (green). Developmental stages (1–5) are indicated in the figure. 
q-value is an FDR-adjusted p-value.

https://doi.org/10.1038/s41598-020-61064-5


13Scientific Reports |         (2020) 10:4354  | https://doi.org/10.1038/s41598-020-61064-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

metabolite were: protein digestion and absorption, phenylpropanoid b, mineral absorption, central carbon m 
in cancer, b of secondary metabolites, b of phenylpropanoids, and aminoacy tRNA b. The principal component 
analysis (PCA) of all data (2 species × 5 stages × 5 biological replicates) revealed high similarity among biological 
replicates (clustering), and corroborated notable variability between different fruit ripening stages for both spe-
cies (Fig. 10 – panel 6).

Metabolome - individual metabolites.  The list (Supplementary Dataset S6) of most highly differentially regu-
lated metabolites between the two species, exhibited some variation among the five fruit development stages. 
Intriguingly, Fructose 1-phosphate was the most highly upregulated metabolite in LR, compared to LB, during 
all five stages: log2 Fold change = 6.3, 7.6, 7.7, 8.1, and 6.5 (stages 1 to 5 respectively). As regards the metabolites 
highly upregulated in LB, there was more variation among stages: in the S1, differences were rather small, with 
9-Decenol as the most highly upregulated metabolite (log2 Fold change = 2.7; compared to LR). Analyses of 
the S2 and S3 produced highly congruent results, with phenol (3.7 and 3.2 respectively) as the most highly upreg-
ulated metabolite. In the S4, indoxyl sulphate (4.7) was the top metabolite upregulated in LB. A metabolic shift 
was observed in the ripe fruit (S5), where the list of metabolites upregulated in LB was topped by by stearoylcar-
nitine (7.1), Methoxyacetic acid (5.3), S-Methyl-5′-thioadenosine (4.7), lisinopril (4.7), Adenosine 3′,5′-cyclic 
phosphate (cAMP) (4.7), etc. Other metabolites highly upregulated in LR (apart from Fructose 1-phosphate) were 
naringin (6.2), lauroyl-CoA (4.8), L-Phneylalanine (4.6), etc.

Discussion
Transcriptome and metabolome assembly quality.  Given the absence of a published genome for this 
species, almost 60% of unigenes matching against genes and/or proteins in at least one database is a satisfactory 
annotation rate. For example, a recent transcriptomic study of L. barbarum6 produced an almost identical number 
of genes annotated in all databases (12,246) as our study (12,171). This similarity, high correlation coefficients 
among biological replicates, and additional confirmatory qPCR experiments, all corroborate that the transcrip-
tome sequencing experiment and data analysis were conducted to a high standard. As gene expression (mRNA 
levels) can be variable over very short time-periods, RNA-seq often produces conflicting signals34,35, which is a 
likely explanation for some apparently simultaneously highly upregulated and highly downregulated pathways 
(such as carotenoid biosynthesis and plant hormone signal transduction in several stages) in the interspecific 
pairwise comparisons. This relative volatility in gene expression levels is also the most likely explanation for sev-
eral observed instances of incongruence between the transcriptomic and metabolomic data; such as much higher 
variability in the successive intraspecific pairwise comparisons observed in the transcriptomic dataset.

A very large number of differentially regulated genes and metabolites belonging to a broad range of metabolic 
pathways reflects the fact that fruit ripening is a complex developmental process, characterized by a series of tran-
sitions that are coordinated by a network of interacting genes and signalling pathways12. Although we observed 
similar patterns in intraspecific pairwise comparisons of successive stages in the transcriptomic data, the total 
numbers of regulated DEGs were consistently smaller in LR, except for the 4th vs. 5th stage comparison, where a 
higher number of DEGs was identified (783). As this was not reflected in the metabolomic data, it is likely that 
this is an annotation artefact produced by a higher data availability for LB.

Genes and metabolites that may be associated with abiotic stress responses.  As LR is native 
to the salinized deserts of northwestern China, its genetics and physiology should bear strong markings of the 
evolution in an environment where drought and salt stress are very common. Indeed, it generally exhibits higher 
resistance to abiotic and biotic stressors common in that environment, such as high soil salinity, drought and local 
pests, than L. barbarum. A major abiotic stressor, drought, has received ample scientific attention, as it is rather 
common, and affects the productivity and growth of numerous economically important plants36–38. Although we 
are far from a full understanding of the complexities of these mechanisms, some genes/metabolites/metabolic 
pathways have been singled out as particularly highly affected by abiotic stress, examples of which are absci-
sic acid (ABA), hormone signal transduction, metabolisms of proteins, carbohydrates, nucleic acids and lipids, 
etc.36–39. Salt stress can indirectly impair photosynthesis by depressing chlorophyll biosynthesis and the citrate 
cycle, so acetyl-CoA acyltransferase 1 (AAT1) is known to be strongly downregulated in response to salt stress40, 
which is in perfect agreement with very high downregulation in all stages observed in our results. A gene involved 
in the biosynthesis of amino acids, but also a number of important secondary metabolites in plants, metE, exhib-
ited a temporal profile of increasingly high downregulation. Due to its varied metabolic roles there are multiple 
possible explanations for this, but as downregulation of this enzyme was observed in response to drought stress 
in other plants41, its regulatory pattern may also be related to the higher drought exposure of LR plants in our 
experimental setup.

In agreement with this observation are also the results of comparative interspecific individual metabolite 
analyses, where a number of metabolites associated with abiotic stress topped the list of most highly significantly 
differentially regulated metabolites between the ripe fruits of the two species (here we focus only on the ripe 
fruits, as they are more interesting than other studied stages from the human perspective). Plants counteract the 
deleterious effects of drought by accumulating osmolytes, such as amino acids, amines and some soluble carbohy-
drates (especially the raffinose family), which have a vital role for the stability of cellular structures under adverse 
environmental conditions40,42,43. Increased level of raffinose in post-colour breaking stages of fruit development 
in LR was observed recently, and associated with osmoregulation requirements3. In our study, raffinose was also 
increased in LR (3.6-fold), as was another raffinose family oligosaccharide, galactinol (11.7-fold). A heightened 
synthesis of galactinol has been reported in plants in response to a range of abiotic stressors, so it is believed 
to function as an osmoprotectant in drought-stress tolerance of plants42–44. Intriguingly, another carbohydrate 
highly enriched (8.09-fold) in LR, trehalose, is a disaccharide of glucose that functions as an osmoprotectant 
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under abiotic stress in bacteria, fungi, and invertebrates, but it generally does not accumulate in detectable levels 
in most plants, with the exception of desiccation-tolerant “resurrection plants”45,46. Trehalose and galactinol also 
featured prominently in both species in the lists of most highly regulated metabolites in the intraspecific compar-
isons between different stages, suggesting a prominent role of these metabolites in both species. This is likely to be 
a reflection of a high level of adaptation to arid habitats in both species.

Among other examples of osmolytes abundant in LR are sucrose (37-fold) and betaine (28-fold). A member 
of the betaine family, glycine betaine, is an important organic osmolyte that protects cells against osmotic stress 
caused by drought or high soil salinity47. Sucrose is another highly significantly upregulated carbohydrate that 
(similar to trehalose) protects membranes and proteins in bacteria during drying48. A recent study found that 
sucrose was the most abundant sugar in both Lycium fruits before colour-breaking, but glucose and fructose were 
significantly elevated post colour-breaking in both fruits3. Therefore, the high levels of sucrose in ripe LR fruits 
observed in our study are likely to be a reflection of adaptation to drought and/or salinity stress.

Several metabolites related with amino acid metabolism- were also highly significantly more abundant in the 
ripe LR fruit: citrulline (31.1-fold), arginine (31.1-fold) and glutamate (29.5-fold). A massive accumulation of 
these three metabolites (especially citrulline) in response to a drought stress was observed in wild watermelon 
(Citrullus lanatus)37,49. The authors suggested that the accumulation of citrulline during the drought stress is a 
unique phenomenon in C3-plants. Although reports of the association between high citrulline accumulation 
and drought appear to be limited to watermelon species37,49, citrulline accumulation was associated with higher 
disease resistance in citrus fruits50. Glutamate and arginine are both precursors for citrulline synthesis49, and 
arginine is believed to play a role in the fine-tuning of stress defense mechanisms51. Arginine is also a precursor 
for nitric oxide and polyamines, which are important metabolites in stress responses52. For example, high arginine 
accumulation in response to long-term drought stress was also observed in chickpea53. Intriguingly, we observed 
a strong accumulation of DL-arginine in the ripe fruit of both species, but further studies are needed to assess 
whether this may be related to abiotic stress adaptation in both species.

Expression patterns of some genes were (apparently) not in agreement with the hypothesis of increased 
stress-related gene expression in LR. Proline iminopeptidase (pip), associated with arginine and proline metab-
olism, was highly downregulated in LR in all stages. As proline (and pip) concentrations tend to increase under 
stress in a broad range of living organisms40,54,55, we would expect the pip gene to be upregulated. It should be 
noted that we did observe a high accumulation of L-proline in the ripe LR fruit. However, a downregulation of 
pip in response to drought stress was also observed in Bombax ceiba36, and proline accumulation was triggered 
in Calotropis procera in response to salt stress, but not drought stress56, which indicates that this discrepancy may 
not be mere molecular noise, and might deserve further investigation.

Genes and metabolites that may be associated with the accumulation of anthocyanins.  LB 
and LR fruits are generally relatively rich in pharmacologically important secondary metabolites synthesized 
via the phenylpropanoid/flavonoid pathway, such as anthocyanin, betalain, flavone, flavonoid, isoquinoline, 
etc.3,5,6,9. Flavonoids have high antioxidant potential and possess a number of properties putatively beneficial 
from the pharmacological perspective: antitumorigenic, anti-inflammatory, prevention and treatment of car-
diovascular and neurodegenerative diseases, obesity, dental health, etc.5,57–60. Phenylpropanoids, a group of 
phenylalanine-derived physiologically active secondary metabolites, are the key mediators of plant responses 
towards abiotic (such as light and soil minerals) and biotic (pests) stimuli, also with important (from the human 
health perspective) antioxidant and free radical scavenging properties61. Many functional pathways, genes and 
metabolites associated with phenylpropanoid and flavonoid biosynthesis exhibited upregulation in LR berries, 
especially in later developmental stages. Developmental stage-specific expression pattern, with relatively low 
expression in early stages, and very high in later stages was exhibited by the paralogues of DFR and CHS, as well 
as F3′5′H, OMT and LDOX genes, all of which take part in the biosynthesis of anthocyanin, natural pigment of 
plants, responsible for red, blue and purple colours57,62,63. These genes are commonly upregulated in later stages 
of fruit ripening12,62; for example, high expression of DFR increases the accumulation of anthocyanin content 
during fruit ripening62,64. Importantly, a key positive regulator of the anthocyanin biosynthesis, transcription 
factor MYB11412,65, was highly upregulated in LR during all five developmental stages. At the metabolomic level, 
a metabolite associated with flavone and flavonol biosynthesis pathway, rutin, was significantly more abundant in 
ripe LR fruits than in LB fruits (5.88-fold). Increased rutin content was observed in plants in response to a drought 
stress66, salinity stress67, and also to biotic stress (pests)68. Intriguingly, this metabolite was not mentioned in a 
recent comparative metabolomic study of these two Lycium fruits3. As rutin derivatives have antioxidant potential 
and show low cytotoxicity in human and animal cells, which makes them promising potential candidates for use 
as nutraceuticals69, and as there are indications that rutin may suppress lipid accumulation in humans70, high 
rutin content in LR berries may be interesting from the nutritional and pharmaceutical perspective.

Conclusions
The interpretation of our findings is hampered by different environmental parameters at the two sampled locations, 
as well as by the fact that LB has undergone generations of anthropogenic selection for higher growth, whereas the 
genome of LR is likely to be shaped solely by non-anthropogenic factors. As it was difficult to disentangle genetic 
from environmental variables, and anthropogenic from non-anthropogenic variables in our study, we limited the 
discussion of our results to the most highly pronounced transcriptomic and metabolomic differences between the 
two species. Previous studies found indications that L. ruthenicum may exhibit higher resistance to abiotic (such as 
high soil salinity and drought) than L. barbarum3,4,6,9,11 and that berries of L. ruthenicum may have much greater 
medicinal value than berries of L. barbarum2,3. Although we can tentatively conclude only that our results are in 
agreement with these indications, it will be necessary to corroborate our comparative analyses results in future stud-
ies with different experimental setups before any conclusions about genetic and metabolic adaptations of these two 
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species to environmental stress can be made with confidence. Regardless of this, our analyses enabled us to identify 
a number of genes (e.g. AAT1, metE, pip) and metabolites (e.g. rutin, raffinose, galactinol, trehalose, citrulline and 
DL-arginine) that may be of interest to future functional studies of stress adaptation in plants. In the light of the rapid 
growth in global popularity of “health food” and “organic food” products71, we expect that both of these species shall 
continue to receive increasing scientific attention. Additionally, L. ruthenicum has high suitability for combating soil 
desertification and for alleviating soil salinity/alkalinity8,9, which is a major problem both in China and globally72,73, 
and there are indications that it may also have a very high capacity for removal of petroleum from contaminated 
soil74. Therefore, this indicates that L. ruthenicum may have much higher potential for human use, than its current, 
highly localized, relevance appears to imply.

Data availability
The datasets supporting the results of this article are available in the NCBIs Gene Expression Omnibus database 
(GEO) under the accession numbers GPL25820 (LB)75 and GPL25821 (LR)76.
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