
Mandala Networks: ultra-small-world
and highly sparse graphs
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The increasing demands in security and reliability of infrastructures call for the optimal design of their
embedded complex networks topologies. The following question then arises: what is the optimal layout to
fulfill best all the demands? Here we present a general solution for this problem with scale-free networks, like
the Internet and airline networks. Precisely, we disclose a way to systematically construct networks which are
robust against random failures. Furthermore, as the size of the network increases, its shortest path becomes
asymptotically invariant and the density of links goes to zero, making it ultra-small world and highly sparse,
respectively. The first property is ideal for communication and navigation purposes, while the second is
interesting economically. Finally, we show that some simple changes on the original network formulation
can lead to an improved topology against malicious attacks.

T
he tremendous increase in complexity of infrastructural networks, like the Internet and those related with
transportation and energy supply, is mandatorily accompanied by requirements of higher standards of
system reliability, security and robustness. This trend can only be sustained if these complex networks

have the right structure. Under this framework, the scale-free property, present in many real networks,
determines important aspects related with their functionality1–5. However, while scale-free networks are
usually quite robust against random failures, they typically break down rapidly under malicious attacks6–11.
Numerical studies have recently revealed that this weakness can be mitigated if their structure becomes onion-
like, which means that nodes of equal degree are connected among each other and to nodes of higher
degree12,13. Since then, the properties of onion-like structures have been extensively investigated14–23. Based
on this insight, here we will address the challenge of providing a paradigm for complex networks with better
topology. More precisely, we show that it is possible to design a family of scale-free networks which are robust
to random failures and considering some modifications, we can improve the resilience against malicious
attacks. Additionally, these networks also exhibit other improved properties, like a finite shortest path and
extreme sparseness in the thermodynamic limit, which substantially increases communication and reduces
costs. Thus these new networks become potential candidates for the design and implementation of complex
infrastructural networks.

In the deterministic network model introduced here, the nodes belonging to a given shell have intra-shell and
inter-shell connections, and the most connected nodes (hubs) are localized in the innermost shells. The network is
recurrently expanded in such a way that every new generation corresponds to the addition of a new shell.
Examples of these networks with four shells are shown in Figs. 1(a) and (b). Here we coin the name mandala
network for this new family of graphs. In the first case, thereafter called network A, the first generation consists of a
nucleus with three central nodes forming a complete graph (first shell). From each node in this nucleus, two new
nodes emerge to form a connected ring of six nodes, composing the second shell of the second generation
network. Following this iterative process, the third shell in the third generation network has an additional
connected ring with twelve nodes, which, at this point, must also be linked to their respective ancestral nodes
in the first and second shells. The same rules then apply for all new shells present in higher generation networks.
This design therefore imposes that nodes at the same shell have the same degree. More precisely, the degree kig of a
node at the i-th shell in the g-th network generation is given by,

kig~2g{iz1z i{1ð Þ: ð1Þ
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Defining ni as the number of nodes in the i-th shell, by construction,
we have that ni 1 1 5 2ni. From this relation, the number of nodes in
the network is given by N~

Xg

i~1
ni, where the summation is over

the total number g of shells.
In fact, the network described so far in Fig. 1(a) is a particular case

resulting from the recursive method proposed here to generate an
ensemble of scale-free networks. For example, in Fig. 1(b) we show
another example of mandala network, thereafter named network B.
Precisely, the method depends on a set of three parameters, (n1, b, l),
namely, the number of nodes in the first generation, n1, the number
of new nodes added to each node in the more external shell, b, and the
scale factor, l, for node degree in successive generations. Therefore,
Eq. (1) can be written in a more general form as, kig 5 blg 2 i 1 (i 2 1)
and ni 1 1 5 bni. For instance, the networks A and B are completely
defined by the sets (3, 2, 2) and (4, 4, 2), respectively.

Results
Scale-free networks. Any network generated by this method has
discrete degree spectrum. In order to characterize the scale-free
dependence, we consider the cumulative degree distribution,
P kð Þ~

X
k’§k

n k’ð Þ=N . Taking into account that in each shell all

nodes have the same degree, the cumulative distribution can be

written as, P kig
� �

~
Xi

j~1
nj
�

N . Applying Eq. (1) and the relation

nj 1 1 5 bnj, it can be shown that the cumulative distribution decays
in the form, P(kig) , 1/kig. In Fig. 2, we show a logarithmic plot of the
cumulative degree distribution for networks A and B. In both cases,
we have the same scale-free dependence.

At this point, an explanation about the exponent of the degree
distribution [p(k)] is useful24–26. Since our network has a discrete
degree distribution, in order to calculate the standard definition of
p(k), it becomes necessary to consider binned intervals between con-
secutive degrees. Thus, the degree distribution is calculated as, p(kig)
; ni/NDkig, whereDkig 5 kig 2 k(i 1 1)g is the width of the interval. In

this way, as Dkig , kig, it follows that p kig
� �

*1
.

k2
ig .

Ultra-small-world networks. Another important property of
the mandala networks relates to the mean shortest path length

‘h i~
XN

ij
‘ij
�

N N{1ð Þ½ �, where ,ij is the shortest distance between

any two nodes i and j in the network, and the summation goes over all

possible node pairs in the system. In our case, this expression can be
written in a more convenient form as,

‘h i~ 1
N N{1ð Þ

Xg

j~1

njwj, ð2Þ

where wj~
XN

k~1
‘jk is the sum of the shortest path lengths

connecting a node in the j-th shell with all other nodes in the
network, nj is the number of nodes in the j-th shell, and the
summation goes over the number of shells. Using the symmetry of
the network A, for example, it is possible to show that wj 5 ajN 2 jj

(see the section Methods), where jj has different values for different
shells, and ai is given by 5/3, 29/12, 5/2, 31/12, 63/24, for i 5 1, 2, 3, 4,
and 5, respectively, so that a R 8/3, for i R ‘. Taking into account
the linear dependence of wj with N and considering the relations for
nj, Eq. (2) reduces to

‘h i~az
O Nð Þ

N2
, ð3Þ

which leads to Æ,æ R 8/3 in the thermodynamic limit, N R ‘. We
show in Fig. 3 a semi-log plot of the mean shortest path length as a
function of the number of nodes. The asymptotic convergence
confirms our analytical result and therefore indicates that our
network has an ultra-small-world behavior, namely Æ,æ becomes
independent of N. One should note, however, that this result is still
different from the case of a complete graph, for which Æ,æ 5 1,
corresponding to the mean-field limit. Applying a similar sequence
of calculations to the network B, it can be readily shown that the
mean shortest path length for this topology also converges to a
constant in the limit of large system sizes, but now equal to 11/4.

Highly sparse graphs. Next, we define the density d of connections
as the ratio between the number of existing connections and the
maximal number of possible connections for an undirected
network with N nodes, d~

X
i
nikig

�
N N{1ð Þ½ �. Considering the

expression for kig given by Eq. (1), we can rewrite the definition of d
in the following way:

d~
1

N N{1ð Þ
Xg

i

ni2
g{iz1z

Xg

i

ni i{1ð Þ
" #

: ð4Þ

Expressing both summations in Eq. (4) in terms of the number of

nodes in the network, N~
Xg

i
ni, and considering the limit of a very

large number of generations, we obtain,

Figure 1 | (a) Representation of the mandala network of type A, generated

with parameters b 5 2, n1 5 3 and l 5 2. The nodes correspond to circles

whose areas are proportional to degree, and nodes in the same community

have the same color. The first generation consists of a complete graph with

three nodes defining the nucleus of the network. To each one of these

nodes, two new nodes are connected to form a connected circular ring of

six nodes, corresponding to the second shell. Next, the most external nodes

generate two new nodes forming a circular ring with twelve nodes (third

shell). Every node in the same community is connected with all its ancestral

ones. (b) Network of type B, generated with parameters b 5 4, n1 5 4

and l 5 2.
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Figure 2 | Logarithmic plot of the cumulative degree distribution for the
networks A (black circles) and B (red stars). The solid line represents the

least-squares fit to data in the scaling regions of a power law, P(k) , k2b,

with b 5 1.00 6 0.02, which confirms our analytical result.
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d*
1
N

log N: ð5Þ

The inset of Fig. 3 shows the dependence of the density of con-
nections on the number of nodes for networks of type A, confirming
the asymptotic behavior predicted by Eq. (5). In the case of network
B, where the number of new nodes generated is twice that of network
A, the density of connections decays faster. Indeed, applying the
same approach and considering b 5 4, it is possible to show for
network B that d 5 (log N)/N. As a consequence, we conclude that
our networks, despite of their ultra-small-world property, are extre-
mely sparse when compared to the behavior of a complete graph, d 5

1, and has only logarithmic correction to d , 1/N that is valid for the
Erdös-Rényi network at the percolation threshold. It is worth noti-
cing that mandala networks are reminiscent of the expander
graphs27, since both models share similar properties as high sparsity
and high connectedness. However, the mandala networks do not
have self-loops or multiple edges with the same endpoints.
Moreover, in the case of expander graphs, the maximal degree is
limited, while in the mandala networks are scale-free.

Robustness. The framework of percolation is usually considered for
the analysis of the robustness of complex networks7,22,28–34. In this
context, robustness is typically quantified by the critical fraction qc of
removed nodes that leads to a total collapse of the network6,9,10,12.
Nevertheless, as previously reported12–14,16, this approach does not
account for situations in which the system can suffer a big damage
without breaking down completely. The size of the giant component,
the largest connected cluster in the system, during the removal
process of nodes has been recently introduced12 as a refined
measure to robustness,

R~
1

Nz1

XN

Q~1

s, ð6Þ

where s is the fraction of nodes belonging to the giant component
after removing Q 5 qN nodes, q is the fraction of nodes removed, and

R is in the range [0, 1/2]. The limit R 5 0 corresponds to a system of
isolated nodes, while R 5 1/2 to the most robust network, which is
the case of a completely connected graph. Here we check the
robustness of our complex network model when subjected to
mechanisms of random failures and two strategies of malicious
attacks, namely, targeted by degree and targeted by betweenness6–10.

In the main plot of Fig. 4, we show the fraction s(q) of nodes
belonging to the giant component during a random removal process
as a function of the fraction of removed nodes q, for different values
of the size N of networks A and B and averaged over 200 samples. Our
results indicate that both networks A and B are robust, regardless of
the system size N considered. This is corroborated in the inset of
Fig. 4, where we plot the robustness measure R as a function of N for
networks A and B. Both versions of the mandala network present a
rather robust behavior, as compared to other models and real net-
works12,13, with R < 0.45 and R < 0.43, for types A and B,
respectively.

Unfortunately, as originally defined, our model network does not
present a resilient behavior when subjected to malicious strategies of
attack. We first consider attacks whose targets are the surviving
nodes with the highest degree. In our network, since nodes at the
same shell have the same degree, we start by choosing a node ran-
domly with equal probability from the set of nodes with the highest
degree (first shell). Due to the hierarchical structure of the network, a
node from the second shell will only be removed after all nodes from
the first shell disappear. This removal sequence remains valid till the
targeted attack reaches the second-last shell. At this point, the ran-
dom removal of a node in this shell can cause the simultaneous
disconnection of other nodes from the giant cluster in the same, as
well as in the outermost shell. As shown in Fig. 5, this strategy of
attack leads to a drastic collapse of the structure when we remove less
than 40% of the nodes.

In order to improve the robustness of the mandala model to mali-
cious attacks, we propose the following two types of modification on
the original network structure. First, we can randomly rewire each
edge of the last shell, maintaining invariant the density of connec-
tions. The results in Fig. 5 show that robustness increases to R 5 0.36,
as compared to the value R < 0.30 of the original network. Second, as
depicted in Fig. 5, we can systematically increase the number of

Figure 3 | Semi-log plot showing the dependence of the mean shortest
path length Æ,æ on the number of nodes N, for the networks A (black
circles) and B (red stars). As depicted, the mean shortest-path lengths of A

and B converge to the values 8/3 (top dashed line) and 11/4 (bottom

dashed line), respectively, in the limit of a large number of nodes.

Therefore, both networks can be considered as ultra-small worlds. The

inset shows the semi-log plot of the density of connections d as a function

of the number of nodes N in log-linear scale. Our analytical results reveal

that d*
1
N

log N for network A (black circles) and for network B (red

stars). The solid lines are the best fits to the numerically generated data sets,

confirming these predicted behaviors. Hence both networks are highly

sparse.
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attacks as compared to other models and real networks12, with R < 0.45

and R < 0.43, for types A and B, respectively. All results correspond to

averages over 200 samples.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 9082 | DOI: 10.1038/srep09082 3



connections between successive shells. As shown in Fig. 5, this
change can promote a substantial increase in the resilience, depend-
ing on the number of additional connections per node, k. In any case,
it is important to notice that for all new versions considered, the
obtained networks maintain their high-sparsity and ultra-small-
world properties, since we just add a number O Nð Þ of new links.

Another important type of targeted attack is to remove nodes
sequentially according to their betweenness centrality, in a descending
order. The original version of the mandala network also displays a
fragile behavior when subjected to this type of process (see Fig. 6),
collapsing before 10% of removal with R < 0.027. Again, as Fig. 6 also

shows, a rewiring process applied to the last shell can significantly
improve the resilience of the mandala network, R 5 0.32. This value is
even larger than the one obtained for a Barabási-Albert network (c 5

3) having approximately the same density of connections (see Fig. 6).

The Ising model. In small-world networks, the fact that the diameter
of the graph does not grow faster than log N implies an infinite
dimensionality. Mean-field theories therefore can successfully
describe their critical behavior1,35–39. In order to investigate how
collective ordering emerges in mandala networks, for which the
shortest-path length is independent on N, we consider Ising spins
si associated to their nodes and ferromagnetic interactions J between
them on the edges. Adopting the reduced Hamiltonian,
H=kbT~{J

X
ij

sisj, we perform Monte Carlo (MC) simulations

on networks of type A for different system sizes N and temperature T
values. In particular, we analyse the finite-size scaling properties of
the model at the Tc 5 0. The results in Fig. 7 show that the divergence
of the maximum of the susceptibility with N, measured from the peak
of the susceptibility, has the form, Tc Nð Þ*N1=�n, with a critical
exponent, 1=�n~0:50+0:01.

Discussion
In summary, we have presented a recursive method to generate an
ensemble of complex networks defined by a set of three parameters,
namely (n1, b, l).

We have shown analytically and confirmed through numerical
simulation that the networks originated from our model have
scale-free topologies and are ultra-small, i.e., the average shortest-
path lengths of sufficiently large networks become independent of
their number of nodes. Our results also show that, as compared to a
complete graph, which is ultra-small, these networks are highly
sparse, with the density of edges going to zero with system size.
Although mandala networks are robust against random failures, they
are fragile against malicious attacks targeted by degree and between-
ness centralities. However, simple corrections can be applied to the
original model, improving significantly its robustness against both
types of malicious attacks. Finally, we have verified that the critical
temperature of the Ising model on the mandala network topology
diverges with system size according to a power-law dependence,
described by an exponent 1=�n~0:50+0:01. We expect to generalize
this last result to other universality classes, for example, considering
directed percolation and self-organized models on our deterministic
networks.

Figure 5 | Fraction s(q) of nodes belonging to the giant component of
network A as a function of the fraction of removed nodes q for attacks
targeted by degree. The circles correspond to the original network and the

rectangles to the case with rewiring process in the last shell. The triangles

and stars correspond to the cases where the network has, respectively, k 5 2

and k 5 4 new edges per node, being also subjected to a rewiring processes

in the last shell. The diagram inside shows the way additional edges are

included between successive shells. Its black lines are the edges of the

original network, and the dashed red and dotted green lines correspond to

the cases where we add k 5 2 and k 5 4 new edges per node, respectively.

The dashed line in the main plot corresponds to the limit of the ultra-

robust network, and the inset box shows the corresponding robustness

measures R for all cases considered. In all simulations, we used a single

network of size N 5 49149.
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Methods
The mean shortest path length. Consider the definition of the shortest path length:

‘h i~ 1
N N{1ð Þ

XN

i~1

XN

j~1

‘ij, ð7Þ

and let us define wi~
X

j
‘ij as the summation of the shortest paths from the node i to

all nodes in the network. Therefore, Equation (7) can be written as,

‘h i~ 1
N N{1ð Þ

XN

i~1

wi: ð8Þ

From the symmetry of the network, nodes in the same shell have the same value of
w. Thus, we can interchange the summation in terms of the number of nodes to a
summation in terms of the number of shells,

‘h i~ 1
N N{1ð Þ

Xg

j~1

njwj, ð9Þ

where nj represents the number of nodes in the j-th shell and wj is now interpreted as
the summation over the shortest paths from a node in the j-th shell to all nodes in the
network.

To determine wj we choose a node, called root node, in the j-th shell and calculate its
shortest path to other nodes, considering shell by shell. Here we will consider a
detailed calculation for three first shells. For the first shell, considering the node 1 as
root we obtain,

w~ ‘12z‘13½ �sh1z ‘14z‘15z‘16z‘17z‘18z‘19½ �sh2z

‘110z‘111z‘112z‘113z � � �z‘121½ �sh3z � � �
ð10Þ

The first bracket is equal to (n1 2 1), since all nodes in the first shell are at a distance

equal to one for the root node. In the second shell, we have
1
3

n2 nodes at a distance

equal to one and
2
3

n2 nodes at a distance two of the root node. In this way, for the j-th

outermost shells, we have
1
3

nj nodes at a distance equal to one and
2
3

nj nodes at a

distance two of the root node. Using these results in Equation (10), it follows that,

w~ n1{1½ �sh1z
1
3

n2|1z
2
3

n2|2

� �
sh2

z
1
3

n3|1z
2
3

n3|2

� �
sh3

z � � �z 1
3

ng|1z
2
3

ng|2

� �
shg

ð11Þ

w~ n1{1ð Þz 5
3

n2zn3z � � �zng
� �

: ð12Þ

Therefore, the value of w for any node in the first shell is given by,

w1~
5N
3

{n1, ð13Þ

where we consider N~
X

j
nj . A similar approach can be applied to others shell.

Choosing now the root node in the second shell, we obtain,

w~
5
3

n1

� �
sh1

z
3
2

n2

� �
sh2

z
2

12
n3|1z

3
12

n3|2z
7

12
n3|3

� �
sh3

z
2

12
n4|1z

3
12

n4|2z
7

12
n4|3

� �
sh4

z � � �

z
2

12
ng|1z

3
12

ng|2z
7

12
ng|3

� �
shg

,

ð14Þ

and ordering the identical terms results in,

w~
5
3

n1z
3
2

n2z
29
12

n3zn4z � � �zng
� �

: ð15Þ

The value of w for nodes in the second shell is then given by,

w2~
29N
12

{
31
12

n1: ð16Þ

Finally, using a similar sequence of calculation, for the i-th shell, we obtain that, wi 5

aiN 2 ji, with ai equal to 5/3, 29/12, 5/2, 31/12, 63/24, 127/48, and 255/96 for the

seven first shells, respectively. Therefore, we have ai?
8
3

for i R ‘.

The Ising model. The Monte Carlo simulations of the Ising model on the mandala
networks were performed using the Metropolis algorithm, starting from different
initial spin configurations. In order to study the critical behavior of the system, we
considered the magnetization ML and the susceptibility xL, which are defined by

MN Tð Þ~ mh itime

	 

sample, ð17Þ

xN Tð Þ~N m2
	 


time{ mh i2time

D E
sample

� �
, ð18Þ

where mh i~ 1
N

XN

i~1
si

����
����, T is the temperature and N is the total number of nodes in

the network. The symbols � � �h itime and � � �h isample , respectively, denote time averages
taken in the stationary state and configurational averages taken over 100 independent
samples. Time is measured in Monte Carlo steps (MCS), and 1 MCS corresponds to N
attempts of changing the states of the spins. In our simulations, the initial 105 MCS
were discarded to guarantee that the system reached the steady state, after which the
time averages were estimated using the next 6 3 105 MCS. The value of temperature
where xN has a maximum is identified as Tc(N) for N 5 172, 684, 2732, 10924, 43692,
and 174764.
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