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Automated vs. manual pain coding and
heart rate estimations based on videos of
older adults with and without dementia
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Abstract

Introduction: Technological advances have allowed for the estimation of physiological indicators from video data.

FaceReaderTM is an automated facial analysis software that has been used widely in studies of facial expressions of

emotion and was recently updated to allow for the estimation of heart rate (HR) using remote photoplethysmography

(rPPG). We investigated FaceReaderTM-based heart rate and pain expression estimations in older adults in relation to

manual coding by experts.

Methods: Using a video dataset of older adult patients with and without dementia, we assessed the relationship

between FaceReader’sTM HR estimations against a well-established Video Magnification (VM) algorithm during baseline

and pain conditions. Furthermore, we examined the correspondence between the Facial Action Coding System (FACS)-

based pain scores obtained through FaceReaderTM and manual coding.

Results: FaceReader’sTM HR estimations were correlated with VM algorithm in baseline and pain conditions. Non-

verbal FaceReaderTM pain scores and manual coding were also highly correlated despite discrepancies between the

FaceReaderTM and manual coding in the absolute value of scores based on pain-related facial action coding of the events

preceding and following the pain response.

Conclusions: Compared to expert manual FACS coding and optimized VM algorithm, FaceReaderTM showed good

results in estimating HR values and non-verbal pain scores.
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Introduction

The collection and analysis of large amounts of data is

cumbersome, time consuming, and expensive, particu-

larly when the data are derived from momentary

changes in behavior or physiological activity. Publicly

available datasets have allowed researchers to address

previously inaccessible research questions and to com-

plete projects that otherwise would not have been pos-

sible. In particular, facial expression video datasets1–5

have been used in scientific and clinical research6–9 and

for the development and improvement of automated

facial recognition technologies.10–12 Patient recruitment

and development of video datasets can take years to

complete depending on the nature of the samples.

Thus, the ability to extract information from existing
databases is of great importance. Two promising ave-
nues for the development of automated computer
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vision systems involve efforts to recognize emotions
from facial expressions13–16 and the estimation of phys-
iological indicators (e.g., heart rate, blood pressure)
based on video data.17–19

The gold standard for facial expression analysis
relies on manual coding by trained coders using the
anatomically-based, atheoretical and objective Facial
Action Coding System (FACS),20 through which
trained raters reliably record the occurrence of specific
facial actions (e.g., orbit tightening, cheek raising)
known as Action Units (AUs). Frame-by-frame facial
analysis using this method is rigorous but labor-
intensive. That said, since the analysis is human
observer-dependent, results are not immune to biases
and errors. Similarly, the conventional and gold stan-
dard for measuring heart rate involves use of psycho-
physiological recording equipment21–23; but relevant
heart rate information may be missing from existing
video datasets. As a result, the possibility of estimating
patient heart rate based on videos, is of interest.

A commercial automated facial analysis software,
FaceReaderTM by Noldus Technology Information24

has been used widely in studies of facial expressions
of emotion and is associated with a growing base of
published research in support of its validity in recog-
nizing and monitoring emotional expressions and
FACS AUs.10,13,16,25–27 For instance, Lewinski, Den
Uyl, and Butler10 found that FaceReaderTM was able
to recognize 88% of human annotated emotional labels
from two available datasets. Growing interest has also
resulted in an influx of its use in scientific research.28–32

In particular, there is a growing use of the
FaceReaderTM in the pain context28,33,34; however,
analysis and direct estimation of pain are not currently
embedded into the Noldus program.24 The literature
on FACS AUs and nonverbal expressions related to
pain is robust.35–39 Nonverbal expressions of pain
(e.g., facial expressions) are integral to pain assessment
because, relative to verbal report, they are less likely to
be influenced by situational and cognitive executive
factors.40 This is especially crucial in the assessment
of pain in individuals with limited ability to verbally
communicate due to severe cognitive impairments
related to dementia.41,42 Validating the feasibility of
automated estimations of pain based on
FaceReaderTM output detection is particularly advan-
tageous as the as the manually coded FACS-based
approach is very labor-intensive.

Most recently, FaceReaderTM has been updated to
allow for computerized estimation of heart rate
through video processing. The heart rate module of
FaceReaderTM uses a remote-photoplethysmography
(PPG) system.24,43 Remote PPG (rPPG) is a non-
contact technique of measuring cardiac activity
through variations of blood flow in the tissues which

affect the light transmission and reflectance properties
on the skin that is captured by a standard camera.44,45

These changes and properties allow for researchers to
remotely examine specific parts of the skin and infer
heart rate estimations.46,47 Two published studies
have used the rPPG system by FaceReaderTM.48,49

Benedetto and colleagues48 found that
FaceReader’sTM rPPG system calculated insufficiently
accurate measurements for low and high heart rates
when assessed against the gold standard electrocardio-
gram (ECG). Given the paucity of research, further
examination and improvement of this system are nec-
essary. The addition of physiological estimations to
FaceReader’sTM current domain can allow for more
comprehensive and simultaneous analyses that reflect
the multifaceted nature and complexity of emotions.

These two growing avenues (i.e., assessment of pain
expression and heart rate estimation) for the use of
FaceReaderTM are important. Physiological measures
and cardiovascular functions have been examined to
expand the understanding of the experience of pain.
Moreover, autonomic responses have been examined
as non-verbal components of the pain experience.50–53

Similar to facial expressions, physiological measures
(e.g., heart rate) have also provided substantial infor-
mation about the experience of pain in older adults
with and without dementia.54–56 In older adults with
limited abilities to verbally communicate, physiological
measures may provide information in addition to
behavioral and social indicators to aid in the evaluation
of the pain experience. For instance, blunted autonom-
ic responses in people with dementia have been
reported55; however, extensive examinations to the sig-
nificance of autonomic responses in response to pain
are needed. Many of the methods used to obtain phys-
iological information (e.g., ECG) can be invasive,
intrusive, or bothersome. As such, the feasibility of
an automated and commercial system in estimating
heart rate during pain is of interest to expand the infor-
mation and use of existing video data relating to pain
patients.1

Validation of automatic facial analysis software
such as FaceReaderTM on existing datasets can
expand its utility beyond real-time facial analysis to
the collection of robust information from archival
video datasets. Although there has been an exponential
use for FaceReaderTM in various fields, investigations
validating the use of the software are limited. In addi-
tion, previous studies examining FaceReaderTM perfor-
mance have mainly focused on the recognition of
emotion and AU targets. The primary goal of the
study is to assess the feasibility of an automated soft-
ware (e.g., FaceReaderTM) in retrospectively extracting
information from existing video datasets. In particular,
the present study aims to: 1) contribute to the current
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knowledge validating the rPPG FaceReaderTM system;
and 2) examine the feasibility of FaceReaderTM in
quantifying pain estimation scores. We examined the
validity and feasibility of FaceReader’sTM automated
system by examining heart rate during painful situa-
tions in a video data set of older adult patients. In
the current study, we assessed FaceReader’sTM heart
rate estimations and pain related facial action coding
against an established, but more labor intensive, opti-
mized Video Magnification (VM) heart rate algo-
rithm57–59 and human annotated FACS data.
Moreover, we investigated FaceReader’sTM perfor-
mance by comparing the aggregate non-verbal scores
calculated by FaceReaderTM vs. trained coder coding.
Validation of FaceReaderTM in estimating heart rate
and pain would allow researchers to further investigate
and retrospectively analyze the vast corpus of archival
video data available. We anticipated significant associ-
ations between results of manual coding and
FaceReaderTM outputs for AUs that are associated
with pain and for heart rate estimations.

Methods

Measures

Facial action coding system. The Facial Action Coding
System (FACS) is an objective measure of facial
expression and activity.20 FACS determines expression
in terms of 44 action units (AU); AUs (e.g., lid tight-
ening, brow lowering) represent discrete muscle move-
ments, or combinations of facial muscle movements.20

Using FACS, trained coders code AUs based on fre-
quency (i.e., presence or absence) and intensity (i.e.,
from 0 to 5).20 The FACS has been found to be
highly reliable and valid in examinations of non-
verbal pain behavior in older adult populations with
dementia.41,60 The six most consistent FACS AUs asso-
ciated with pain are: brow lowering (AU 4), cheek rais-
ing and lid compression (AU 6), lid tightening (AU 7),
nose wrinkling (AU 9), upper lip raising (AU 10) and
eye closure (AU 43).37,39

Prkachin and Solomon39 proposed a FACS-based
approach to quantify pain expressions by aggregating
the scores of the FACS AUs that are consistently asso-
ciated with pain into four categories of pain-related
facial actions: brow lowering (AU 4), orbit tightening
(AU 6/AU 7), levator tightening (AU 9/AU 10), and
eye closure (AU 43). The intensity scores for brow low-
ering, orbit tightening, and levator tightening can be
quantified using alphabetic codes (i.e., A to E) and
then converted to numeric codes (i.e., 1 to 5; no
action coded¼ 0), while eye closure is coded as 0 (i.e.,
no eye closure) or 1 (i.e., eye closure).39 Intensity scores
for each category are summed to indicate a total non-

verbal pain expression score (i.e., ranging from 0 to 16)
for each participant.37,39 This approach has been pre-
viously validated in various populations including
older adults with and without dementia8,28,39 and was
used for the purposes of this study.

FaceReaderTM. FaceReaderTM24 is a commercially
available automated facial expression analysis software
that is capable of recognizing and analyzing the six
basic emotions (i.e., happy, sad, angry, surprised,
scared, disgusted) based on 20 FACS AUs described
by Ekman, Friesen, and Hager.20 FaceReaderTM ana-
lyzes facial expressions by initially finding the position
of the face61 and then concurrently using two methods
of face classification (i.e., creating a face model though
Active Appearance Model [AAM]62 and deep artificial
neural network63) to produce an output and calculate
AU intensities (see FaceReaderTM manual64).
FaceReaderTM codes AU intensity according to the
classifications described by Ekman and colleagues20

from A to E (e.g., trace, slight, pronounced, severe,
maximum) which corresponds to a continuous scale
from 0 (absence) to 5 (maximum intensity).64

FaceReaderTM offers additional modules that vary
in functionality. The remote photoplethysmography
(rPPG) module24 is able to analyze heart rate and
heart rate variability from videos by the quantifying
the amount of light reflected by the face which relates
to cardiac cycles and changes in blood volume based on
video captured by a camera.43,65 Gudi et al.66 tested the
rPPG system used in the FaceReaderTM and found that
repetitive facial movements (i.e., in talking conditions)
can affect the performance of the system by
compromising accurate face modelling and estima-
tions. However, when validated against ECG measure-
ments in video datasets of participants under various
conditions (e.g., resting, walking, post-workout), the
rPPG system showed promising results.66

FaceReader’sTM heart rate analysis follows 3 phases:
calibration (i.e., an 8.5 s period where the signal of the
skin is initially sampled and processed), calculation
(i.e., pulses over the previous 10 s are calculated and
converted to beats per minute; bpm), and post-
processing (i.e., processed to improve accuracy)64 (for
a detailed description of the remote PPG algorithm, see
Gudi et al.66).

Facial Expression Subscale of the Pain Assessment Checklist for

Seniors with Limited Ability to Communicate-II. The Pain
Assessment Checklist for Seniors with Limited Ability
to Communicate-II (PACSLAC-II) is an easy to use
observational pain assessment checklist created to
assess nonverbal pain behaviors in individuals with
dementia.67 The PACSLAC-II consists of 31 pain
behaviors coded as either present (1) or absent (0)

Castillo et al. 3



and 6 subscales that correspond to the 6 non-verbal
domains recommended by the American Geriatric
Society for consideration in non-verbal pain assessment
(i.e., facial expressions, verbalizations and vocaliza-
tions, body movements, changes in activity patterns
and routines, changes in interpersonal interactions
and mental status changes).67,68 The tool has been
shown to be valid and reliable and to account for the
variance in distinguishing painful and non-painful sit-
uations.67,69 For the purposes of this study, the
PACSLAC-II Facial Expression subscale was exam-
ined with items such as “tighter face” and “wincing”.

Video magnification. The Video Magnification (VM)
algorithm57–59 can be used to magnify the color com-
ponent of a video to detect subtle variations in color in
a specific region of interest. When applied to the skin, it
can estimate heart rate by quantifying the changes in
skin color due to blood flow. The algorithm has numer-
ous parameters that have to be optimized for the pre-
sent study such as filter parameters, choice of color,
and magnification factor. The artifacts due to motion
or changes in light conditions that can lead to errone-
ous estimates of the heart rate have been analyzed.66,70

As such, a number of algorithms have been proposed
to mitigate these artifacts. For example, motion track-
ing approaches have been proposed to overcome this
problem71,72; however, moving the face introduces
other artifacts due to corresponding changes in light
conditions. Given that our focus is to investigate
FaceReader’sTM heart rate and pain expression estima-
tions in relation to manual coding by experts, we select-
ed video segments and skin regions with no movement
to estimate the heart rate. The VM algorithm used in
this study58,73,74 has been verified through a compari-
son with wearable devices such as photoplethysmogra-
phy (PPG). In the current study, in order to improve
the reliability, the VM algorithm was applied to differ-
ent areas of the body such as the face and hands. As a
result, light changes or motion would not affect all
areas similarly.

Participants

We used a total of four participants (for in depth anal-
ysis) from a larger, pre-existing dataset. Two partici-
pants were long-term care (LTC) residents with
dementia (mean age¼ 87.5, SD¼ 4.95; 2 females) and
two were independent community dwelling older adults
(mean age¼ 78.50, SD¼ 3.54; 2 females). The data for
this investigation were collected as part of a larger
study.8 The study was approved by the institutional
ethics review board. The obtained consent included
permission to use the video data for future analysis
by laboratory researchers. Additional approval for

the current study, which was consistent with the orig-
inal consents that were obtained, was specifically
granted. Proxy consent was obtained by family mem-
bers or legal guardians of LTC participants. If LTC
participants demonstrated any behavioral or verbal
unwillingness to participate in the study, they did not
participate. For their participation, $20 was set aside
for each resident to purchase items that, according to
caregivers or legal guardians, the patient would enjoy
(e.g., flowers, music CDs). Community participants
were offered $20 for their participation. All partici-
pants and/or proxies were given an information pack-
age and opportunities to ask questions about the study.
The dataset from which the four participants were
derived comprises older adults with moderate to
severe dementia, recruited from local LTC facilities as
well as of older adults over 65 years of age, without
dementia, who were living independently in the com-
munity (for a detailed explanation of the data collec-
tion procedure and participant characteristics see
Hadjistavropoulos et al.8).

Two types of videos were available for each partic-
ipant: a baseline video and a video from standardized
physiotherapy examination which was designed to
identify painful areas.75–77 For the baseline condition,
the participants were video recorded as they were lying
still on a bed or examination table. Following the base-
line period, the participants were filmed as they
engaged in a movement protocol (described by
Husebo et al.75) designed to identify painful areas.
The baseline and examination conditions each took
approximately 5minutes.

The collected video data were manually coded
frame-by-frame by trained coders using the FACS-
based approach described above. A different trained
coder coded the data using the PACSLAC-II. This
resulted in approximately 5000 frames per baseline
and examination segments. Interrater reliability for
the manual FACS-based coding was based on the
entire dataset and was excellent (baseline Pearson
r¼ 0.99; exam r¼ 0.94).11 Similarly, the interrater reli-
ability of the PACSLAC-II trained coder coding for
this dataset was also excellent (baseline k¼ 0.92;
exam k¼ 0.86).11

Procedure

The four videos for this study were chosen from the
larger datasets of LTC and community participants
based on optimal video quality: in focus, well-lit, and
appropriate filming angle. For each participant, a no-
pain and pain segment from the baseline and examina-
tion videos were determined. The no-pain segment
(mean length¼ 8.05 s) was a segment from the baseline
condition video that did not have any facial action or
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expression. The pain video segment for each partici-
pant was determined by initially scoping the
PACSLAC-II and FACS-based manual coding of the
examination condition dataset for the presence of pain
instances. The criteria for the presence of a pain expres-
sion was determined as follows: coded to have a “pain
expression” (P3) and at least one other facial cue pre-
sent using the PACSLAC-II Facial Expression
Subscale and coded to have at least one facial action
associated with pain (i.e., brow lowering, orbit tighten-
ing, levator tightening, eye closure) present. The pain
segment (mean length¼ 8.05 s) for each participant
included a pain expression sequence (mean
length¼ 2.05 s) and the 3-s preceding and following
the pain expression. Previous research has found the
average length of a pain expression to be approximate-
ly 2 seconds.78 For the purposes of this study, the front
view baseline and examination videos were cropped to
allow for optimal analysis of the profile view of the face
in FaceReaderTM. The videos for each participant were
then analyzed using FaceReaderTM version 8 and the
rPPG and Action Unit modules. This resulted in a total
of approximately 1000 analyzed frames. To set an indi-
vidual calibration for each participant, a neutral frame
from each participant’s baseline video was chosen.

The VM algorithm was used to estimate heart rate
measurements during no-pain and pain segments of the
baseline and examination conditions. To improve the
reliability of the VM algorithm, we applied it to differ-
ent areas of the body such as the face, hands, or feet.
Heart rate estimations from video data using the VM
algorithm were analyzed as follows: 1) determined the
start time and end time of the video segment to be
analyzed; 2) selected a region of interest from an
uncovered area of the skin (i.e., ensured that the area
should be steady throughout the segment); 3) deter-
mined the window length for each processing cycle
(2 to 6 seconds); 4) determined the overlap factor on
the window processing cycles (10 to 90%) (i.e., a higher
overlap percentage improves the resolution but
increases the processing time); 5) determined the fre-
quency ranges to be processed; and 6) determined the
color component to be processed (green, red or
blue).73,79 We determined that green provided the
most reliable estimate followed by red. Moreover, in
line with our systematic approach, we chose a longer
window for each processing cycle for better frequency
resolution. The window has to be large enough to
include at least two heart beats; however, longer win-
dows may also mask fast variations in beats per minute
(bpm). In contrast, although a narrow frequency range
removes noise and artifacts, this risk missing the actual
heart rate. As a result, our adaptive approach began
with a wide frequency range to obtain a noisy estimate
of the heart rate, then repeated the test with a narrower

frequency range around the noisy estimate.73,79 Based
on the heart rate estimates calculated frame-by-frame
by FaceReaderTM and the VM algorithm, two heart
rate estimates were produced for each participant: a
mean heart rate value (i.e., calculated by summing
the heart estimates [bpm] of each frame divided by
the total number of frames per segment) for the no-
pain and pain segments. We omitted a total of 17
(1.74%) frames from the FaceReaderTM calculation,
where FaceReaderTM was not able to estimate a heart
rate value because of the nature of the filming (e.g.,
patient movement).

Using trained coder results as the comparison crite-
rion (coder obtained FACS-based scores), we examined
FaceReader’sTM non-verbal pain score and pain inten-
sity ratings during the examination (i.e., pain) period.
In order to gain a comparable scale using the FACS-
based score calculation method by Prkachin and
Solomon,39 the FaceReaderTM data were transformed
as follows: AU 4 was coded as brow lowering; in the
presence of both AU 6 and AU 7, the AU with the
higher intensity score was used to obtain a score for
orbit tightening; in the presence of both AU 9 and AU
10, the AU with the higher intensity score was used to
obtain a score for levator tightening; and AU 43 was
coded as either present (1) or absent (0). Accordingly,
for the FaceReaderTM and manually coded data, a
total non-verbal pain score for each frame (i.e., from
0 to 16) was summed. For each participant the follow-
ing scores were calculated for both the FaceReaderTM

and manual coding: an aggregate non-verbal pain score
(i.e., obtained by summing the non-verbal pain scores
of each frame for a segment), a mean facial action
intensity score (i.e., calculated by summing the facial
action intensity scores of each frame divided by the
total number of frames per segment), and the percent
of agreement of the coding for the presence and
absence of each facial action (i.e., the number of occur-
rences where FaceReaderTM coding matched trained
coder coding).

Analysis

We calculated two correlation coefficients to determine
the relationship between FaceReaderTM and VM algo-
rithm’s mean heart rate estimations during the no-pain
and pain conditions. To examine the relationship
between the FaceReaderTM and manual coding to
detect pain-related facial actions, the correspondence
between FaceReader’sTM pain coding and two criterion
indices (i.e., trained coder aggregate non-verbal pain
score and mean facial action intensity score) were
examined. We calculated two correlation coefficients
for the aggregate non-verbal pain score of
FaceReaderTM and manual coding: 1) the
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correspondence of the aggregate non-verbal pain scores
for the pain segment (i.e., including 3-s preceding and
subsequent the pain expression); and 2) the correspon-
dence of the aggregate non-verbal pain scores during
the pain expression. Similarly, two correlation coeffi-
cients were calculated for the mean facial action inten-
sity to assess the relationship between the results that
were based on the FaceReaderTM and those that were
based on trained coders for the pain segment and
during the pain expression. We also calculated differ-
ence scores based on the mean aggregate non-verbal
pain scores. Moreover, the mean percent agreement
was calculated by comparing the number instances
where FaceReader’sTM coding matched the presence
and absence of a facial action according to the coders
FACS-based results.

Results

FaceReaderTM and VM algorithm’s heart rate
estimations

Table 1 shows the relationship between the mean heart
rate estimations obtained through FaceReaderTM and
VM algorithm during no pain (baseline) and pain con-
ditions. The Pearson correlations for heart rate estima-
tions during no-pain and pain conditions were large
and significant.

FaceReaderTM and manually coded pain data

Tables 2 and 3 shows the difference and correspon-
dence scores of FaceReaderTM and trained coder
aggregate non-verbal pain scores for the pain segment
(i.e., including 3-s before and after the pain expression)
and during the facial pain expression. Pearson correla-
tion coefficients between FaceReaderTM and manually
coded data for the pain segment and during the pain
expression were both large and significant, with the
relationship between FaceReaderTM and manually
coded data during the pain expression being slightly
stronger relationship than the relationship of non-

verbal pain scores for the entire pain segment (i.e.,

the segment that included the 3 s before and after the

pain expression).
We also calculated Pearson correlation coefficients

to determine the relationship between FaceReaderTM

and trained coder’s mean pain intensity ratings for

the three components of the facial actions of the pain

index (brow lowering, orbit tightening, levator tighten-

ing) during the full pain segment and when pain was

expressed; the results demonstrated great variability

and mostly nonsignificant relationships (Table 4). Eye

closure intensity was not examined due to the dichot-

omous (0 or 1) nature of the score which often resulted

in 0 variance. Table 5 shows the mean percent agree-

ment of facial action presence and absence. The degree

of agreement where FaceReaderTM coding matched

manually coded data during the pain segment ranged

from 42% to 79%, FaceReaderTM showed greater cor-

respondence to manual coding during the instance

when pain was expressed, with level of agreement as

high as 85%. FaceReaderTM matched the coder

30–79% of the time for presence and absence of

facial actions before and after the pain expression.

Discussion

We aimed to evaluate the feasibility of FaceReaderTM

in retrospectively extracting information from an exist-

ing video dataset of older adults with dementia. With

respect to our objective of further validating the rPPG

FaceReaderTM system, to the best of our knowledge,

this study represents the first published attempt to val-

idate the FaceReaderTM heart rate module against

manual coding by an expert who used the well-

established VM algorithm and optimized its parame-

ters to the video segment being analyzed. Our results

support the validity of the FaceReaderTM heart rate

module which demonstrated good correlations with

our heart rate estimates. The key to our VM analysis

was selecting video segments that had minimal move-

ment and changes light conditions. This finding

Table 1. Relationship between the mean heart rate estimations (bpm) obtained through FaceReaderTM and VM algorithm during no
pain and pain conditions.

No-pain Pain r

Participant FaceReader VM algorithm FaceReader VM algorithm No-pain¼ 0.999

LTC 1 51.65 56.06 79.06 75.33 Pain¼ 0.993

LTC 2 84.13 81.29 84.35 81.89

Non-LTC 1 73.80 73.52 77.11 77.19

Non-LTC 2 77.45 76.80 48.00 54.74

Note: Pearson correlations (r) are significant at p< 0.01. Each correlation coefficient reflects 4 pairs of values (i.e., the FaceReader and VM algorithm

heart rate estimates during no pain and pain states). df¼ 2.

LTC: long-term care; VM: video Magnification; bpm: beats per minute.
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corroborates the results of a yet to be published study
conducted by the developers of the system testing the
current version of FaceReaderTM heart rate module.24

A previous investigation by Benedetto et al.48 led to the
conclusion that FaceReaderTM overestimated lower
heart rates and underestimated higher heart rate meas-
urements. The discrepancy between our study and
Benedetto et al.’s48 could possibly be due to methodo-
logical differences including the method used to cap-
ture facial expressions and possibly differences in
FaceReaderTM versions. Although more research is

required, our findings add confidence to
FaceReader’sTM ability to evaluate heart rate using
video of older adult participants.

Regarding our effort to validate FaceReaderTM pain
assessment estimates against manual coding of non-
verbal expressions, we obtained high correlations that
supported the validity of FaceReaderTM. This supports
the efficacy of fine-grained analysis (e.g., frame-by-
frame) methods to recognize facial pain responses
and provide substantial information.8 Moreover,
our investigation adds to the growing body of
literature demonstrating the performance of
FaceReaderTM.10,13,14,25–27

To the best of our knowledge, this is the first inves-
tigation of FaceReader’sTM heart rate module during
painful conditions in older adults. Our results support
the feasibility of FaceReaderTM to measure heart rate
during pain situations. Although physiological
responses during pain have shown considerable prom-
ise in our understanding of the experience,50–53,80

research on clinical application of such responses has
been very limited. An example of a potential applica-
tion might be during psychological interventions (e.g.,
distraction strategies) designed to mitigate negative
emotional states (e.g., fear) during acute
pain.81,82Monitoring physiological correlates (e.g.,
heart rate) of fear and fear of pain83 could facilitate
the direct evaluation of such interventions. More
research in this area is needed.

A caveat was that despite the high correlations, the
absolute values of pain scores based on FaceReaderTM

versus manual coding were discrepant during segments
that included the run-up to and the denouement of a
pain expression. This is evident in the mean differences
between the non-verbal pain scores calculated by
FaceReaderTM and manual coding for the full pain
segment and when pain is expressed. This suggests
that FaceReaderTM coded more pain related AUs
than trained coders. Specifically, FaceReaderTM-based
scores were higher than those of trained coders; how-
ever, this discrepancy effectively disappeared when
only examining the scores for the target pain response
(i.e., precise period of pain expression on the video).
The discrepancy suggests that FaceReaderTM may be
detecting additional facial movements that may
not have been deemed to be pain indicators in the
manual coding. For example, degree of coding agree-
ment was lowest for instances before and after the pain
response for brow lowering, orbit tightening, and eye
closure in comparison to the specific pain segment.
Although videos were cropped to allow for optimal
FaceReaderTM analysis and specific pain segments
were determined in order to remove extraneous arti-
facts (i.e., other facial expressions), a possible explana-
tion for this discrepancy could be that FaceReaderTM is

Table 2. Relationship between the mean non-verbal pain scores
obtained through FaceReaderTM and manual coding for the
videos incorporating the pain expression as well as preceding and
subsequent 3-s periods.

FaceReader Manual coding Mdiff r

Participant M SD M SD 1.48 0.95

LTC 1 2.56 1.44 0.90 1.57

LTC 2 2.36 0.83 1.03 0.90

Non-LTC 1 3.49 1.35 2.56 2.87

Non-LTC 2 2.68 0.81 0.68 1.88

Note: Pearson correlation (r) is significant at p< 0.05. The correlation

coefficient reflects 4 pairs of values (i.e., the FaceReader and FACS-based

pain estimation scores). df¼ 2.

LTC: long-term care; M: mean; SD: standard deviation.

Table 3. Relationship between the mean non-verbal pain scores
obtained through FaceReaderTM and manual coding during the
facial pain expression (excluding the preceding and subsequent 3-
s periods).

FaceReader Manual coding Mdiff r

Participant M SD M SD �0.20 0.96

LTC 1 3.96 1.95 3.60 1.26

LTC 2 2.39 0.84 2.00 0.00

Non-LTC 1 5.26 0.94 5.26 2.12

Non-LTC 2 3.45 0.52 5.00 3.00

Note: Pearson correlation (r) is significant at p< 0.05. The correlation

coefficient reflects 4 pairs of values (i.e., the FaceReader and FACS-based

pain estimation scores). df¼ 2.

LTC: long-term care; M: mean; SD: standard deviation.

Table 4. Pearson correlations (r) for FaceReaderTM and manual
coding’s mean pain related facial action intensity scores.

Brow

Lowering

Orbit

tightening

Levator

tightening

Full segment 0.629 0.154 0.574

Pain expression 0.948a –0.400 0.160

Note: Full pain segment includes 3 seconds before and after the facial

pain expression; df¼ 2, a¼ p< 0.05.
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based on an algorithm that is subject to different rules
than manual coding. As such, FaceReaderTM may be
picking up incipient movements in the anticipatory
window and/or vestigial movements in the denouement
window throughout the instance that pain is experi-
enced. The movements could be FACS AUs to which
the algorithm may be more sensitive to or which the
algorithm weighs differently.

Limitations and future directions

We recognize that the number of the videos analyzed in
this study poses limitations in the generalizability of
our findings. In addition, we recognize that there may
be a bias towards higher quality videos as our analysis
was limited to the video quality parameters of the
FaceReaderTM system and our ability to manually
obtain reliable heart rate results that were consistent
with each other when examining each patient’s face
and hands. Although this represents a generalizability
limitation for retrospectively analyzing video data,
future work could be aimed to test efficacy of
FaceReaderTM in videos with less optimal quality
against the VM algorithm and manual FACS-based
scores.

Moreover, although manual coding was set as the
criterion for this study, human coders are prone to
biases and errors. In addition, although reliability
analysis of the manual coding for this dataset was
supported, reliability merely sets an upper limit for
validity and should therefore be interpreted
cautiously. Nonetheless, we believe that using two
sets of analysis methods (i.e., FACS and
PACSLAC-II) by individual proficient coders to
define the pain segments adequately addresses the
manual coding validity issue. Discrepancies in scores
between FaceReaderTM and manual pain AU coding
could also be a result of the non-facial movements (e.g.,
head movements) that typically accompany a pain
response and that could have produced “noise” in the
automated coding:84 Future research should investigate
the scores calculated by FaceReaderTM in more con-
trolled and static expressions of pain.

Another limitation in our study was the nature of
archival videos themselves. We had little control over
technical features inherent to this dataset that may
have affected the analysis. For example, the

FaceReaderTM manual64 outlines recommended set-
tings to allow for optimal heart rate analysis (e.g.,
frame rate of at least 15 frames per second (fps) and
preferable frame rate of 30 fps). Although this dataset
had a frame rate of 15fps, a higher frame rate may have
yielded more accurate estimations. In addition, in con-
trast to studies examining rPPG systems which analyze
wide range of bpms and employ larger sample sizes,85

our study only examined approximately 8.05-s seg-
ments and 4 participants. Although this length was
deliberately chosen due to the brief nature of pain
expressions (e.g., lasting an average of 2 s), wider time
periods may render more comprehensive measure-
ments. Future research should examine the efficacy of
FaceReader’sTM rPPG system in relation to pain in
larger sample sizes and on longer durations, while
adhering to the recommended technical features of
the camera, movements and lighting outlined by
Noldus.64

The validity and feasibility of FaceReaderTM as a
heart rate and pain estimation tool can aid in expand-
ing the information that can be extracted in existing
video data sets. For instance, this would be helpful
for researchers who want to retrospectively examine
physiological estimations using FaceReader’sTM rPPG
system. In addition, the findings give confidence for the
growing use of FaceReaderTM in the estimation and
detection of pain from video data. Future investiga-
tions may incorporate pain estimation scores from
FaceReaderTM based on facial expressions in studies
looking at pain in other populations. Moreover, esti-
mating the intensity of pain using an automated system
from facial expressions can aid in the detection and
recognition of nonverbal pain indicators in older
adults with severe dementia who have difficulties
verbally communicating their pain. This avenue could
also guide in the development and testing of automated
pain detection systems.12 In addition, the findings lend
support to the potential use of the FaceReaderTM in
studies examining physiological reactions during pain
in retrospective analysis or when direct estimation may
not be feasible. Future investigations into this promis-
ing avenue of data collection and analysis will attempt
to strengthen our current findings regarding concor-
dance and reliability and incorporate previously
unavailable heart rate data into the understanding of
pain and functioning in older adults. The use of

Table 5. Mean percent agreement of facial action presence and absence between FaceReaderTM and manual coding.

Brow lowering Orbit tightening Levator tightening Eye closure

Before & after the pain expression 55% 30% 79% 75%

During the pain expression 85% 83% 76% 80%

Full segment 59% 42% 71% 79%
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FaceReaderTM technology to examine archival video

data bring previously inaccessible research questions

and projects within reach such as further delineating

the relationship of autonomic responses in the experi-

ence of pain and creating opportunities to more fully

utilize the extensive archives of video data available to

researchers.

Conclusion

The concordance between FaceReaderTM in relation to

standard manual FACS coding and optimized VM

algorithm’s estimated heart rate values and non-

verbal pain scores of older adults with and without

dementia was supported. The results of our investiga-

tion add to the growing body of literature demonstrat-

ing the validity of FaceReader’sTM rPPG system and

AU recognition. Discrepancies in the calculated non-

verbal pain scores between FaceReaderTM and trained

coders indicate that future research should assess the

correspondence of FaceReader’sTM non-verbal pain

estimations in relation to manually coded data in

images of facial pain expressions, larger sample sizes,

and longer periods. The concordance and effectiveness

of FaceReaderTM as a heart rate estimation tool is

promising, particularly as a tool for accessing health

information in vulnerable and under-treated popula-

tions such as older adults.
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