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Abstract

Background. Metabolic dysregulation is currently considered a major risk factor for hippo-
campal pathology. The aim of the present study was to characterize the influence of key
metabolic drivers on functional connectivity of the hippocampus in healthy adults.
Methods. Insulin resistance was directly quantified by measuring steady-state plasma glucose
(SSPG) concentration during the insulin suppression test and fasting levels of insulin, glucose,
leptin, and cortisol, and measurements of body mass index and waist circumference were
obtained in a sample of healthy cognitively intact adults (n = 104). Resting-state neuroimaging
data were also acquired for the quantification of hippocampal functional cohesiveness and
integration with the major resting-state networks (RSNs). Data-driven analysis using unsuper-
vised machine learning (k-means clustering) was then employed to identify clusters of individ-
uals based on their metabolic and functional connectivity profiles.
Results. K-means clustering identified two clusters of increasing metabolic deviance evidenced
by cluster differences in the plasma levels of leptin (40.36 (29.97) vs. 27.59 (25.58) μg/L) and the
degree of insulin resistance (SSPG concentration: 161.63 (65.27) vs. 125.72 (66.81) mg/dL).
Individuals in the cluster with higher metabolic deviance showed lower functional cohesiveness
within each hippocampus and lower integration of posterior and anterior components of the left
and right hippocampus with the major RSNs. The two clusters did not differ in general
intellectual ability or episodic memory.
Conclusions.We identified two clusters of individuals differentiated by abnormalities in insulin
resistance, leptin levels, and hippocampal connectivity, with one of the clusters showing greater
deviance. These findings support the link between metabolic dysregulation and hippocampal
function even in nonclinical samples.

Introduction

Excess body fact and metabolic dysfunction are epidemic in modernWestern societies. Abnormal-
ities in cellular metabolism, influenced by adiposity and glucose dysregulation, affect every tissue in
the body, including the central nervous system [1]. Impairments of glucose uptake and insulin
signaling in neuronal cells have been associated with deficits in neuronal plasticity and cognitive
function [2]. However, a detailed understanding of the effects excess adiposity and metabolic
impairment may have on higher-order cognitive function in humans remains elusive.

Resting-state functional magnetic resonance imaging (rs-fMRI) has been fundamental in
uncovering the functional architecture of the brain as inferred from the spontaneous fluctuations
in the blood-oxygen-level-dependent (BOLD) signal. Resting-state connectivity, defined as
correlations between these spontaneous BOLD fluctuations, has been used to define the spatio-
temporal characteristics of resting-state networks (RSNs) [3, 4]. The major and most consistent
RSNs can be divided into those supporting internally guided, higher-order mental functions
(i.e., the default-mode, central executive, and salience networks) and those supporting externally
driven, specialized sensory and motor processing (i.e., visual and sensorimotor networks) [5–8].

The default mode network (DMN) is considered the backbone of information integration in
the brain [9, 10]. A major subcortical hub of the DMN is the hippocampus, a medial temporal
lobe structure, that contributes to a wide array of cognitive functions, notably episodic memory
[11], visuospatial navigation [12], detection of contextual deviation [13, 14], and emotional
reactivity [15]. A rich literature, informed by cross species studies, has provided a detailed
description of the basic hippocampal anatomy and circuitry. The hippocampus is divided into the
dentate gyrus (DG), the cornu ammonis (CA) fields, and the subiculum, based on their distinctive
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cytoarchitectural and transcriptional profiles [16, 17]. This “trisy-
naptic pathway” is functionally organized into gradient domains
along its longitudinal axis; information generally enters into theDG
through the perforant pathway and flows through the CA fields to
reach CA1 and the subiculum, which project to multiple brain
regions [18–21].

Impaired hippocampal integrity is common in numerous and
diverse neuropsychiatric disorders with the DG and CA1 being the
most consistently implicated hippocampal subfields [22–27]. It has
been proposed that the mechanisms underlying hippocampal path-
ology across disorders may involve abnormalities in the biological
pathways subserving energy homeostasis and stress response. In
preclinical models, insulin resistance, defined as reduced responsive-
ness of the insulin-signaling pathways, has been shown to impair the
structural and functional integrity of the hippocampus through its
adverse impact on dendritic spine and synapse formation, activity-
dependent synaptic plasticity, and neurogenesis [28–30]. In humans,
insulin resistance is the hallmark of type 2 diabetes mellitus and has
been associated with hippocampal hypoconnectivity [31–33] that
can be reversed following administration of intranasal insulin
[34]. Adiposity, typically expressed as body mass index (BMI) and
waist circumference (WC), is a further risk factor for hippocampal
dysfunction, acting through multiple pathways which critically
involve leptin, a hormone secreted by adipocytes [35]. Adiposity is
also closely linked to over-activation of the hypothalamic–pituitary–
adrenal (HPA) axis [36] which may contribute to hippocampal
dysfunction because of the high concentration of cortisol receptors
in the hippocampus [37]. Cortisol, a stress hormone, can be elevated
in obese individuals as an inflammatory response and as an allostatic
stress factor [38]. Therefore,measures of adiposity, insulin resistance,
and HPA activation show a tight functional association that influ-
ences the metabolic status of each individual.

The aim of the current study was to expand current understand-
ing of the effect of insulin resistance, adiposity, and HPA function
on the resting-state connectivity of the hippocampus in healthy and
cognitively intact adults. We focused on the internal functional
cohesiveness of the left and right hippocampus and their functional
integration within the wider intrinsic architecture of the brain.
Furthermore, aligned with the notion that hippocampal functional
integrity is jointly defined by the circulating levels of insulin, leptin,
and cortisol, we used unsupervised clustering to test the hypothesis
that healthy individuals can be stratified into subgroups based on
their metabolic and hippocampal functional connectivity profiles.

Methods

Sample recruitment

One hundred and twenty-six adult men and women were recruited
by advertisement from the campus and surrounding neighborhoods
of Stanford University. Enrolled participants were screened to
exclude individuals with endocrine, neurological, cardiovascular,
andpsychiatric disorders or contraindications tomagnetic resonance
imaging (details in the Supplementary Material). Ethical approval
was obtained from the Human Subjects Committee of Stanford
University, and all participants provided written informed consent.

Procedures

The study involved two visits within a month, at the Stanford
Clinical and Translational Research Unit and the Center for Cog-
nitive and Neurobiological Imaging.

Cognitive evaluation
An estimate of current intelligence quotient was assessed using the
Wechsler Abbreviated Scale of Intelligence, Second Edition [39],
and two of its subtests, the Digit Symbol-Pairing andDigit-Symbol-
Free Recall, were used to evaluate episodic memory.

Anthropometric measures of fat mass
Participants’ WC, height (in meters), and weight (in kilograms)
were determined using standardized procedures (details in the
Supplementary Material). The BMI was then calculated as
weight/height squared.

Laboratory assessments
After a 10-h overnight fast, blood samples were drawn for meas-
urement of fasting plasma insulin (FPI), fasting plasma glucose
(FPG), leptin levels, and cortisol levels (details in the Supplemen-
tary Material).

Modified insulin suppression test
Immediately following the blood draw for the laboratory tests,
participants underwent the insulin suppression test (IST) [40, 41]
for the quantification of insulin-mediated glucose uptake (details in
the Supplementary Material). The IST is an established test com-
parable to the more invasive and laborious euglycemic clamp
[42]. During the IST, the endogenous insulin secretion is sup-
pressed by octreotide acetate infusion, and hepatic glucose produc-
tion is suppressed by the combination of physiological
hyperinsulinemia and glucose infusion. The steady-state plasma
insulin concentrations achieved in this fashion are similar across
individuals, and the magnitude of the steady-state plasma glucose
(SSPG) provides a direct measure of peripheral insulin sensitivity;
higher SSPG concentration reflects greater insulin resistance.

Neuroimaging acquisition and preprocessing
Anatomical T1 images and rs-fMRI data were acquired in all
participants using a 3T GE Discovery MR750 scanner (https://
www.gehealthcare.com/products/magnetic-resonance-imaging/3-
0t/discovery-mr750). All preprocessing was carried out using Stat-
istical Parametric Mapping software (SPM12; https://www.fil.ion.
ucl.ac.uk/spm/software/spm12/). Details of the acquisition
sequences, quality assurance, and data processing are provided in
the Supplementary Material.

Functional connectivity
In each participant, the Anatomy Toolbox [43] in SPM12 was
used to define maximum probability regions of interest (ROIs)
in Montreal Neurological Institute (MNI) space corresponding
to the whole hippocampus, the DG, and the CA1/subiculum in
each hemisphere. In addition, the central executive network
(CEN), salience network (SAL), visual network (VIS), and sen-
sorimotor network (SMN) were defined using templates pro-
vided by the consensual atlas of resting-state network (CAREN)
[44] (details in the Supplementary Material and Supplementary
Figure S1).

Hippocampal cohesiveness (i.e., functional connectivity within
the hippocampus) was computed separately for the left and right
hippocampus; in each hippocampus, cohesiveness was calculated as
the Fisher Z-transformed Pearson’s correlation coefficient of the
average BOLD signal time series of each hippocampal voxel with
that of all the other hippocampal voxels. Prior studies have shown
that the anterior and posterior hippocampus have different connect-
ivity profiles [18–21]. In the human neuroimaging literature, the
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uncal apex has been typically used to define the anterior and poster-
ior segments; however, this approach results in segments with a
mixture of hippocampal subfields and does not accommodate
inter-individual variability [19]. Here, we used the ROIs defined in
the left and right DG and CA1/subiculum as, respectively, represen-
tative of the posterior and anterior segments of the left and right
hippocampus. The functional integration of the hippocampuswithin
the intrinsic functional architecture of the brain was computed as the
correlation between the average BOLD signal time series of each of
the CAREN-defined RSNs and that of each posterior and anterior
segment.

Statistical analyses

Out of 126 participants, only 104 had undergone both neuroima-
ging and direct measures of insulin resistance during the IST.
Descriptive statistics were used to summarize the sample charac-
teristics. After regressing-out the effect of age and sex, the Spear-
man’s correlation coefficient was used to assess the association
matrix of the metabolic and the functional connectivity measures.
As these associations represent the basic matrix of the dataset,
statistical significance was reported at p < 0.05.

Participants were classified into clusters according to proximity
criteria bymeans of the k-means algorithm implemented in R using
version 3.0 of the NbClust package (https://cran.r-project.org/web/
packages/NbClust/NbClust.pdf) using the BMI, WC, SSPG, FPI,
FPG, leptin levels, and cortisol levels, and the hippocampal cohe-
siveness and integration measures as input data. We included both
metabolic and connectivity measures as input features into the k-
means algorithm as we considered them as a compound phenotype
emerging through complex interactions between the individual
features. An alternate approach which considers only the metabolic
blood-based measures as input features is presented in the Supple-
mentary Material.

In the algorithm, K points, serving as initial cluster centroids,
were placed into the space represented by the sample. Then each
participant was assigned to a cluster based on its proximity to its
centroid.When all participants had been assigned, the positions of
the K centroids were recalculated. The process is then repeated
until the centroids remain unchanged. This process separates
participants into homogenous clusters while maximizing hetero-
geneity between clusters. The number of clusters was identified
based on the solution endorsed by majority vote of fit indices. The
clusters of the optimal solution were compared in terms of sex,
ethnicity, and average and maximum volume-to-volume head
displacement.

Results

The sample of the analyses comprised 104 individuals for whom
complete data were available in Supplementary Table S1. The
majority of participants (n = 89; 86%) had normal FPG levels
(<100 mg/dL), whereas in the remainder (n = 15; 14%) could be
considered prediabetic as their FPG levels ranged between 100 and
120 mg/dL [45]. Furthermore, 14 (13%) participants had a normal
BMI, whereas 53 (51%) were overweight and 37 (36%) were obese.
Sex- and age-adjusted correlations among all the measures exam-
ined are provided in Table 1 and Supplementary Tables S2 and S3.
With the exception of the cortisol levels, all metabolic measures

were significantly correlated with one another (all p < 0.001; Sup-
plementary Table S2).

K-mean clustering identified two clusters with amajority vote of
seven fit indices (whereas other solutions were supported by three
or less). Individuals in Cluster 1 (n = 51) had higher SSPG and
leptin levels and lower hippocampal cohesion and integration
compared to those in Cluster 2 (n = 53; Table 2 and Figure 1).
Individuals in Cluster 1 were more likely to be female (p = 0.002),
but did not differ in cognitive or any other sociodemographic
feature (Table 2). In addition, there were no significant cluster
differences in either the average or the maximum head displace-
ment (p > 0.05). These findings were recapitulated in supplemental
analyses in which only metabolic measures were used as input
features for clustering (details in the Supplementary Material and
Supplementary Figure S2).

Discussion

In this study, we aimed to assess hippocampal functional connect-
ivity in relation to the anthropometric and peripheral metabolic
measures. We identified two distinct clusters that differed in hip-
pocampal functional connectivity and metabolic function. Relative
to Cluster 2, Cluster 1 comprised individuals with higher leptin, a
greater magnitude of insulin resistance, lower hippocampal cohe-
sion and integration, but intact selective cognitive domains of
interest.

The current study further expands our earlier investigation of
20 healthy women at risk for Alzheimer’s disease (AD) in whom
higher insulin levels were associated with lower hippocampal-
prefrontal resting-state connectivity [46]. Other groups have
reported hippocampal “hypoconnectivity” at rest, albeit with
diverse inter-study patterns, in elderly individuals with episodic
memory difficulties [23, 47] as well as in individuals with mild
cognitive impairment or incipient dementia [48]. The present
findings that higher levels of leptin and greater insulin resistance
cluster together with lower hippocampal functional cohesiveness
and integration suggest that hippocampal “hypoconnectivity”may
represent an early sign of hippocampal distress that predates
cognitive dysfunction. This notion is also consistent with findings
in AD where hippocampal functional deterioration predates cog-
nitive decline [49]. Although firm conclusions must await longitu-
dinal studies, the present observations strongly indicate that lower
hippocampal connectivity may be an informative biomarker of
diminished hippocampal integrity in metabolically challenged
but otherwise healthy individuals.

Investigations of the association between metabolic measures
and neuroimaging variables have typically relied on regression
analyses which assume that the predictor variables represent
independent observations with uniform linear associations across
the entire sample. However, as we have shown here, measures of
insulin-dependent-glucose uptake and adiposity are highly correl-
ated (Supplementary Table S2) and prior literature has shown that
their association is complex and interactive: obesity engenders
insulin resistance [50, 51], but not all overweight or obese individ-
uals are insulin resistant [52]. Therefore, the internal milieu of each
individual person is likely to reflect the joint influences of these
metabolic pathways.

Accordingly, we used a person-based data-driven approach to
identify clusters of individuals based on their combinedmetabolic
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Table 1. Age- and sex-adjusted Spearman correlation coefficients (Rho) among measures of fat mass, insulin-dependent glucose uptake, leptin, and cortisol and
hippocampal functional connectivity measures with the resting-state networks.

SSPG FPI FPG BMI WC Leptin Cortisol

Left

CA1/Sub-CEN Rho-value 0.21 0.15 0.04 0.14 0.21 0.18 �0.26

p-value 0.04 0.13 0.67 0.17 0.03 0.07 0.01

CA1/Sub-SAL Rho-value �0.19 �0.16 �0.05 �0.16 �0.17 �0.20 �0.03

p-value 0.05 0.12 0.61 0.11 0.08 0.04 0.75

CA1/Sub-SMN Rho-value �0.23 �0.17 �0.10 �0.24 �0.27 �0.19 0.06

p-value 0.02 0.09 0.30 0.01 0.005 0.05 0.53

CA1/Sub-VIS Rho-value �0.07 �0.11 0.11 �0.005 �0.05 �0.05 0.05

p-value 0.49 0.28 0.29 0.96 0.61 0.59 0.59

DG-CEN Rho-value 0.09 0.15 �0.03 0.21 0.20 0.21 �0.19

p-value 0.37 0.14 0.80 0.04 0.04 0.03 0.05

DG-SAL Rho-value �0.23 �0.16 �0.05 �0.05 �0.16 �0.13 0.003

p-value 0.02 0.11 0.61 0.59 0.11 0.19 0.98

DG-SMN Rho-value �0.16 �0.10 �0.06 �0.09 �0.18 �0.10 0.18

p-value 0.10 0.31 0.54 0.37 0.06 0.34 0.07

DG-VIS Rho-value 0.004 �0.04 0.23 0.11 0.07 0.09 0.06

p-value 0.97 0.67 0.02 0.26 0.47 0.34 0.55

Right

CA1/Sub-CEN Rho-value 0.12 0.21 0.10 0.17 0.20 0.11 �0.07

p-value 0.23 0.04 0.31 0.09 0.04 0.28 0.50

CA1/Sub-SAL Rho-value �0.14 �0.14 �0.02 �0.02 �0.13 �0.17 0.002

p-value 0.14 0.16 0.82 0.88 0.20 0.08 0.98

CA1/Sub-SMN Rho-value �0.28 �0.22 �0.12 �0.19 �0.32 �0.25 0.09

p-value 0.004 0.02 0.22 0.05 0.001 0.01 0.35

CA1/Sub-VIS Rho-value �0.03 �0.03 0.12 �0.02 �0.09 �0.06 0.08

p-value 0.72 0.73 0.24 0.87 0.38 0.53 0.42

DG-CEN Rho-value 0.04 0.13 0.09 0.06 0.11 0.13 �0.20

p-value 0.71 0.18 0.35 0.52 0.25 0.19 0.04

DG-SAL Rho-value �0.22 �0.13 �0.08 �0.07 �0.16 �0.10 0.01

p-value 0.03 0.19 0.42 0.45 0.10 0.31 0.90

DG-SMN Rho-value �0.15 �0.16 �0.06 �0.11 �0.23 �0.10 0.14

p-value 0.13 0.11 0.53 0.25 0.02 0.33 0.17

DG-VIS Rho-value 0.002 �0.08 0.13 �0.03 �0.11 �0.09 0.06

p-value 0.98 0.40 0.18 0.74 0.27 0.37 0.58

Abbreviations: BMI, body mass index; CA1, cornu ammonis 1; CEN, central executive network; DG, dentate gyrus; FPI, fasting plasma insulin, FPG, fasting plasma glucose; SAL, salience network;
SMN, sensorimotor network; SSPG, steady-state-plasma glucose; Sub, subiculum; VIS, visual network; WC, waist circumference.
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and hippocampal connectivity characteristics. We identified two
clusters of increasing metabolic deviance primarily differentiated
by the plasma levels of leptin and the degree of insulin resistance,
as inferred by the SSPG. Leptin is an adipocytokine, secreted
primarily from white adipose tissue, whose circulating levels
correlate directly with body fat mass [53]. Women generally have
higher leptin levels than men which may explain their overrepre-
sentation in Cluster 1 [54]. Leptin enters the brain readily and
regulates satiety and food intake through its action on hypothal-
amic circuits [55]. Leptin and insulin are linked through a bidir-
ectional feedback loop, referred to as the adipoinsular axis [56],
whereby leptin inhibits insulin synthesis and secretion, whereas
insulin stimulates leptin secretion.

The hippocampus is rich in both insulin and leptin receptors
[57, 58]. Preclinical studies have shown that insulin-mediated
glucose uptake is critical for hippocampal dendritic spine and
synapse formation [59], activity-dependent plasticity, and neuro-
genesis [60]. However, the effect of leptin on the hippocampus is

more complex; adaptive leptin-induced regulation of hippocam-
pal synaptic plasticity by leptin occurs within a narrow concen-
tration range, so that both low and high leptin levels are
ineffectual [61].

Resting-state functional connectivity and data-driven cluster-
ing are powerful tools for examining the association between
hippocampal connectivity and the metabolic status. Our methods
are further strengthened by rigorous neuroimaging quality con-
trol and elimination of images potentially compromised by
motion artifacts; nevertheless, the present results derive from a
single sample, and thus replication is critical. We chose RSN
templates from CAREN [44] because this approach enhances
replicability but acknowledge that there are other ways to define
RSNs. We defined the anterior and posterior portions of the
hippocampus using probabilistic maps which are more reliable
and informative than landmark-based divisions that use the uncal
apex; however, the micro-level complexity of the hippocampal
circuitry cannot be fully accessed usingmacro-level neuroimaging

Table 2. Sociodemographic and metabolic characteristics of the clusters.

Variable Cluster 1 (N = 51) Cluster 2 (N = 53) p-Value

Sociodemographic measures

Sex, female, N (%) 40 (78%) 26 (49%) 0.002

Age, years, mean (SD) 40.04 (7.89) 38.23 (8.98) 0.28

Ethnicity 0.50

White, N (%) 19 (49%) 37 (57%)

Asian, N (%) 12 (31%) 20 (31%)

Other, N (%) 8 (20%) 8(12%)

Education, years, mean (SD) 17.66 (5.09) 17.25 (3.38) 0.63

Cognitive measures

IQ, mean (SD)a 117.55 (10.02) 120.68 (13.62) 0.19

Digit symbol pairing, mean (SD)a 13.55 (4.86) 13.92 (4.90) 0.70

Digit symbol free recall, mean (SD)a 7.90 (1.14) 7.96 (1.07) 0.78

Mini mental state examination, mean (SD) 28.71 (1.27) 28.89 (1.24) 0.46

Anthropometric measures of fat mass

WC, m, mean (SD)b 0.98 (0.12) 0.97 (0.09) 0.41

BMI, kg/m2, mean (SD)b 29.6 (4.5) 28.1 (3.4) 0.48

Normoweight, N (%) 10 (20%) 9 (17%) 0.36

Overweight, N (%) 20 (39%) 28 (53%)

Obese, N (%) 21 (41%) 16 (30%)

Laboratory measures

Fasting leptin, μg/L, mean (SD)b 40.36 (29.97) 27.59 (25.58) 0.007

Fasting glucose, mg/dL, mean (SD)b 91 (10) 89 (10) 0.39

SSPG, mg/dL, mean (SD)b 161 (65) 126 (67) 0.005

Fasting insulin, mU/L, mean (SD)b 10.60 (7.34) 9.46 (4.59) 0.50

Cortisol, μg/L, mean (SD)b 8.69 (4.58) 9.19 (4.87) 0.68

Note: Normoweight: 21 ≤ BMI ≤ 25; Overweight: 26 ≤ BMI <29; Obese: 30 ≤ BMI ≤ 41.
Abbreviations: BMI, body mass index; IQ, intelligence quotient; SD, standard deviation; SSPG, steady-state plasma glucose; WC, waist circumference.
aCognitive measures were assessed using the Wechsler Abbreviated Scale of Intelligence, Second Edition.
bMann–Whitney U tests employed for variables with nonnormal distribution.

European Psychiatry 5



measures. The connectivity analyses were correlational and cross-
sectional, and therefore they cannot establish causative links with
the metabolic variables.

In conclusion, we identified two clusters of individuals differ-
entiated by the degree of abnormalities in insulin resistance, leptin
levels, and hippocampal hypoconnectivity. These findings demon-
strate the link between metabolic dysregulation and hippocampal
function even in nonclinical sample. Furthermore, planned follow-
up assessment of the current sample will enable examination of the
longitudinal trajectories of the association between metabolic risk
and hippocampal function.

Supplementary Materials. To view supplementary material for this article,
please visit http://doi.org/10.1192/j.eurpsy.2022.21.
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