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Abstract

Motivation: The number of microbial and metagenomic studies has increased drastically due to

advancements in next-generation sequencing-based measurement techniques. Statistical analysis

and the validity of conclusions drawn from (time series) 16S rRNA and other metagenomic

sequencing data is hampered by the presence of significant amount of noise and missing data

(sampling zeros). Accounting uncertainty in microbiome data is often challenging due to the diffi-

culty of obtaining biological replicates. Additionally, the compositional nature of current amplicon

and metagenomic data differs from many other biological data types adding another challenge to

the data analysis.

Results: To address these challenges in human microbiome research, we introduce a novel prob-

abilistic approach to explicitly model overdispersion and sampling zeros by considering the tem-

poral correlation between nearby time points using Gaussian Processes. The proposed Temporal

Gaussian Process Model for Compositional Data Analysis (TGP-CODA) shows superior modeling

performance compared to commonly used Dirichlet-multinomial, multinomial and non-parametric

regression models on real and synthetic data. We demonstrate that the nonreplicative nature of

human gut microbiota studies can be partially overcome by our method with proper experimental

design of dense temporal sampling. We also show that different modeling approaches have a

strong impact on ecological interpretation of the data, such as stationarity, persistence and envir-

onmental noise models.

Availability and implementation: A Stan implementation of the proposed method is available

under MIT license at https://github.com/tare/GPMicrobiome.

Contact: taijo@flatironinstitute.org or rb113@nyu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microbial ecology involves the study of microorganisms’ relation-

ships with each other and with their environment and aims to pro-

vide insights into structure and dynamics of ecological networks

(Kurtz et al., 2015), ecological stability (Faith et al., 2013),

biodiversity (Lozupone et al., 2012) and discovery of key taxa in

ecosystems (Ivanov et al., 2009).

16S ribosomal RNA (rRNA) amplicon sequencing (targeted

next-generation sequencing of 16S rRNA gene) has proven to be a

cost-effective, culture-free and highly multiplexed method to

VC The Author 2017. Published by Oxford University Press. 372

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 34(3), 2018, 372–380

doi: 10.1093/bioinformatics/btx549

Advance Access Publication Date: 13 September 2017

Original Paper

https://github.com/tare/GPMicrobiome
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx549#supplementary-data
https://academic.oup.com/


identify and compare bacterial compositions present within biolo-

gical samples across a wide range of habitats, including natural en-

vironments (Hell et al., 2013; Meron et al., 2012) and different host

organisms (Kuczynski et al., 2011; Yatsunenko et al., 2012). While

the majority of amplicon sequencing studies has been cross-sectional

in nature or based on few selected time points, it has been recog-

nized that longitudinal studies with the aim of mapping the trajecto-

ries of microbiota over time are a prerequisite for a deeper

understanding of ecological mechanisms in the microbiome and for

the development of microbiome therapies (Fisher et al., 2014;

Gerber, 2014). Sparsely sampled microbial time series have already

revealed dynamic reorganization of gut microbial compositions dur-

ing early development in humans (Yatsunenko et al., 2012) and

upon external perturbations through antibiotic treatment (Jernberg

et al., 2010), and have identified significant differences in vaginal

microbiota during pregnancy (Romero et al., 2014). The richest re-

source to date for long-term longitudinal amplicon studies are the

landmark studies by Caporaso et al. (2011) and David et al. (2014)

which provide human-associated microbial compositions on a daily

time scale spanning hundreds of days. Caporaso et al. (2011) quan-

tify natural variations of microbial compositions within and among

four body sites across time. David et al. (2014) focus on the effects

of host lifestyle, including travel, change of diet and infection, on

changes in the human gut microbiome.

While statistical time series analysis has an extensive and success-

ful history in classical genomics (Aach and Church, 2001;

Ahdesmäki et al., 2007; Äijö et al., 2014; Bar-Joseph et al., 2004,

2012; Bonneau et al., 2006; Leek et al., 2006), few attempts have

been made to model amplicon-based temporal data in a principled

statistical manner (Bucci et al., 2016; Gerber et al., 2012). This may

stem in part from the fact that standard multivariate techniques can

not be applied to amplicon-based sequencing data. Firstly, as com-

pared to other technologies such as flow cytometry (Amann et al.,

1990) and conventional plate counting that allow absolute taxa

abundance measurements, standard 16S rRNA count data can only

reveal relative abundances of taxa, thus rendering individual taxa

counts not independent. Secondly, statistical analysis of 16S rRNA

sequencing count data is complicated by the presence of overdisper-

sion and missing data. Missing data manifests as an excessive num-

ber of zero counts due to imperfect sampling (i.e, zero-inflation and

sampling zeros). Separation of sampling zeros (zeros due imperfect

sampling) from structural zeros (true, biologically meaningful,

zeros) is a common challenge in the analysis of many current biolo-

gical data types, including single-cell RNA sequencing (Brennecke

et al., 2013) and shotgun protein mass spectrometry data

(Webb-Robertson et al., 2015). In the context of human-associated

microbiome studies, amplicon-based sequencing studies face the

additional restriction that well-controlled biological replicates (from

different individuals) are not available due to different genetic back-

ground, environmental exposure and life style of human subjects.

Different approaches have been proposed to deal with these in-

trinsic characteristics of (cross-sectional) 16S rRNA sequencing data

[see, e.g. Xu et al. (2015) for a recent comparison]. Methods based

on the negative binomial (NB) distribution (popular in modeling

RNA sequencing data) have been proposed for modeling overdisper-

sion in 16S rRNA data, and zero-inflated negative binomial (ZINB)

and zero-inflated Gaussian (ZIG) (Joseph et al., 2013) mixture mod-

els have been successfully used to fit excessive numbers of zeros.

However, the NB and ZINB distributions model taxa as independ-

ent, thus ignoring the intrinsic compositional nature of the data.

Moreover, the binary distribution component of ZINB only in-

creases the probability of zeros instead of modeling the source of

zeros (true vs. non-detected due to sequencing depth) (Mohri and

Roark, 2005). The impossibility of obtaining well-controlled biolo-

gical replicates of human microbiome samples limits the applicabil-

ity of NB distribution and ZINB in that context because

overdispersion of (taxon-specific) counts caused by biological vari-

ation cannot be reliably estimated. In light of these limitations, sev-

eral methodologies have been proposed for simultaneous modeling

of taxa through their relative abundances, such as the Dirichlet-

multinomial (DM) (Chen and Li, 2013; Holmes et al., 2012) and lo-

gistic normal multinomial models (Xia et al., 2013). The logistic

normal multinomial model is a generalized linear model (GLM) uti-

lizing the logit link function, thus enabling the use of well-

established theory and methods of linear models for modeling count

data and relative abundances. Both models are extremely powerful

for cross-sectional studies with proper biological replicates. Yet, ex-

tending these models to time course data analysis has thus far been

limited to point-wise analysis, followed by projecting the dynamics

using low-dimensional embedding (Caporaso et al., 2011) or calcu-

lating different diversity metrics or temporal summary statistics

across pairs of time points (Faust et al., 2015; Flores et al., 2014).

Recent approaches that utilize the full potential of the data by con-

sidering temporal dependencies among the data points include MC-

TIMME (Gerber et al., 2012) which uses exponential relaxation

processes to model time-varying counts (Gerber et al., 2012) and

BioMiCo (Shafiei et al., 2015) which uses a supervised hierarchical

mixed-membership model to track groups of taxa over time. Other

methods rely on deterministic regularized model fitting using gener-

alized Lotka-Volterra equations (Buffie et al., 2015; Bucci et al.,

2016; Stein et al., 2013).

In this study, we present a fully Bayesian probabilistic model, the

Temporal Gaussian Process Model for Compositional Data Analysis

(TGP-CODA), that tackles the compositionality, overdispersion,

and zero-inflation in 16S rRNA sequencing data through temporal

analysis. Our approach is based on the assumption that by sharing

information across time points it is possible to improve inference of

overdispersion and zero-inflation parameters. We demonstrate that

our model can accurately distinguish sampling zeros from structural

zeros by using the temporal correlation and the global effect of sam-

pling zeros on the compositions. Our generative hierarchical model

combines a multinomial distribution with Gaussian processes (for

each taxon to model connections between time points), includes ex-

plicit model-based zero-inflation and overdispersion components,

and can seamlessly integrate non-uniformly sampled time series

(Section 2). We compare our temporal approach to the state-of-the-

art DM model on realistic synthetic data and demonstrate more ac-

curate composition estimation. We also model and reanalyze the

long-term longitudinal gut microbiota datasets of four individuals

(Caporaso et al., 2011; David et al., 2014) using TGP-CODA and

maximum likelihood approaches (Section 3). We demonstrate (i)

that the dynamical behavior of bacterial orders are globally stable

but can accelerate upon environmental perturbations, (ii) that our

Bayesian model is robust to missing time points and (iii) that esti-

mates of fundamental ecological indicators such as taxa persistence

times and taxa stationarity are dependent on the underlying tem-

poral model.

2 Materials and methods

We first describe TGP-CODA, our Bayesian generative model that

integrates temporal, overdispersion and zero-inflation components

for analyzing longitudinal 16S rRNA sequencing data (Fig. 1).
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2.1 Data likelihood
Let M be the number of taxa, T the number of measurement time

points, and T (jT j ¼ T) the set of measurement time points. Let

x
ið Þ

t be the number of observed reads assigned to the ith taxon at

time point t 2 T (the corresponding random variable is denoted

by X
ið Þ

i ), where every read is assigned exactly to one taxon. For

notational simplicity, let xt ¼ x
1ð Þ

t ; x
2ð Þ

t ; . . . ;x
Mð Þ

t

� �T
and

Xt ¼ X
1ð Þ

t ;X
2ð Þ

t ; . . . ;X
Mð Þ

t

� �T
. Additionally, let us denote the total

number of taxa assigned reads at time point t by Nt ¼
PM

i¼1 x
ðiÞ
t .

Next, let us assume: (1) Nt taxa reads are sampled independently

of each other and (2) the M possible outcomes have fixed proba-

bilities, Ht 2 SM (M-dimensional simplex), at time point t.

Then, Xt follows multinomial distribution with the parameters

Ht and Nt

Xt �MultinomialðHt;NtÞ; t 2 T : (1)

The normal approximation to the multinomial (Severini, 2005),

while computationally convenient, is not applicable in this case even

for large values Nt because Ht is empirically observed to be located

close to a corner of the simplex SM (i.e. there are many lowly abun-

dant taxa).

Next, let us define the likelihood in the case of multiple time

points. Let us denote the collection of Ht over T time points by:

H ¼ ðHt1
; Ht2

; . . . ; HtT
Þ; where ti 2 T ; i ¼ 1; 2; . . . ;T: (2)

The data likelihood assuming independence of observations at dif-

ferent time points (true for sequential sampling from a population)

(Fig. 1; see the ‘Likelihood’ section), x ¼ fxtjt 2 T g, is

pðxjHÞ ¼
Y
t2T

pðxtjHtÞ ¼
Y
t2T

Nt!QM
i¼1 x

ðiÞ
t !

YM
i¼1

HðiÞ
x
ðiÞ
t

t

 !
; (3)

which can be used to evaluate the likelihood of the data, xt; ti 2 T
given the parameter Ht.

2.2 Temporal modeling of microbiome compositions
Modeling in compositional space is notoriously challenging (model-

ing fractions of population or fractions of reads, for example)

(Aitchison, 1982): (i) the compositional space enforces restrictions

on the modeling domain, which might not be easily expressible in

the selected modeling framework (due to the intrinsic dependency

among all taxa) and (ii) the differences in relative abundances of

taxa can vary over multiple orders of magnitude, which, combined

with compositional effects renders the direct modeling of relative

abundances a hard task. To overcome these challenges, modeling

log odds ratios between taxa in real space have been proposed, typ-

ically followed by a transformation to map the real values to a sim-

plex (Aitchison, 1982; Holmes et al., 2012). In this study, we will

use the commonly used softmax transformation (e.g. in multinomial

logistic regression) which is a generalization of the logistic function

(Bishop, 2006). The softmax transformation from R
M�1 to SM is

defined as follows

Ht ¼ SoftmaxðGtÞ ¼

exp G
ð1Þ
t

� �
1þ

PM�1
i¼1 exp G

ðiÞ
t

� �
..
.

exp G
ðM�1Þ
t

� �
1þ

PM�1
i¼1 exp G

ðiÞ
t

� �
1

1þ
PM�1

i¼1 exp G
ðiÞ
t

� �

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
; (4)

where Gt 2 R
M�1 (Bishop, 2006). The explicit assumption G

ðMÞ
t ¼ 0

in Equation (4) makes the softmax transformation bijective. The

softmax transformation is required because the multinomial likeli-

hood parameters, Ht, are constrained to lie in the M-dimensional

simplex. Next, let us denote the collection of Gt over T time

points by

G ¼ ðGt1
; Gt2

; . . . ; GtT
Þ; where ti 2 T ; i ¼ 1;2; . . . ;T; (5)

with the element-wise softmax transformation [see also Equation (2)]

H ¼ SoftmaxðGÞ ¼ ðSoftmaxðGt1
Þ; . . . ; SoftmaxðGtT

ÞÞ : (6)

Next, we will describe the temporal component of our generative

model. It is unknown a priori how relative abundances of bacterial

taxa vary over time and how treatments and abrupt changes in the

environment might alter ecological dynamics. Therefore, we do not

want to restrict the model and the resulting dynamics by strong as-

sumptions on functional forms of temporal relative abundances.

Thus, we will take a non-parametric approach and use a Gaussian

process kernel to model temporal dynamics, requiring only weak as-

sumptions (such as smoothness) on the temporal characteristics of

the signal (Rasmussen and Williams, 2005).

We assume that GðiÞ; i ¼ 1; 2; . . . ;M� 1 (ith row of G) are smooth,

and the time series data is well sampled (i.e. well-designed experiments

to match the modeling objective). We will model GðiÞ; i ¼ 1; 2; . . . ;

M� 1 using Gaussian process (Rasmussen and Williams, 2005)

GðiÞ
T

� GPð0;KGðiÞ ðT ; T ÞÞ ; (7)

where KGðiÞ ðT ; T Þ 2 R
T�T ; i ¼ 1; 2; . . . ;M� 1 is a symmetric and

positive-definite covariance matrix

KG ið Þ T ; Tð Þ ¼
k t1; t1jcG ið Þ
� �

. . . k t1; tT jcG ið Þ
� �

..

. . .
. ..

.

k tT ; t1jcG ið Þ
� �

. . . k tT ; tT jcG ið Þ
� �

0B@
1CA : (8)

Fig. 1. Statistical model and prior distributions. A graphical representation of

our model. Grey and white circles depict observed variables and latent vari-

ables, respectively. Grey squares represent user-definable parameters. The

Gaussian processes, G, model noise-free real-valued ‘compositions’ (log

odds ratios), which are used as a basis for generating noisy real-valued ‘com-

positions’ (log odds ratios), F. Noisy compositions, H, are obtained from F by

applying the softmax transformation. Zero-inflation-aware compositions, Hzi,

are obtained from H and b by Hzi ¼ UðH; bÞ [Equation (13)]. The likelihood of

data is evaluated using the zero-inflation-aware composition parameters, Hzi .

Underlying unobservable noise-free compositions, HG, are obtained from G

by applying the softmax transformation

374 T.Äijö et al.



The term kð�; �jcGðiÞ Þ is the covariance function given the hyperpara-

meters cGðiÞ . In this work, we use the squared exponential covariance

function

kðt; t0jcGðiÞ Þ ¼ g2
i exp ð�q�2

i ðt � t0Þ2Þ; (9)

where cGðiÞ ¼ ðg2
i ; q

2
i Þ with gi denoting the signal variance parameter

and qi the characteristic length scale.

2.3 Modeling overdispersion of counts
When the values Nt are large and no replicates are available, the

data likelihood [Equation (3)] will dominate the Gaussian pro-

cess prior [Equation (7)] leading to overfitting of Ht.

Consequently, inherent biological and technical variations are se-

verely underestimated. Notably, the DM and logistic normal

multinomial models suffer from the same problem [this is appar-

ent from the forms of maximum likelihood and Bayes estimators

in Supplementary Equations (1) and (4), respectively]. Thus, it is

advantageous to explicitly model sampling variation in Ht; t 2 T
by introducing an additional level of random variables to the

hierarchical model

F ¼
F 1ð Þ

..

.

F M�1ð Þ

0B@
1CA; (10)

where FðiÞ 2 R
T ; i ¼ 1;2; . . . ;M� 1 are row vectors that depend on

GðiÞ and r2
ðiÞ as follows:

F ið ÞT � N G ið ÞT ;r2
ið ÞI

� �
; i ¼ 1; 2; . . . ;M� 1; (11)

where r2
ið Þ is assumed to be constant over time (i.e. sampling vari-

ation is similar over time series) in order improve identifiability. In

this extended model, H is obtained by applying the softmax trans-

formation on F [see also Equation (2)]

H ¼ SoftmaxðFÞ ¼ ðSoftmaxðFt1
Þ; . . . ; SoftmaxðFtT

ÞÞ; (12)

where ti 2 T ; i ¼ 1;2; . . . ;T.

In summary, the random variable H ¼ SoftmaxðFÞ [see

Equations (11) and (12)] is sample-specific (after sampling), whereas

the random variable HG ¼ SoftmaxðGÞ [see Equations (7) and (6)]

models biological variation over samples (before sampling). The

overdispersion component of the model is illustrated in Figure 1 (see

the ‘Sampling and biological variation’ and ‘Observed compositions’

sections).

2.4 Modeling zero-inflation and missing data
16S rRNA and other amplicon sequencing based count data have

been empirically shown to suffer from severe zero-inflation (Xu

et al., 2015). Zero-inflation can be seen as ‘salt’ noise in the compos-

itions Ht (i.e. zeroing of individual components of Ht); the ‘salt’

term refers to the ‘salt-and-pepper’ noise concept from the digital

image processing literature (Jayaraman, 2009). To model zero-

inflation, we introduce another level of simplex-valued latent vari-

ables, Hzi
t , to the model (Fig. 1). The variables Ht and Hzi

t model

underlying proportions and ‘salty’ proportions of taxa, respectively.

The sampling and zero-inflation are modeled separately for model-

ing convenience and for identifying the source of zeros (sampling or

structural).

To explicitly model the effect of imperfect sampling, we intro-

duce random variables bðiÞt 2 ½0;1�; i ¼ 1; 2; . . . ;M and consider the

following weighting based transformation:

Hzi
t ¼ UðHt; btÞ ¼

bð1Þt Hð1ÞtPM
i¼1 bðiÞt HðiÞt

..

.

bðMÞt HðMÞtPM
i¼1 bðiÞt HðiÞt

0BBBBBBB@

1CCCCCCCA; t 2 T ; (13)

where the common denominator term ensures
P

Hzi
t ¼ 1. For nota-

tional simplicity, let us denote b ¼ fbðiÞt jt 2 T ; i ¼ 1; 2; . . . ;Mg. The

zero-inflation component of the model is illustrated in Figure 1 (see

the ‘Sampling zeros’ and ‘Observed compositions’ sections).

2.5 Posterior estimation
To carry out the Bayesian inference on the presented model (Fig. 1),

we first specify the parameter prior distributions, pðg2
ðiÞjhgÞ; pðq2

ðiÞjhqÞ;
pðrðiÞjhrÞ and pðbðiÞt jhbÞ (Supplementary Fig. S1a). The parameters g2

ðiÞ
and q2

ðiÞ determine the signal variance and how fast correlation

between time points diminishes, respectively. We select a relatively

broad prior distribution for q2
ðiÞ in order to support temporal

correlations that vary from a few days to a few weeks (Supplementary

Fig. S1b). In this study, the time points ti (model inputs) are obtained

by scaling the days of measurement (e.g. integers from 1 to D) by the

total number of days (D); thus, the prior of q2
ðiÞ is selected as q2

ðiÞ
� N >0ð0:001;0:005Þ (N >0ð�; �Þ is positive truncated Gaussian

distribution) (Supplementary Fig. S1a). Since Gaussian processes

model the log odds ratios, we assume that the variances of the log

odds ratios of taxa over time are relatively small. We set the prior as

g2
ðiÞ � Gammað1:0; 0:5Þ (Supplementary Fig. S1a). The prior of the

noise standard deviation is set to rðiÞ � N >0ð0;0:5Þ to support rela-

tively low noise levels (Supplementary Fig. S1a). Finally, we explicitly

assume that the sampling zeros, unexpected zeros from the multi-

nomial sampling point of view, are relatively rare by defining the prior

as bðiÞt � Betað0:8;0:4Þ (broad distribution improves sampling effi-

ciency) (Supplementary Fig. S1a).

The posterior distribution function (up to a normalizing con-

stant) is obtained as the product of the likelihood function and pri-

ors. The full posterior distribution function of our model is given in

Supplementary Equation (5-6). We implemented the model in Stan

(Carpenter et al., 2017) and used its No-U-Turn Sampler (NUTS) to

sample the posterior [Supplementary Equation (5)]. The Stan prob-

abilistic programming language enables cross-platform implementa-

tion, code interpretability, numerical stability, scaling and efficient

posterior inferences of various statistical models. Convergence of

chains was monitored using by the Gelman-Rubin statistic (Gelman

and Rubin, 1992) ( bR < 1:1). All relevant information (prior and

data) about the parameters is summarized in the posterior distribu-

tions. We can thus use the obtained posterior samples to summarize

the distributions, e.g. by calculating means and credible intervals

(Gelman et al., 2014). It takes approximately an hour on a modern

laptop to analyze a dataset of 160 taxa and 27 time points.

3 Results

3.1 Temporal analysis improves estimation accuracy
To validate the presented temporal compositional data analysis

method, we first compare TGP-CODA to the DM model (Chen and

Li, 2013) using synthetic data. To compare these two methods, we

consider a scenario of 36 taxa with realistic dynamics and abun-

dance distribution (see Supplementary Material). The generated

synthetic datasets are analyzed using the temporal and DM models.

The composition estimates at day 90 (common between 6, 9, 14 and

27 time points to allow direct comparison) of both methods are
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compared to the noise-free ground truths (Fig. 2a). Even in this sim-

ple scenario, the temporal approach consistently produces more ac-

curate composition estimates than the DM model (Fig. 2a;

Supplementary Table S1). We find that the performance of the tem-

poral approach improves (as expected) as the number of time points

increases; e.g. the mean estimation errors and the corresponding

standard deviations are 0.15 6 0.09 and 0.10 6 0.06 with 6 and 14

time points, respectively (Supplementary Table S1). The estimation

error of the DM model does not depend on the number of time

points as it considers time points separately (Supplementary Table

S1). To study the effect of sequencing depth on results, we repeated

the experiment with lower sequencing depth (Supplementary Fig.

S4a). Also in the case of lower sequencing depth, TGP-CODA

achieves better estimation accuracy than DM (Supplementary Fig.

S4a). Our modeling of temporal correlations and thereby sharing in-

formation between time points leads to more accurate estimation of

compositions from longitudinal count data.

Because our estimates should not be critically sensitive to the

hyperparameters, (hg; hq; hb). we carried out a sensitivity analysis

with respect to the prior distributions of g2 and q2 defined in the

Section 2.5. We considered random variables hg;1 � N >0ð1; 0:2Þ and

hq;1 � N >0ð0:001;0:00002Þ (Supplementary Fig. S4b) whose pur-

pose is to perturb the prior distributions g2
ðiÞ � Gammaðhg;1; 0:5Þ

and q2
ðiÞ � N >0ðhq;1; 0:005Þ. We then repeated the analysis presented

in Figure 2a and compared the compositions estimates between the

original and perturbed priors (Supplementary Fig. S4b). The means

and the corresponding standard deviations of the estimate differ-

ences were 0.05 6 0.05, 0.03 6 0.03, 0.03 6 0.08 and 0.02 6 0.01

with 6, 9, 14 and 27 time points, respectively (Supplementary Fig.

S4c). As expected, the variations in the final estimates get smaller as

the amount of data to base the estimation increases. Collectively, the

small obtained differences demonstrate that the estimates are not

critically sensitive to the prior distributions of g2 and q2.

3.2 Modeling sampling zeros improves estimation

accuracy
To validate the described zero-inflation component and to see whether

the estimated b values reflect sampling zeros, we consider the same ex-

ample as above but with imposed sampling zeros. We generated data-

sets with different numbers (10, 20, 40 or 120) of imposed zeros

randomly distributed to the taxa and time points. Importantly, there

are likely additional zeros for lowly abundant taxa due to the low sam-

pling depth. This unbiased procedure also introduces sampling zeros to

lowly abundant taxa. Clearly, these zeros are harder to detect with the

used sampling depth (or with any relatively low sampling depth). We

analyzed these zero-inflated synthetic datasets using our temporal ap-

proach and studied the distribution of b values of taxa (proportions �
1e-4) at the time points with imposed zeros (Supplementary Fig. S4d).

Our model is able to identify 10 (mean 6 SD¼0.04 6 0.07), 20

(0.05 6 0.09) and 40 (0.07 6 0.11) sampling zeros accurately among

taxa that are not close to detection limit, whereas the identification of

120 sampling zeros is less reliable (0.21 6 0.19) (Supplementary Fig.

S4d). As expected, detecting sampling zeros among lowly abundant

taxa is challenging (Supplementary Fig. S4e).

To check whether the detection and correction of sampling zeros

improves composition estimation, we next focused on the compos-

ition estimates instead of b values. We compared the composition es-

timates of the temporal and DM models at the time points with

sampling zeros to the noise-free ground truths (Fig. 2b,

Supplementary Tables S2, S3). The temporal approach produces

smaller estimation error than the DM model in all the considered

cases. For instance, the estimation error is almost two times smaller

with the temporal approach (mean 6 SD¼0.12 6 0.08) compared

to the DM model (0.21 6 0.16) in the case of 20 sampling zeros

(Fig. 2b, Supplementary Table S3). The weaker performance of the

DM model is expected since it does not explicitly model sampling

zeros. Additionally, we repeated this analysis with greater numbers

of taxa (71, 102 and 160) and sampling zeros (120, 240 and 480)

and 27 time points to validate our model’s performance in a larger

setting (Supplementary Fig. S4f, Supplementary Table S4). Finally,

we studied the effect of sequencing depth by repeating the analysis

with lower sequencing depth, leading to higher proportion of zeros

(Supplementary Tables S4, S5) in data. Also in the case of lower

sequencing depth, resulting in inflation of zeros, TGP-CODA pro-

duces smaller estimation error than DM (Supplementary Fig. S4g).

To confirm that the estimation of sampling zeros is not critically

sensitive to the prior distribution of b, we considered a perturbed prior,

b � Betaðhb;1; hb;2Þ where hb;1 � Betað16;4Þ and hb;2 � Betað8; 12Þ
(Supplementary Fig. S4h). Then, we compared the b estimates obtained

with the original and perturbed prior in the case of Supplementary

Figure S4d (Supplementary Fig. S2i). The b estimates were stable with

respect to the prior distribution; the means and the corresponding

standard deviations of the differences were -0.006 6 0.044, 0.006 6

0.056, -0.0056 0.066 and -0.011 6 0.134 with 10, 20, 40, and 120

sampling zeros, respectively.

3.3 Differential response of bacterial orders to

environmental perturbations
To demonstrate our approach on real data, we reanalyzed the longi-

tudinal gut microbial 16S rRNA sequencing datasets of four individ-

uals, referred to as M3 and F4 (Caporaso et al., 2011) and Subject A

and B (David et al., 2014) (see Supplementary Material). To allow

(a)

(b)

E
st

im
at

io
n

er
ro

r

Dirichlet-
multinomial

TGP-CODA

6
Number of time points

149 27

0.0

0.2

0.4

Dirichlet-
multinomial

TGP-CODA

E
st

im
at

io
n

er
ro

r

10
Number of sampling zeros

4020 100

0.0

0.4

0.8

p=0.06 p<5e-3 p<1e-8 p<1e-8

p<1e-8 p<1e-8 p<1e-8 p<1e-8

36 taxa
14 time points

36 taxa

Fig. 2. Temporal correlation in composition estimation. (a) Box plots illus-

trate estimation errors of our temporal TGP-CODA and DM models. 6, 9, 14

and 27 time points with 36 taxa are considered. Estimation error is defined

to be the Euclidean distance between the the first M – 1 components of the

simplex-valued proportions vectors. (b) Box plots illustrate the estimation

error of the temporal and DM models at the time points with induced sam-

pling zeros. The cases of 10, 20, 40 and 100 sampling zeros with 14 time

points and 36 taxa are considered. Estimation error is defined to be the

Euclidean distance between the the first M-1 of the simplex-valued propor-

tions vectors. Each box plot is calculated from 100 simulations. Outliers are

not depicted. The two-sided p-values from the Wilcoxon signed-rank tests

are listed
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time-varying length-scale parameters and to reduce computational

cost, we analyzed these four long time series datasets using sliding

windows (see Supplementary Material). The percentages of zeros

varied between 66 and 78% in these datasets (see Supplementary

Material). Due to the sparsity of the data we grouped all

Operational Taxonomic Units (OTUs) according to phylogenetic

order and analyzed the resulting compositions. We visualize the dy-

namics of the orders in Supplementary Figures S5–S8 by plotting the

posterior mean composition estimates of bacterial orders with cor-

responding credible intervals at time points with and without meas-

urements. For comparison, we included the maximum likelihood

estimates (MLEs) under the multinomial model with and without

the locally weighted scatterplot smoothing (LOWESS) (Cleveland,

1981).

We first focus on the Subject B time series. From days 151 to 159

the subject had a Salmonella infection; as expected, relative abundance

of Enterobacteriales increases upon the infection as reported in (David

et al., 2014) (Supplementary Fig. S6a). Similarly, relative abundance

of Enterobacteriales in Subject A’s gut microbiota is greater during the

travel abroad (Supplementary Fig. S5a). The relative abundance of

Bifidobacteriales decreases during the time Subject A spent abroad

(from 7e-2 to 2e-2) (Supplementary Fig. S5a). The disappearance of

the RF39 order from the gut microbiota of Subject B coincides with

the Salmonella infection (average relative abundances pre-infection

and post-infection are 5e-3 and 8e-7, respectively) (Supplementary Fig.

S6a). The decrease in the relative abundance of Enterobacteriales in

F4’s gut microbiota around 50 days coincides with the increase of the

relative abundances of Burkholderiales (Supplementary Fig. S8a).

Interestingly, our results suggest that F4’s gut microbiota undergo a

global transition between states around 50 days (Supplementary Fig.

S8). Identification of the importance and/or the cause of this would re-

quire additional metadata. Finally, TGP-CODA quantifies the uncer-

tainty in estimates caused by lower sequencing depth and missing

samples (e.g. see lowly abundant orders Gallionellales in

Supplementary Fig. S5, Acidimicrobiales in Supplementary Fig. S6,

and Gammaproteobacteria in Supplementary Fig. S8).

To confirm that the results are not too sensitive to the selected co-

variance function, we reanalyzed the Subject A data using the Matérn

covariance function (� ¼ 3=2). The obtained similar results suggest

that our method is stable with respect to the chosen covariance func-

tion (Supplementary Figs S9, S10); the slightly less smooth processes

are expected as the Matérn covariance function (with � ¼ 3=2) leads

to processes that are 1-times mean square (MS) differentiable, whereas

the squared exponential covariance function leads to processes that

are infinitely MS-differentiable. Additionally, to verify that our

method does not produce analysis artifacts due to the temporal model-

ing, we shuffled the time points in the Subject A dataset and analyzed

the shuffled data (Supplementary Fig. S11). As expected, we did lose

the signals observed with the original data (Supplementary Fig. S9).

Importantly, the spiky estimation profiles of the LOWESS estimator

suggests overfitting of the shuffled data (Supplementary Fig. S11).

Collectively, our temporal approach is able to recover patterns

from highly noisy 16S rRNA data which are not apparent from the

MLEs even when these perturbations effect extreme restructuring of

the dynamics and composition of the niche.

3.4 Effect of sampling frequency on estimating

microbiome dynamics
To see study how the data sampling frequency affects the results, we

performed downsampling experiments. Specifically, we reanalyzed

Subject A data by taking into account only measurements from

either every second or third time point (Supplementary Figs S12,

S13). Overall, the obtained results with the full and downsampled

datasets are highly similar suggesting that daily sampling is not ne-

cessary to capture human gut microbiota dynamics (Supplementary

Figs S6, S9, S12, S13). In Figure 3, we illustrate four examples of

how different sampling frequencies can affect results. As expected,

when sampling frequency drops credible intervals become wider (see

Bacteroidales in Fig. 3). Importantly, the LOWESS estimates are

sensitive to the sampling frequency, which suggests that the

LOWESS estimator tends to overfit data (see Enterobacteriales,

Sphingomonadales and Myxococcales in Fig. 3). The observed over-

fitting, especially among lowly abundant orders, is not surprising

since LOWESS and ML estimation do not take into account the stat-

istical nature of count data. Additionally, in contrast to our method,

interpolation with the classical LOWESS requires an additional

method, such as linear regression.

3.5 Revisiting dynamics of human gut microbiota
We next analyze the dynamical properties of the inferred time series

and their ecological implications. Our Bayesian framework, together

with the use of separate analysis windows (see Supplementary

Material), enables us to study the posterior distributions of length

scales qi inferred from the different time series. These distributions

can serve as global summary statistics of the whole gut microbiota

dynamics upon environmental perturbations. We illustrate the re-

sults for the Subject A time series over all the bacterial orders in

Fig. 3. Effect of sampling frequency on the estimation of bacterial order dy-

namics. (a) Dynamics of the proportions of Enterobacteriales (first row),

Bacteroidales (second row), Sphingomonadales (third row) and

Myxococcales (fourth row) in Subject A’s gut microbiota over time. The black

circles are the posterior mean estimates, HG, from the temporal analysis. The

filled regions show the 5 and 95% credible intervals. The semi-transparent cir-

cles depict the maximum likelihood estimates under the multinomial model.

The orange curve is the LOWESS (a ¼ 0:05, which corresponds approxi-

mately to 20 days) estimate calculated from the maximum likelihood esti-

mates. The time period where the subject was abroad and suffered from

diarrhea are illustrated using the three shaded rectangles. (b) As in (a) but in

the case when only every second time point is considered. (c) As in (a) but in

the case when only every third time point is considered
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Figure 4a. We first compare the profiles of prior and posterior distri-

butions. We observe that the experimental data supports longer

length-scales (i.e. greater temporal correlation) (Fig. 4a; see

Supplementary Fig. S1b for interpretation) suggesting that the

smoothness of the obtained profiles is not merely an analysis artifact

caused by the length-scale prior (Supplementary Fig. S1a). Across all

windows, the posterior distributions have an overall similar right-

skewed shape and cover a wide range of length scales. This suggests

that, on the population level, each bacterial order has different de-

grees of internal temporal correlations that are persistent across the

entire time series (Fig. 4). We can also identify several bacterial

orders that change their kinetics upon perturbations, as reflected in

a potential bi-modality of the distribution between 44 and 149 days

(windows 3 and 4 in Fig. 4a). To highlight the effect of environmen-

tal perturbations, we visualize the length-scale distributions of

Bifidobacteriales (Fig. 4b, c). The dip in average length scale be-

tween windows 2 to 6 suggest that Bifidobacteriales’ kinetics are

accelerated upon traveling abroad and being exposed to novel diet.

We next analyze estimates of autocorrelation, persistence and

self-affinity (self-similarity) for the most abundant bacterial orders

(mean relative abundance>1e-3 across all four time series under

TGP-CODA and ML modelling). We first calculate the sample auto-

correlation function (ACF) for lags up to k¼60 (Supplementary Fig.

S14a). The TGP-CODA-derived time series show consistently longer

autocorrelations (close to 1 in most cases) than the ML-based time

series. For most bacterial orders, positive autocorrelation exists for

up to a month under TGP-CODA. Coriobacteriales shows particu-

larly strong long-term positive autocorrelation for both Subject A

and B. To estimate the degree of self-affinity and the temporal per-

sistence of the bacterial orders we use Hurst’s rescaled range analysis

(Di Matteo et al., 2003; Hurst, 1951), resulting in scaling estimates

of the Hurst exponent H 2 ½0; 1� (Supplementary Fig. S14b). For

ML-based time series we consistently estimate low H values across

all time series (mean H 2 ½0:15;0:25�), indicative of memory-less

underlying processes, whereas TGP-CODA modeling results in con-

siderably larger Hurst exponent estimates (mean H 2 ½0:8;0:85�),
hinting at underlying persistent, self-affine, long-term memory proc-

esses. Spectral analysis of the TGP-CODA-modeled times series re-

veals a scaling of the power spectrum Sðf Þ � 1=f b with b 2 ½1:7; 4:2�
for the majority of orders (Supplementary Fig. S15). These results in-

dicate that most time series modeled with TGP-CODA show non-

stationary fractional Brownian motion behavior with long-term

memory, persistence and self-affinity.

4 Discussion and conclusions

The difficulty of obtaining well-controlled biological replicates ren-

ders the estimation of biological and technical variation from indi-

vidual time points impractical, thus severely limiting interpretability

of human microbiome studies. To overcome this limitation, we have

derived a probabilistic model, the Temporal Gaussian Process model

for Compositional Data Analysis (TGP-CODA), that comprises

non-parametric temporal, explicit overdispersion and zero-inflation

noise components leveraging temporal relationships between time

points and integrative analysis of all the bacterial taxa (to account

for population structure and the compositional nature of typical

microbiome datasets). Our results demonstrate that the lack of repli-

cates for longitudinal human gut microbial data can be partially

mitigated by our method in the case of proper experimental design:

dense time series. Our temporal modeling framework can seamlessly

incorporate different experimental designs, such as non-equidistant

sampling over time, missing time points and variable sequencing

depth. Our framework also quantifies the uncertainty of the final es-

timates, which is an important property in integrated microbiome

studies, where downstream analysis methods might propagate this

error.

Our results on real and synthetic data demonstrate TGP-

CODA’s validity and superior performance for analyzing longitu-

dinal microbiome data. Temporal autocorrelation and scaling

analysis also revealed that ML and TGP-CODA modeling have a

fundamental impact on time series characteristics and their ecolo-

gical interpretation. ML modeling suggests that the observed time

series are stationary and possess short-term memory, driven by

white noise. TGP-CODA modeling suggests that relative abun-

dances of microbiota are self-affine, persistent and possess long-

term memory, driven by Brownian noise. Using TGP-CODA, the

Hurst exponents of the majority of microbial orders are in remark-

able agreement to those of long species abundance time series across

the tree of life, including fresh water diatoms (H¼0.85) and verte-

brates (H¼0.77) (Arino and Pimm, 1995). Determining the true

underlying dynamics as well as the appropriate environmental noise

characteristics will be a key objective for future research because

these features will have a major impact on our understanding of spe-

cies persistence in microbial ecosystems and their potential extinc-

tion rates (Cuddington and Yodzis, 1999; Sugihara and May, 1990).

This work also suggests several research questions for future ex-

perimental and computational studies. Key objectives are to deter-

mine (i) which approximations, such as spectral approximation or

random Fourier features to speed up Gaussian process regression,
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Fig. 4. Kinetics of Subject A’s gut microbiota. (a) Light gray and gray shaded

regions are prior and posterior distributions of the length-scale parameter, re-

spectively. The posterior distributions obtained in different analysis windows

are illustrated separately (the days corresponding to each of the windows are

listed in the titles). Posterior densities are estimated using Gaussian kernel

density estimation (the Scott’s rule for estimating the bandwidth) on the

pooled length-scale posterior samples over all the bacterial orders. (b) The

posterior mean of the length-scale parameter and the corresponding stand-

ard deviations of Bifidobacteriales in different analysis windows (the window

numbers correspond to the ones listed in (a)). (c) Dynamics of

Bifidobacteriales in Subject A’s gut microbiota over time. The black circles

are the posterior mean estimates, HG , from the temporal analysis. The filled

regions show the 5 and 95% credible intervals. The semi-transparent circles

depict the maximum likelihood estimates under the multinomial model. The

time period where the subject was abroad and suffered from diarrhea are

illustrated using the three shaded rectangles
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can be made to the probabilistic model without compromising its

validity and (ii) how improved temporal analysis can be leveraged to

estimate directed, time-varying microbial association networks. A

key area of future development will also be the application of TGP-

CODA-type methods to mixed experimental designs that include

both cross-sectional (perturbation, steady-state) data and time series

data. One could envision using time series data to estimate taxon

specific zero-inflation parameters that serve as more accurate prior

for estimates in cross-sectional data. Another important extension

of the model would be the inclusion of the spatial information in a

unifying GP modeling framework, which would greatly advance our

understanding of microbial ecosystems across space and time.

Finally, it would be interesting to reformulate the model using hier-

archical Gaussian processes which would allow incorporating data

from groups of individuals.

As the prevalence and public availability of dense time series

(including hybrid cross-sectional and time series data) in micro-

biome research will only increase in the near future, the importance

of explicit treatments of microbiome dynamics with models like the

one presented herein will likely be instrumental for a deeper under-

standing of microbial ecosystems.
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