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Abstract

We propose a nonparametric risk-adjusted cumulative sum chart to monitor surgical out-

comes for patients with different risks of post-operative mortality due to risk factors that exist

before the surgery. Using varying-coefficient logistic regression models, we accomplish the

risk adjustment. Unknown coefficient functions are estimated by global polynomial spline

approximation based on the maximum likelihood principle. We suggest a bisection minimi-

zation approach and a bootstrap method to determine the chart testing limit value. Com-

pared with the previous (parametric) risk-adjusted cumulative sum chart, a major advantage

of our method is that the morality rate can be modeled more flexibly by related covariates,

which significantly enhances the monitoring efficiency. Simulations demonstrate nice perfor-

mance of our proposed procedure. An application to a UK cardiac surgery dataset illustrates

the use of our methodology.

Introduction

Monitoring surgical outcomes of clinical trials is a critical task for doctors to timely detect

patient deterioration. However, this task becomes complicated for assessing and online moni-

toring surgical performance. It is known that the surgical performance changes as patient char-

acteristics, such as age, weight, blood pressure, and pulmonary status, varies. Therefore,

assessing and monitoring surgical performance should be adjusted according to the patient’s

characteristics existing prior to the surgery. This process is the so-called risk adjustment.

There are several methods for monitoring outcomes of surgery. Examples include the She-

whart chart, the sequential probability ratio test, the exponential weighted moving average

(EWMA), and the cumulative sum control chart (CUSUM). Recent studies have suggested to

use such schemes to monitor the performance of clinical practitioners, including surgical and

general practitioners. Among all the control charts, CUSUM has received much attention

because of its simple formulation, intuitive representation, and capability to detect small per-

sistent changes, since it was originally proposed [1]. CUSUM was first applied [2] for surgical
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performance monitoring. Then it was used [3, 4] for monitoring pediatric cardiac surgeries,

among others. For an overview, see references [5–7].

Consider a cardiac surgery example. During 1992–1998, a UK center for cardiac surgery

facilitated 6994 cardiac operations including 5212 males and recorded information such as

date, surgeon, and Parsonnet score formed by age, gender, hypertension and diabetic status,

renal function and left ventricular mass [8]. The age varies between 11 and 99 with mean 62.5,

median 64 and standard deviation 11. According to the records, 461 patients died within 30

days of surgery, corresponding to a mortality rate of 6.6%. Hence, it is demanded to assess and

monitor the surgical performance in order to help doctors reduce the mortality rate and adjust

the surgical plan in subsequent operations. One can use the CUSUM charts in [2–4] for this

task. However, there is no patients’ preoperative risk considered in these works. Such straight-

forward applications might lead to a biased assessment of surgical performance because of het-

erogeneity of patients. As indicated in [9], without risk adjustment for heterogeneity among

patients, the control chart shows outcomes confounding with the preexisting risk factors.

Hence, it is necessary to develop a risk-adjusted (RA) CUSUM for this example.

There are various works on the RA CUSUM in the literature using two classes of models,

respectively for discrete and continous outcomes. For discrete outcomes, examples include the

RA CUSUM charts for Down’s syndrome which adjusted the risk of the age of mother using

logistic regression [10], for shoulder surgery which adjusted for patients’ rehabilitation condi-

tions [11], and for binary cardiac surgical outcomes which adjusted the risk using a likelihood-

based scoring method [12]. In a discussion paper [13], advantages and disadvantages of vari-

ous control charts including the RA CUSUM were discussed for monitoring health-care and

public-health surveillance. The incremental advantage of RA CUSUM was further assessed for

coronary bypass outcomes [14] using the procedure in [8]. The RA CUSUM was also investi-

gated in [15] for binary outcomes using the logistic regression and the Bayesian method. For

continuous outcomes, examples include the RA CUSUMs for survival times using the Cox

model [16] and the accelerated failure model [9], among others. However, these cusum charts

are all risk adjusted based on parametric models.

To adjust the risk factors in the UK cardiac surgery example, a linear logistic regression was

used to model the relationship between the surgical outcome and the Parsonnet score [8]. Let

t = 1, 2, . . . be the indexes for the patients undergoing surgery in time order. The RA CUSUM

chart is used to monitor their outcomes. Let Yt = 1 if patient t dies and Yt = 0 otherwise. Given

the t-th patient’s outcome Yt and Parsonnet score Pt, the model takes the following form:

logitðptðyÞÞ ¼ y0 þ Pty1; ð1Þ

where pt is the mortality rate defined as P(Yt = 1|Pt), and logit(t) = log(t/(1 − t)) is the logit

function. Then the conditional probability mass function of Yt given Pt is f ðy; yÞ ¼
ptðyÞ

Yt ½1 � ptðyÞ�
1� Yt ; and the mortality odds of failure for patient t is pt/(1 − pt). Since different

patients have different baseline risk levels, one needs to monitor the change of odds ratio of

patients. Let Rt be the mortality odds ratio of patient t. It is interesting to use the RA CUSUM

to sequentially test [8]:

H0 : Rt ¼ R0 versus Rt ¼ RA;

where R0 is typically the mortality odds determined by the current process performance, and

R1 corresponds to an inferior performance. Mathematically, it can be verified that, the proba-

bility of failure P(Yt = 1|Pt) equals R0pt/(1 − pt + R0pt) and RApt/(1 − pt + RApt) under H0 and
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HA, respectively. Hence, the log likelihood ratio for patient t is [8]

Wt ¼
logf½ð1 � pt þ R0ptÞRA�=½ð1 � pt þ RAptÞR0�g if Yt ¼ 1;

log ½ð1 � pt þ R0ptÞ=ð1 � pt þ RAptÞ� if Yt ¼ 0:

(

ð2Þ

Then the RA CUSUM statistics are defined as

Zt ¼ max ð0;Zt� 1 þWtÞ; t ¼ 1; 2; � � � ; ð3Þ

where Z0 = 0. When the value of Zt exceeds a certain threshold value h, a change in value has

been found, and an alarm is signaled.

The model parameter θ and hence pt are estimated by maximizing the likelihood of the in-

control dataset fYt; Ptg
n1

t¼1
: Specifically, θ is estimated by maximizing the likelihood:

Yn1

t¼1

ptðyÞ
Yt ½1 � ptðyÞ�

1� Yt :

The threshold h is usually decided by the average run length (ARL). For detail see the monitor-

ing algorithm to be introduced later. Since {Zt} is decided by the underlying process of pt in

model (1), success of the RA CUSUM depends on if the model of pt is appropriate.

If the null hypothesis is rejected, it indicates a significant increase in the mortality rate. By

using this method, the Parsonnet score was found to significantly affect the mortality rate, and

it was also claimed [8] that this procedure could detect changes in surgical performance earlier

than the non-adjusted CUSUM. However, this approach is based on the assumption in model

(1) that the log odds ratio of mortality rate is a linear function of the Parsonnet score. This

may create modeling bias if the underlying relationship is nonlinear. In particular, the model-

ing bias becomes more serious when there are interaction effects among the patient

characteristics.

To alleviate the modeling bias problem and to cope with possible interaction effect among

the patient characteristics, we propose the following varying-coefficient logistic regression

(VCLR) model:

logitðptÞ ¼ mþ X0tbðUtÞ; ð4Þ

where Xt = (X1t, X2t, � � �, Xqt)
0, pt = P(Yt = 1|Xt, Ut), μ is the intercept term, Ut is a random

variable, for example, any entry of Xt, and β(u) = (β1(u), β2(u), � � �, βq(u))0 with βi(u) being

unknown functions. When β(u) is a constant vector, model (4) reduces to logistic linear regres-

sion which includes model (1). Model (4) allows us to model nonlinear relationship between pt
and Xt. If Ut is one entry of Xt, it captures nonlinear interaction among Xt. For the UK cardiac

surgery example, we take the t-th patient’s age as Ut and Parsonet score Pt as Xt. It is believed

that the effect of a patient’s Parsonet score depends on the age, and it is interesting to investi-

gate if there is a nonlinear interaction effect between the Parsonet score and age. Therefore,

model (4) can be used to fit the UK cardiac surgery dataset.

We estimate β(�) by the maximum likelihood principle with a polynomial splines approxi-

mation in the next section. Then we adjust CUSUM statistics Zt in Eq (3) for monitoring the

change of odds ratio of patients. Since we use nonparametric model (4) to adjust the risk, our

proposed RA CUSUM is a nonparametric RA method. We propose a bisection search algo-

rithm and a bootstrap method to determine the nonparametric risk-adjusted CUSUM chart

limit value. Through simulations and a real data example, we illustrate nice performance and

the use of the proposed methodology.

Risk-adjusted monitoring
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Monitoring procedure

Polynomial spline approximation

Global polynomial spline approximation has become a popular tool in nonparametric smooth-

ing. It has advantages of nice finite sample performance and fast implementation. For function

β(�), it can be approximated by a linear combination of the basis splines (B-splines).

Assume that random variable Ut has finite support [a, b]. Let r be the degree of B spline poly-

nomial, and let ξ1 = ξ2 = � � � = ξr = a< ξr+1 < ξr+2 < � � �< ξr+N< b = ξr+N+1 = ξr+N+2 = � � � = ξ2r+N

be the knots for the B spline approximation, where N ¼ Oðnv
1
Þ with 0< v< 0.5 such that

max1�k�Nþ1fjxrþk � xrþk� 1jg ¼ Oðn� v
1
Þ. Usually we call fxig

d
i¼rþ1

with d = r + N the inner knot

points. The number of inner knots, N, is a tuning parameter and can be chosen by cross vali-

dation [17] or generalized cross validation (GCV) [18, 19]. We denote by fBjðuÞg
d
j¼1

the B-

spline basis functions based on the knot set fxig
2rþN
i¼1

. Then the B-spline basis functions enjoy

the following properties [20]:

Bj(u) = 0 for u =2 [ξj, ξj+r];

Bj(u)> 0 for x 2 [ξj, ξj+r];
Pd

j¼1
BjðuÞ ¼ 1 for any u 2 [a, b] and 0 otherwise.

Consequently, for any 1� j� d and any real u, we have Bj(u) 2 [0, 1]. Given the knots

fxig
2rþN
i¼1

, βi(u) can be approximated by

biðuÞ �
Xd

k¼1

yikBkðuÞ ¼ BðuÞTyi; ð5Þ

where B(u) = (B1(u), B2(u), � � �, Bd(u))0 and θi = (θi1, θi2, � � �, θid)0. Let Vt = (B(Ut)
0 X1t, . . .,

B(Ut)
0 Xqt,)

0 and y ¼ ðy
0

1
; . . . ; y

0

qÞ
0
. Then model (4) reduces to

logitðptÞ ¼ mþ V 0ty: ð6Þ

Therefore, the maximum likelihood estimation method can be directly used to fit model (6)

with the in-control dataset. This estimation method is standard in nonparametric smoothing

[19] and can be implemented via some existing programs, for example glm and bs in the R

software.

Cusum monitoring

Based on the in-control observations fðYt;Xt;UtÞg
n1

t¼1
, we obtain ŷ ¼ ðŷ 0

1
; ŷ 0

2
; � � � ; ŷ 0qÞ

0
and m̂,

the maximum likelihood estimate of the B-spline coefficient θ and the general mean μ in

model (6). Then, the ith functional coefficient βi(u) can be estimated by b̂iðuÞ ¼ BðuÞ0ŷ i. This

leads to the estimate of mortality rate pt:

p̂t ¼ exp ½m̂ þ X0tb̂ðUtÞ�f1þ exp ½m̂ þ X0tb̂ðUtÞ�g
� 1

;

where b̂ðuÞ ¼ ðb̂1ðuÞ
0
; b̂2ðuÞ

0
; � � � ; b̂qðuÞ

0
Þ
0
: Using Eq (2) we obtain the estimate of log-likeli-

hood Wt, denoted by Ŵ t . By Eq (3), we calculate the estimate of Zt, denoted by Ẑ t . Note the

random properties of the in-control statistic Ẑ t . Let h be the limit value of this testing proce-

dure. If Ẑ t > h, then we conclude our RA CUSUM chart triggers a signal, which indicates that

the mortality rate increases.

Risk-adjusted monitoring
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The limit value h plays a critical role in the CUSUM chart monitoring. It is usually deter-

mined by virtue of average run length (ARL) in control, denoted by ARL0, the expected run

steps from the start of process to the time that the signal is triggered. Optimality of CUSUM in

terms of ARL was studied in [21, 22]. A better chart has longer ARL0 and shorter ARL1 (ARL

when the process is out-of-control). Hence, given a large enough ARL0, the optimal limit value

h can be determined. Usually, the optimal limit value h has no closed form. Thus, we use a

numerical search method, bisection, to decide it. This approach needs predetermined upper

and lower bounds for h.

Let L be the run length for the monitoring process from start until a signal is triggered.

Then L is a random variable, and ARL is its expectation, namely, ARL = E(L). The calculation

of ARL is critical in determining h. ARL is a theoretical value, so it should be estimated during

monitoring. It is usually not a good idea to get a large in-control sample for estimating the

ARL. In the next section we propose a bootstrap resampling method to achieve the goal.

For a given ARL0, we can obtain the limit value h through the above procedure. Thus, the

CUSUM chart in Eq (3) can be used to monitor the surgical process in the follow up. That is,

for the t-th patient, Zt> h indicates an abnormal observation, i.e., the process is out of control.

In such a case, surgeons should check where and why the process becomes out of control. In

addition, the monitoring efficiency can be assessed by calculating ARL1, similar to that of

ARL0.

Monitoring algorithm

Suppose h 2 [a, b] with a> 0. Given ARL0, we propose the following the chart monitoring

algorithm:

• Phase I. Determination of the optimal limit value hopt.

1. Draw K bootstrap samples from the in-control sample. For each bootstrap sample, use

the procedure in the previous section to calculate the RA CUSUM chart statistic Ẑ t . Let

Ẑ�ð1Þt ; . . . ; Ẑ�ðKÞt be the N realized values of Ẑ t from all bootstrap samples. Denote by

LkðhÞ ¼ inf ft : Ẑ�ðkÞt � h; t ¼ 1; 2; . . .g and dARLðhÞ ¼ K � 1
PK

k¼1
LkðhÞ:

2. Use the bisection method to decide the value of h:

(i). Set h = a and calculate the value of dARLðhÞ. We use dARL01 to denote the calculated

value. It is required that dARL01 < ARL0. Otherwise, it can be done by choosing a

smaller value of a.

(ii). Set h = b and calculate the value of dARLðhÞ. We use dARL02 to denote the calculated

value. It is required that dARL02 > ARL0. Otherwise, it can be done by choosing a

larger value of b.

(iii). Set h = (a + b)/2 and calculate the value of dARLðhÞ. We use dARL0m to denote the cal-

culated value.

(iv). Given a positive integer M, if dARL0m > ARL0 and jdARL0m � ARL0j > M, set b =

(a + b)/2; if dARL0m < ARL0 and jdARL0m � ARL0j > M, set a = (a + b)/2. In general,

the pre-assigned positive integer M ranges from 2 to 5 in practice, so that the ARL

with hopt quickly approaches to the nominal ARL0 with a certain error tolerance.

Risk-adjusted monitoring
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(v). Repeat steps (i)-(iv) until jdARL0m � ARL0j � M: Then the optimal value can be

taken as hopt = h.

• Phase II. Monitoring Phase.

With the optimal value hopt, we calculate the RA CUSUM in Eq (3) based on the estimated

varying coefficient logistic regression model (4). Let Ẑ t be the estimate of CUSUM statistic.

When Ẑ t > hopt , a signal is triggered and monitoring is stopped.

In our experience, the bootstrapping-based bisection numerical method for the determina-

tion of h performs well and stably. Other numerical approaches can be used. For example, one

can search proper value on a given grid of points. One can also use a theoretical distribution of

ARL to determine h. However, one cannot expect that the theoretical method performs stably,

since it depends on the assumption of a theoretical distribution. Hence, we use the above

method in our numerical study.

The proposed monitoring method can be modified to detect a decrease in the mortality rate

odds ratio by the following RA CUSUM chart

Zt ¼ minf0;Zt� 1 � Wtg:

The above algorithm can be updated to this decrease monitoring with a signal triggered as

Ẑ t < � hopt .

Numerical studies

In this section, we conduct simulations to demonstrate nice performance of the proposed

approach and to use the UK cardiac surgery data to illustrate the use of our RA CUSUM chart.

Simulation

The objective of our simulations is to compare our approach with that of Steiner et al. in [8].

We conduct 500 simulations. For each simulation, we set sample size n = 3000, where the first

one-third observations are used as the in-control process with n1 = 1000 and ARL0 = 900, and

the remaining two-third observations are used for the out-of-control process with sample size

n2 = 2000.

We use cubic B splines with N inner knots to approximate β(u). The inner knots are set as

equally spaced sample quantiles of fUig
n1

i¼1
. We regard N as tuning parameter, and it is chosen

by minimizing the value of ARL1. We evaluate the estimator of β(�) by its mean squared errors

(RMSE):

RMSE ¼ fn� 1

1

Xn1

i¼1

jjb̂ðuiÞ � bðuiÞjj
2
g

1=2

over a grid point fuig
n1

i¼1
.

Example 1 (Varying-coefficient models) We generate fðYt;Xt;UtÞg
n
t¼1

from the following

varying coefficient logistic regression model:

logitðEðYtÞÞ ¼ mþ XtbðUtÞ;

where Ut * U(−0.5, 0.5), Xt is uniformly distributed on the set {0, 1, � � �, 20}, and β(u) = 0.5

cos(πu). For the in-control process, μ = −3, and for the out-of-control process, μ = −3 + log RA,

where RA equals to 0.3, 0.5, 0.8, 1.5, 2, 2.5, 3, 3.5, or 4. These values of RA are used to monitor

the decrease (RA< 1) and increase (RA> 1) in the mortality rate odds ratio.

Risk-adjusted monitoring
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Fig 1 shows the boxplot of the RMSE and a typical estimate of β(u), where the typical esti-

mate corresponds to that with median performance in terms of RMSEs in 500 simulations. It

indicates that our estimate is quite close to the true curve. Table 1 summarizes the monitoring

results of [8] and ours, where “V-C logistic” stands for the results from the RA CUSUM chart

based on the varying coefficient logistic regression model (4), and “Linear Logistic” represents

Fig 1. Left panel: The boxplot of RMSEs; right panel: A typical estimate of β(u), solid—True, dashed—Typical estimate.

https://doi.org/10.1371/journal.pone.0200915.g001

Table 1. Summarized results for Example 1.

ARL1 V-C Logistic Linear Logistic

RA Mean Std Mean Std

0.3 61.40 34.50 112.12 101.08

0.5 136.91 95.01 247.42 222.77

0.8 499.00 416.55 662.89 531.72

1.5 268.73 212.15 388.06 356.75

2.0 122.75 83.89 176.54 143.94

2.5 77.01 45.76 117.56 94.26

3.0 58.53 35.41 81.50 60.40

3.5 47.67 27.64 66.18 43.93

4.0 39.94 22.30 56.19 37.42

https://doi.org/10.1371/journal.pone.0200915.t001

Risk-adjusted monitoring
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the results from the standard logistic model (1). It is seen that both the mean and variance of

ARL1 based on the varying coefficient logistic model (4) are significantly smaller than those of

ARL1 based on the linear logistic model (1). This indicates that our proposed RA CUSUM

chart outperforms the RA CUSUM chart of [8].

Figs 2 and 3 display the RA CUSUM charts with RA = 2.0 (increase) and RA = 0.3 (decrease),

respectively. For our RA CUSUM, using the monitoring algorithm, we obtain the values of hopt
as h1 = 4.2969 for increase monitoring and h2 = −4.9805 for decrease monitoring. For the RA

CUSUM of Steiner et al., the values of hopt are calculated as h1 = 4.6876 for increase monitoring

and h2 = −5.7813 for decrease monitoring. Fig 2 shows that our procedure for increase moni-

toring first triggers a signal at time t = 122, and the linear logistic regression-based CUSUM

triggers a signal at time t = 176; for decrease monitoring, the times triggering a signal for our

procedure and for that of Steiner et al. are t = 140 and t = 194, respectively. This shows that our

procedure triggers a signal much earlier than that of Steiner et al. In addition, we can also

Fig 2. CUSUM charts with RA = 2.0. Left panel—ours; right panel—[8].

https://doi.org/10.1371/journal.pone.0200915.g002

Fig 3. CUSUM charts with RA = 0.3. Left panel—ours; right panel—[8].

https://doi.org/10.1371/journal.pone.0200915.g003
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conclude from the chart fluctuation that our procedure performs more stably than that of Stei-

ner et al.

Example 2 (Constant coefficient models) Same as in Example 1, but with β(u) = 0.5. In this

example, since the underlying process has form of model (1), the CUSUM method of Steiner

et al. in [8] should work. Since our model (4) contains model (1), as expected, the two RA

CUSUM charts perform similarly. The simulated results are reported in Table 2. Since the two

Table 2. Summarized results for Example 2.

ARL1 V-C Logistic Linear Logistic

RA Mean Std Mean Std

0.3 70.40 42.59 71.11 43.38

0.5 151.34 101.30 149.61 99.03

0.8 592.18 482.30 603.92 485.68

1.5 327.46 250.74 336.62 267.37

2.0 151.70 91.92 153.39 94.97

2.5 110.82 74.43 115.83 77.03

3.0 77.68 46.76 78.71 47.00

3.5 64.16 38.96 63.89 36.69

4.0 58.32 32.70 58.01 32.18

https://doi.org/10.1371/journal.pone.0200915.t002

Fig 4. Estimated β(�) from the in-control process.

https://doi.org/10.1371/journal.pone.0200915.g004

Risk-adjusted monitoring
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procedures have similar values of ARL1 according to the mean and standard deviation (Std),

the two charts are comparable.

Real data analysis

We here monitor the performance of the UK cardiac surgery using the RA CUSUM charts of

[8] and ours. Some details of this dataset were described in the introduction section. For our

procedure, we employ the varying-coefficient logistic model

logitðptÞ ¼ mþ PtbðAgetÞ; ð7Þ

which is an extension to the models previously used [8, 14]. Like [8], we treat the data during

1992–1993 as the in-control process and begin monitoring in 1994.

We use model (5) to approximate coefficient function β(�), and the optimal number of

knots is calculated as 5. Fig 4 displays the fitted curve of β(�). It seems that the effect of Parson-

net score nonlinearly depends on Age. In particular, the Parsonnet score strongly correlates

with the mortality rate in people aged less than 20 years.

To assess the actual performance of the proposed procedure, we compare it with the

method of [8] for detecting 1.5 times the odds of death (R0 = 1, RA = 1.5) and half of the odds

of death (R0 = 1, RA = 0.5). By bisection and bootstrapping methods, the values of hopt for the

RA CUSUM charts based on models (4) and (1) are 3.43, 3.50 for the increasing detection and

−4.16, −4.22 for the decreasing detection, respectively. Figs 5 and 6 plot the RA CUSUM

charts. As shown in the figures, the step number triggering a signal for the increase monitoring

is 1572 for our RA CUSUM and 1584 for that of [8]. For the decrease monitoring, the corre-

sponding step numbers are 2921 and 2998, respectively. In all cases, the resulting values of

ARL0 for both method are 2000. These results show that our proposed procedure can detect an

abnormal signal much earlier in the decrease monitoring.

Fig 5. CUSUM charts with RA = 1.5. Left panel—ours; right panel—[8].

https://doi.org/10.1371/journal.pone.0200915.g005
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Conclusion

In this paper, we have proposed the nonparametric RA CUSUM chart based on the varying

coefficient logistic regression model for monitoring the surgical outcomes. The maximum

likelihood and cubic B spline approximation has been used for estimation. The bisection and

bootstrap methods have been incorporated to determine the testing limit values. Numerical

studies show the advantages of our method over that of [8].

The relationship between the covariates and the mortality rate is usually unknown in appli-

cations. Thus, other nonparametric or semiparametric regression may be employed to capture

this relationship. The proposed RA monitoring procedure can be extended to other control

charts and (or) a mixture of several control charts, such as the charts based on Bayesian

approaches [7] and a combination of EWMA and CUSUM charts [23–29].
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