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Abstract

Background: Ghrelin is an important regulator of energy – and glucose homeostasis. The octanoylation at Ser3 is essential
for ghrelin’s biological effects but the mechanisms involved in the octanoylation are unknown. We investigated whether the
gustatory G-protein, a-gustducin, and the free fatty acid receptors GPR40 and GPR120 are involved in the fatty acid sensing
mechanisms of the ghrelin cell.

Methods: Wild-type (WT) and a-gustducin knockout (gust2/2) mice were fed a glyceryl trioctanoate-enriched diet (OD)
during 2 weeks. Ghrelin levels and gastric emptying were determined. Co-localization between GPR40, GPR120 and ghrelin
or a-gustducin/a-transducin was investigated by immunofluorescence staining. The role of GPR120 in the effect of medium
and long chain fatty acids on the release of ghrelin was studied in the ghrelinoma cell line, MGN3-1. The effect of the GPR40
agonist, MEDICA16, and the GPR120 agonist, grifolic acid, on ghrelin release was studied both in vitro and in vivo.

Results: Feeding an OD specifically increased octanoyl ghrelin levels in the stomach of WT mice but not of gust2/2 mice.
Gastric emptying was accelerated in WT but not in gust2/2 mice. GPR40 was colocalized with desoctanoyl but not with
octanoyl ghrelin, a-gustducin or a-transducin positive cells in the stomach. GPR120 only colocalized with ghrelin in the
duodenum. Addition of octanoic acid or a-linolenic acid to MGN3-1 cells increased and decreased octanoyl ghrelin levels,
respectively. Both effects could not be blocked by GPR120 siRNA. MEDICA16 and grifolic acid did not affect ghrelin secretion
in vitro but oral administration of grifolic acid increased plasma ghrelin levels.

Conclusion: This study provides the first evidence that a-gustducin is involved in the octanoylation of ghrelin and shows
that the ghrelin cell can sense long- and medium-chain fatty acids directly. GPR120 but not GPR40 may play a role in the
lipid sensing cascade of the ghrelin cell.
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Introduction

Ghrelin, a 28 amino-acid peptide, is synthesized in the X/A-like

endocrine cells of the gastric mucosa [1]. Besides its potent

stimulatory effect on growth hormone secretion, ghrelin also plays

a prominent role in the regulation of energy – and glucose

homeostasis [2,3]. Ghrelin regulates short-term energy homeosta-

sis by increasing hunger and food intake, an effect that is mediated

by the activation of neuropeptide Y and agouti-related peptide

producing neurons in the hypothalamus [4,5]. In addition, ghrelin

is also implicated in the regulation of long-term energy balance by

promoting weight gain and adiposity [6,7,8].

The meal-related fluctuations in plasma ghrelin levels indicate

that ghrelin is a physiological meal initiator [9]. While the

preprandial increase in ghrelin levels is produced by norepineph-

rine released from sympathetic neurons acting directly on b1

receptors at the ghrelin cell [10], the postprandial ghrelin

suppression is dependent on the caloric value and macronutrient

composition of the meal [11,12,13]. Lipids are less effective at

suppressing ghrelin levels than proteins, which in turn are less

potent than carbohydrates. The nutrient sensing mechanisms of

the ghrelin cell that determine these effects are so far unknown.

Ghrelin appears mainly in two forms, desoctanoyl ghrelin which

is the dominant form in the plasma and octanoyl ghrelin [14].

Octanoylated ghrelin is produced post-translationally by modifi-

cation of Ser3 with an eight carbon-fatty acid, octanoate, which is

essential to bind and activate the ghrelin receptor. This

octanoylation takes place in the lumen of the endoplasmatic

reticulum of the ghrelin cell and is mediated by a membrane-

bound O-acyl transferase known as ghrelin O-acyltransferase

(GOAT) [15,16].

Even before the discovery of GOAT it has been reported that

ingested medium chain fatty acids (MCFA) and medium-chain

triglycerides serve as a direct source of fatty acids in the acyl

modification of ghrelin [17]. The mechanisms involved in fatty

acid sensing of the ghrelin cells are not revealed yet, but we
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hypothesize that this may involve free fatty acid receptors (FFAR).

GPR40 and GPR120 are G-protein coupled receptors whose

endogenous ligands are medium and long chain fatty acids (LCFA)

[18,19]. GPR40 is expressed in the brain and gastrointestinal tract

but mainly in pancreatic b-cells where the receptor mediates free

fatty acid (FFA)-stimulated insulin secretion [20]. GPR120 is

abundantly expressed in the distal intestine, and functions mainly

as a receptor for unsaturated LCFA such as a-linolenic acid [21].

The stimulation of GPR120 by FFAs promotes the secretion of

glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) from

the enteroendocrine cell line STC-1 [21,22]. GPR40 is involved in

the secretion of CCK from native I cells in response to dietary fat

[23]. However, the downstream signaling pathway of these FFAR

remains unclear.

Approximately 40% of the GPR120-positive cells in the taste

buds express a-gustducin [24]. This gustatory G-protein, together

with a-transducin, is a key downstream transduction component of

the sweet, bitter and umami taste receptors [25,26]. We recently

showed that a-gustducin also plays a role in the effect of bitter

agonists on ghrelin secretion [27]. Both a-gustducin and a-

transducin are colocalized with octanoyl containing ghrelin cells in

the mouse stomach [27]. In addition a-gustducin but not a-

transducin is also present in the brush cells in close contact with

some ghrelin cells. These brush cells may function as input cells to

convey signals from the lumen via PGP9.5-innervating fibers to

neighboring cells [28]. a-gustducin is also present in the mouse

small intestine where it is colocalized with 5-HT and GLP-1 [29].

Also in humans expression of a-gustducin has been demonstrated

in stomach and small intestine [30,31].

The aim of the present study was to investigate whether the free

fatty acid receptors, GPR40 or GPR120 and/or a-gustducin are

involved 1) in the octanoylation process of ghrelin by medium

chain fatty acids 2) in the effect of long chain fatty acids on the

release of ghrelin.

Material and Methods

Animals
Male C57BL/6 WT mice were obtained from Janvier (Le

Genest St. Isle, France), gust2/2 mice were kindly provided by Dr.

Margolskee (Monell Chemical Senses center, Philadelphia) and

ghrelin receptor knockout (GHS-R2/2) mice were developed as

previously described and bred in our animal facility [32]. All mice

were between 10 and 14 weeks of age, housed in a temperature-

controlled environment (20–22uC) under a 14-h:10-h light-dark

cycle and had ad libitum access to food and drinking water. All

experimental procedures were approved by the Ethical committee

for Animal Experiments of the Catholic University of Leuven.

Experimental Design: Octanoyl Modification of Ghrelin
Both WT, gust2/2 or GHS-R2/2 mice were fed a control diet

(2016 Teklad Global 16% Protein Rodent Diet, Harlan Labora-

tories) or a control diet enriched (5%) with glyceryl trioctanoate.

Food intake and body weight were measured daily and gastric

emptying was measured before the start of the experiment and at

day 7 and 14 after feeding the enriched diet. After 14 days mice

were anesthetized and blood was collected by cardiac puncture.

The stomach and hypothalamus were removed. The stomach was

cut open along the greater curvature. A strip was cut vertically

from the top to the bottom of the central part of the stomach for

mRNA preparation while the right part was used for protein

extraction.

Experimental Design: Oral Administration of MEDICA 16
and Grifolic Acid

Overnight fasted (15 h) WT mice were gavaged with either

150 ml 1.8% DMSO in H2O (vehicle) or 150 ml MEDICA 16

(10 nmol/kg) (Santa Cruz Biotechnology) or grifolic acid

(10 nmol/kg) (Wuxi Chemicals) in 1,8% DMSO. Mice were

habituated to gavage administration before the start of the

experiment. Mice were sacrificed 40 min after gavage and blood

was collected by cardiac puncture. The stomach was removed and

rinsed.

Radioimmunoassay (RIA) for Ghrelin
Blood samples (EDTA (2 mg/ml) and aprotinin (500 kIU/ml))

were centrifuged and acidified (10%) with 1 N HCl. Samples were

extracted on a Sep-Pak C18 cartridge (Waters Corporation),

vacuum-dried and subjected to ghrelin RIA.

The stomach was boiled and homogenized in 3 volumes of

water with protease inhibitors (MP Biomedicals) and 9 volumes of

6% acetic acid. After boiling, the homogenate was centrifuged.

The supernatant was removed, diluted and subjected to RIA.

The RIA was performed as previously described [27] with
125I[Tyr24] human ghrelin [1–23] as tracer and with an in house

developed rabbit antibody raised against human ghrelin [14–28]

(Ab2066, final dilution 1:3000), which recognizes both octanoy-

lated and desoctanoylated ghrelin. For the determination of

octanoylated ghrelin, a rabbit antibody against human ghrelin [1–

8] was used (Ab5004, final dilution 1:100.000) which does not

cross react with desoctanoyl ghrelin.

Quantitative Real-Time PCR (qPCR)
Total RNA was extracted from the stomach with the RNeasy

Mini kit (Qiagen) and subjected to DNAase treatment. Total RNA

was isolated from the hypothalamus with the Trizol reagent and

samples were purified with a RNA purification kit (Roche

Diagnostics). The RNA was reverse transcribed to cDNA using

Superscript II Reverse Transcriptase (Invitrogen). The Q-PCR

reaction was run on a LightcyclerH 480 system (Roche Diagnos-

tics) using LightCyclerH 480 SYBR Green I Master mix. The

following primers were used: Agouti-related peptide (AgRP):

forward gCggAggTgCTAgATCCA, reverse AggACTCgTg-

CAgCCTTA; ghrelin: forward CCAgAggACAgAggACAAgC,

reverse ACATCgAAgggAgCATTgAA; GOAT: forward

ATTTgTgAAgggAAggTggAg, reverse CAggAgAgCAgg-

gAAAAAgAg; GPR120: forward gTCCCATCATCATCAC-

CATC, reverse gAT ggCCAgATgACCAggTC. Relative expres-

sion levels of all samples were calculated with the LightCyclerH
480 software and were expressed relative to GAPDH and

corrected for inter-run variability. Expression of GAPDH was

stable in the different experimental conditions.

Breath Test for Gastric Emptying
Gastric emptying in WT, gust2/2 and GHS-R2/2 mice fed a

glyceryl trioctanoate-enriched diet was measured with a non-

invasive 13C octanoic acid breath test as previously described [32].

The gastric half excretion time (Thalf) was calculated from the
13CO2 excretion curves [33].

Immunohistochemistry
Stomach tissues were fixed with 4% paraformaldehyde for 2 h

(4uC) followed by cryoprotection in 25% sucrose at 4uC overnight.

For the staining in the ghrelinoma cell line, cells were seeded on a

cover slip and after an overnight growth, fixed with 4%

paraformaldehyde for 30 min at room temperature. Sections

Lipid Sensing of the Ghrelin Cell
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(12 mm) or cells were first incubated for 2 h in 0.1 M PBS

containing 10% donkey serum, 0.3% Triton X-100 and then

incubated with goat anti-GPR40 (Santa Cruz Biotechnology) or

rabbit anti-GPR120 (MBL International Corporation) at 4uC
overnight. After washing, the sections were incubated with donkey

anti-goat or anti-rabbit Alexa594 (Santa Cruz Biotechnology) for

2 h a room temperature. For the immunofluorescence double

staining experiments, sections were subsequently incubated with

rabbit anti-a-gustducin, rabbit anti-a-transducin, goat anti-ghrelin

all from Santa Cruz Biotechnology, rabbit anti-ghrelin (Ab2066)

or rabbit anti-octanoyl ghrelin (Ab5044). These primary antibod-

ies were visualized using donkey anti-goat or anti-rabbit Alexa488

(Santa Cruz Biotechnology) as secondary antibody. Sections were

mounted with vectashield hard set medium (Vector Laboratories)

and visualized under a fluorescence microscope (Olympus BX41).

Cell Culture
MGN3-1 cells [34] were cultured in DMEM supplemented with

10% fetal bovine serum and 1% penicillin (100 u/ml) and

streptomycin (100 mg/ml) at 37uC in 5% CO2. MGN3-1 cells

were seeded at 66106 cells/well and cultured for 24 h in 12-well

plates. Cells were incubated for 4 h with vehicle (Hepes (vehicle

for octanoic acid and a-linolenic acid), 0.1% or 0.2% DMSO

(vehicle for MEDICA16 and grifolic acid)) or increasing concen-

trations (1026–1024 M) of the indicated reagents (octanoic acid

(Merck), a-linolenic acid (Sigma-Aldrich), MEDICA16 or grifolic

acid) [19,34,35] at 37uC in 5% CO2 before collecting the medium.

The media were acidified (10%), applied to Sep-Pak C18

cartridges and processed for RIA as described above.

Small-interfering RNA Experiments
A pool of four small-interfering RNA (siRNA) 21-mers targeting

the sequence of GPR120 was purchased from Dharmacon

Research. To detect off-target effects, a mixture of four siRNA

constructs (Non-Targeting siRNA Pool, Dharmacon Research)

was used as a negative control siRNA. Transfection of siRNA

(25 nM) was accomplished with Interferin (Polyplus transfection).

After 48 hours, cells were stimulated for 4 hours with vehicle,

octanoic acid (1024 M) or a-linolenic acid (1025 M) and the

culture medium was processed as described above. GPR120

mRNA expression levels were determined by qPCR.

Statistical Analysis
Results are presented as means 6 SEM. Data (body weight,

gastric emptying) obtained from measurements performed at

different time points in the same mice were analyzed with

Repeated measures ANOVA analysis. All other data were

analyzed with One or Two Way ANOVA analysis (factor: diet

and genotype). In case of significant factor effects, tests with

contrasts were performed to locate pairs of factor levels with

significant differences in the examined variables. Data were

analysed with Statistica 10.0 (StatSoft) and significance was

accepted at the P,0.05 level.

Results

Effect of a Glyceryl Trioctanoate-enriched Diet on
Octanoyl Ghrelin Production: Role of a-gustducin

To examine the role of the gustatory G-protein, a-gustducin, on

the octanoyl modification of ghrelin, ghrelin was extracted from

the stomach of WT and gust2/2 mice, given ad libitum access to a

glyceryl trioctanoate-enriched diet (OD) or a control diet (CD)

during two weeks. Two way ANOVA analysis indicated a

significant influence of genotype 6 diet (P,0.01). The octanoyl

ghrelin concentrations were significantly increased (P,0.05) in the

WT mice but not in the gust2/2 mice (Figure 1A). Total ghrelin

levels were not changed by the OD in WT mice (CD: 411615 vs.

OD: 364628 ng/mg protein) but reduced (P,0.001) in gust2/2

(CD: 418620 vs. OD: 264621 ng/mg protein). The octanoyl to

desoctanoyl ghrelin ratio was significantly (P,0.0005) increased in

the wild type mice but not in the gust2/2 mice (Figure 1B).

Plasma octanoyl and total ghrelin levels remained unaffected by

the glyceryl trioctanoate-enriched acid diet in both genotypes

(Figure 1C and D).

Feeding mice an OD for 2 weeks increased ghrelin mRNA

expression in WT mice but not in gust2/2 mice (Figure 1E). Two

way ANOVA Analysis indicated a significant influence of genotype

6 diet (P,0.005). GOAT mRNA expression levels were not

altered by the OD in both genotypes (Figure 1F). For all

parameters investigated ghrelin levels did not differ under control

conditions between WT and gust2/2 mice.

Physiological Consequences of Feeding Mice a Glyceryl
Trioctanoate-enriched Diet

Both food intake and body weight were measured during two

weeks in WT and gust2/2 fed a control diet or an octanoate-

enriched diet. Repeated measures ANOVA analysis showed no

effect of the diet on body weight in both genotypes (Figure 2A and

B). At day 14 no differences in food intake were observed between

the two diets in both genotypes (Figure 2C). Consistent with the

lack of effect on food intake, Two way ANOVA analysis indicated

no significant changes on the mRNA expression of the orexigenic

neuropeptide AgRP, mediating the effect of ghrelin on food intake

in the brain, in both genotypes (Figure 2D).

Gastric emptying was measured before and during the two

weeks the mice were fed an octanoic-enriched diet (figure 2E).

Gastric half excretion time (Thalf) did not differ between the

genotypes (Thalf: WT: 139614 min, gust2/2: 12064 min, GHS-

R2/2: 134613 min) at the start of the experiment when mice

were on the control diet. After feeding a glyceryl trioctanoate-

enriched diet, repeated measures ANOVA analysis revealed a

significant influence of genotype 6 diet (P,0.01) with significant

differences in gastric half excretion time between WT and both

GHS-R2/2 (P,0.05) and gust2/2 mice (P,0.01). Planned

comparisons showed that Thalf was significantly (P,0.001)

accelerated at day 7 (23.565.1%) and day 14 (24.465.0%) in

WT mice and at day 14 (11.963.4%, P,0.05) in GHS-R2/2

mice. In gust2/2 mice gastric emptying was not influenced by the

diet.

The Role of Fatty Acid Receptors GPR40 and GPR120 in
Fatty Acid Sensing of the Ghrelin Cell

Localization of GPR40 and GPR120 in the

gut. Immunofluorescence staining revealed the presence of

GPR40 immunoreactive cells in sections of the corpus of WT

mice. Several (6466%) GPR40 positive cells colocalized with

ghrelin (Figure 3A). This ghrelin antibody did not discriminate

between octanoyl and desoctanoyl ghrelin. Colocalization studies

with an antibody specific for octanoyl ghrelin revealed that

GPR40 did not colocalize with octanoyl ghrelin containing cells,

although some cells were in close contact with each other

(indicated by an arrow in Figure 3B). The gustatory G-proteins,

a-gustducin and a-transducin, are present in octanoyl containing

ghrelin cells [27]. GPR40 did not co-localize with a-transducin but

we observed cells that were in close contact (indicated by an arrow

in Figure 3C). Also a-gustducin did not show costaining with

GPR40 positive cells (Figure 3D). In the duodenum, ghrelin cells

Lipid Sensing of the Ghrelin Cell
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were less abundant, and no colocalization between GPR40 and

desoctanoyl ghrelin or octanoyl ghrelin cells could be observed

(Figure 3E).

The presence of GPR120 was shown in endocrine cells

(Figure 4A) and in brush cells (Figure 4B) at the limiting ridge of

the mouse stomach. GPR120 immunoreactive cells did not

colocalize with ghrelin (Figure 4A and B). GPR120 positive cells

were also observed in the duodenum. In contrast to the stomach,

these cells colocalized for 81610% with the ghrelin cell population

(Figure 4C). Unfortunately, we could not perform colocalization

studies between GPR120 and octanoyl ghrelin or the gustatory G-

proteins, a-gustducin and a-transducin, because the antibodies

were from the same host species.

Role of GPPR40 and GPR120 in the effect of medium and

long chain fatty acids on ghrelin secretion in the ghrelinoma

cell line. The effect of a glyceryl trioctanoate-enriched diet on

the octanoylation of ghrelin was mimicked in vitro by addition of

octanoic acid to the culture medium of the ghrelinoma cell line,

MGN3-1. Octanoic acid significantly (One way ANOVA analysis,

P,0.01) increased octanoyl ghrelin secretion in a concentration-

dependent manner (1028 M: 90619%, 1026 M: 150633%,

1025 M: 231631%, 1024 M: 312619%). In contrast, total

ghrelin levels were not affected by administration of octanoic acid

(Figure 5A).

Next we examined the effect of the long chain fatty acid, a-

linolenic acid, on ghrelin secretion. Stimulation of the MGN3-1

cells with a-linolenic acid resulted in a concentration-dependent

decrease (One way ANOVA analysis, P,0.01) in octanoyl ghrelin

levels compared to vehicle stimulated cells. In contrast total ghrelin

levels were not affected (Figure 5B).

GPR120 mRNA but not GPR40 mRNA is expressed in the

ghrelinoma cell line. The expression of GPR120 at the protein

levels was confirmed by immunofluorescence staining against

GPR120 (Figure 5C). To investigate a possible role of GPR40 and

Figure 1. Role of a-gustducin in the effect of a glyceryl trioctanoate-enriched diet (OD) on ghrelin levels. (A) Octanoyl ghrelin levels in
stomach extracts from WT (n = 8–15) and gust2/2 (n = 8–13) mice fed a control diet (CD) (white bars) or OD (black bars) for two weeks. (B) Octanoyl to
desoctanoyl ghrelin ratio in stomach extracts of WT and gust2/2 mice. (C) Octanoyl ghrelin and (D) total ghrelin levels in plasma of WT (n = 16–20)
and gust2/2 (n = 17–19) mice fed a CD or OD for two weeks. (E) Ghrelin mRNA and (F) GOAT mRNA expression in stomach of WT (n = 13–17) and
gust2/2 (n = 14–18) mice fed a CD or OD for two weeks. All values are means 6 SEM’s. *: P,0.05, ***: P,0.0005 CD vs. OD, ###: P,0.001 WT vs.
gust2/2.
doi:10.1371/journal.pone.0040168.g001
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GPR120 in the fatty acid sensing mechanisms of the ghrelin cell,

we administered the selective agonists MEDICA16 and grifolic

acid to the ghrelinoma cell line, respectively. As expected

stimulation with MEDICA16 did not affect ghrelin levels since

GPR40 is absent in the MGN3-1 cells (Figure 5D). However also

application of the GPR120 agonist, grifolic acid, was without any

effect (Figure 5E).

To determine whether the FFA receptor GPR120 was involved

in the effects of octanoic acid or a-linolenic acid on octanoyl

ghrelin secretion, we transfected MGN3-1 cells with siRNA for

GPR120. The transfection resulted in 5064% knockdown of

GPR120 mRNA expression (4 independent experiments in

triplicate). Application of octanoic acid (1024 M) to GPR120

siRNA transfected cells increased octanoyl ghrelin levels (vehicle:

3066 pg/ml vs. octanoic acid: 120615 pg/ml) (Figure 6A) to the

same extent as cells transfected with the non-targeting siRNA

(vehicle: 2866 pg/ml vs. octanoic acid: 115621 pg/ml). Total

ghrelin levels remained unaffected in both GPR120 siRNA and

non-targeting siRNA transfected cells (Figure 6B). Similarly, the

inhibitory effect of the long-chain fatty acid, a-linolenic acid

(1025 M) on octanoyl ghrelin levels was not blocked by

transfection of MGN3-1 cells with GPR120 siRNA (Figure 6C).

Total ghrelin levels were not affected in both GPR120 siRNA and

non-target siRNA transfected cells after stimulation with a-

linolenic acid (Figure 6D). Therefore we could not assess a

function to GPR120 in the ghrelinoma cell line.

Effect of the GPPR40 agonist, MEDICA16, and the

GPR120, grifolic acid, on ghrelin secretion in vivo. The

Figure 2. Role of a-gustducin in the effect of a diet enriched with glyceryl trioctanoate on body weight, food intake, hypothalamic
AgRP mRNA expression and gastric emptying. (A, B) Time-dependent changes in body weight of WT (A) or gust2/2 (B) mice fed a CD (open
symbols) or OD (filled symbols) (n = 18 mice per group) for two weeks. Results are expressed as a % of body weight before the start of the
experiments. (C) 24-h food intake measured in WT and gust2/2 at day 14 on a CD or OD (n = 8 mice per group). Results are expressed as % of 24-h
food intake measured before the start of the experiment. (D) Hypothalamic AgRP mRNA levels in WT or gust2/2 mice after two weeks on CD or OD
(n = 10–14 mice per group). (E) Gastric emptying measured before the start of the experiment and at day 7 and 14 after feeding an OD in WT (open
circles), gust2/2 (filled circles) or GHS-R2/2 (filled triangles) (n = 8 per genotype). All values are means 6 SEM’s and are expressed as a % of their
respective Thalf value at day 0 when mice were on the control diet. *: P,0.05, **: P,0.001 vs. day 0, #: P,0.05 WT vs. GHS-R2/2, ##: P,0.01 WT vs.
gust2/2.
doi:10.1371/journal.pone.0040168.g002
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effect of intragastric administration of 10 nmol/kg MEDICA16 or

grifolic acid on ghrelin secretion was investigated. One way

ANOVA analysis indicated a significant (P,0.05) effect of

treatment. MEDICA 16 did neither affect plasma octanoyl nor

total ghrelin levels. In contrast, after gavage of grifolic acid, plasma

octanoyl ghrelin levels were increased 1.7–fold (P,0.05)

(Figure 7A). A similar trend was observed for the effect on plasma

total levels (P = 0.08). The ratio of octanoyl versus desoctanoyl

ghrelin levels was not affected (vehicle: 0.07360.011, MED-

ICA16:0.07760.016, grifolic acid: 0.08060.011). Stomach ghrelin

content was not affected by intragastric administration of the

GPR40 or GPR120 agonist (Figure 7B).

Discussion

Recent data stress the role of lipid sensing mechanisms in the

regulation of energy balance [36,37,38]. Also the ghrelin cell must

sense lipids since the secretion of ghrelin is inhibited by lipids and

ghrelin octanoylation is modified by dietary lipids, in particularly

by the availability of MCFA [11,12,17,39]. The function of ghrelin

may therefore not exclusively be that of a hunger signal reflecting

an empty stomach, but the ghrelin-GOAT system may act as an

energy-sensor to alert the central nervous system about the

presence of a calorie-rich environment to optimize lipid storage

and permit growth [39]. However, the signaling pathways

involved in sensing of lipids by the ghrelin cell are not known.

In the current paper we described for the first time a role for the

gustatory G-protein, a-gustducin, in the octanoylation of ghrelin.

Feeding mice a diet enriched with glyceryl trioctanoate for two

Figure 3. Immunofluorescence colocalization studies between GPR40 and ghrelin or the gustatory G-proteins in sections of the
mouse stomach and duodenum. (A) Double-immunofluorescence staining showing colocalization between anti-GPR40 staining (red) and anti-
total ghrelin staining (green) in endocrine cells. (B) GPR40 (red) immunoreactive endocrine cells did not colocalize with octanoyl ghrelin (green)
immunoreactive endocrine cells, but some GPR40 positive cells were in close proximity with octanoyl ghrelin positive cells as pointed by the arrow.
(C) No colocalization of GPR40 (red) and a-transducin (green) in stomach endocrine cells. (D) Double staining of GPR40 (red) and a-gustducin (green)
in endocrine cells. (E) Double staining between GPR40 (red) and total ghrelin (green) in mouse duodenum. No colocalization is detected. Bar = 25 mm.
doi:10.1371/journal.pone.0040168.g003

Figure 4. Immunofluorescence colocalization studies between GPR120 and ghrelin in sections of the mouse stomach and
duodenum. (A) Double immunofluorescence staining showing no colocalization between anti-GPR120 (green) and anti-total ghrelin (red) staining in
endocrine cells of the stomach. (B) GPR120 (green) immunoreactive staining was present in the brush cells at the limiting ridge. No colocalization was
observed with ghrelin positive cells, but some were in close proximity. (C) GPR120 (red) positive cells did colocalize with total ghrelin (green) in
sections of the mouse duodenum. Bar = 25 mm.
doi:10.1371/journal.pone.0040168.g004
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weeks increased octanoyl ghrelin levels in stomach extracts from

WT but not from gust2/2 mice. We have previously shown that a-

gustducin is present in the brush cells of the stomach in close

contact with octanoyl containing ghrelin cells but also in endocrine

cells immunoreactive for octanoyl ghrelin [27]. Since orally

ingested medium chain triglycerides can passively diffuse from

the GI tract to the portal system, it is therefore questionable if the

a-gustducin-containing brush cells, which are in direct contact

with the lumen, are involved in the sensing of these lipids. Our

data also show that the octanoylation of ghrelin can be increased

in vitro by addition of octanoic acid to the culture medium of the

ghrelinoma cell line, MGN3-1. However, in contrast to the in vivo

situation, the increased octanoyl ghrelin was also effectively

secreted in the cell culture medium. This reinforces the hypothesis

that the a-gustducin containing endocrine ghrelin cells contain the

machinery to sense the octanoic acid directly, probably from

signals coming via the blood stream and thus independent from

luminal stimuli transmitted via the brush cells.

In contrast to octanoyl ghrelin levels, total ghrelin levels in the

stomach were not affected by the diet, insinuating that only the

octanoylation process was influenced by an excessive availability of

octanoic acid in the diet. Similar findings were obtained by

addition of octanoic acid to the cell culture medium of the

ghrelinoma cell line. Furthermore the glyceryl trioctanoate-

enriched diet did not affect GOAT expression, although a change

in the activity of the enzyme cannot be excluded. Also the octanoyl

ghrelin levels in the blood were not altered by the diet implying

that ghrelin octanoylation and the secretion of octanoyl ghrelin

Figure 5. Effect of FFA stimulation on ghrelin secretion in the ghrelinoma cell line. MGN3-1 cells were stimulated with different
concentrations of octanoic acid (A), a-linolenic acid (B), MEDICA16 (D) or grifolic acid (E). Both octanoyl (filled circles) and total ghrelin (open circles)
levels were measured in the medium 4 h after administration of the FFA. (C) Immunofluorescence staining for DAPI (left), GPR120 (middle) and
negative control (right) in the ghrelinoma cell line. Bar = 100 mm. All values are means 6 SEM’s of 4 independent experiments performed in triplicate
and are expressed as a % of ghrelin secretion obtained after stimulation with vehicle.
doi:10.1371/journal.pone.0040168.g005
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Figure 6. Role of GPR120 in the effect of octanoic acid (A–B) and a-linolenic acid (C–D) on ghrelin levels in the ghrelinoma cell line.
Octanoyl and total ghrelin secretion was measured 4 h after administration of vehicle, octanoic acid (1024 M), or a-linolenic acid (1025 M) to MGN3-1
cells transfected with GPR120 siRNA or a non-targeting siRNA pool as negative control. All values are means 6 SEM’s of 4 independent experiments
performed in sevenfold. *: P,0.05, **: P,0.01 vehicle vs. octanoic acid or a-linolenic acid.
doi:10.1371/journal.pone.0040168.g006

Figure 7. Effect of MEDICA16 and grifolic acid on ghrelin secretion in vivo. Octanoyl ghrelin (left) and total ghrelin (right) levels were
measured in plasma (A) or in stomach extracts (B) 40 min after gavage of 0,18% DMSO (vehicle), 10 nmol/kg MEDICA16 or grifolic acid. All values are
means 6 SEM’s of experiments performed in 8 mice. *: P,0.05 vs. vehicle.
doi:10.1371/journal.pone.0040168.g007
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probably represent two independent processes. This may be a

defense system of the body to prevent enhanced signaling of

ghrelin under conditions of positive energy balance provided by

the excess of lipids. Gahete et al. [40] already showed that GOAT

expression in the stomach is a good predictor of octanoyl ghrelin in

the plasma. Ghrelin levels did not differ between WT and gust2/2

mice receiving a control diet suggesting that a-gustducin is less

important in sensing other octanoyl species than glyceryl

trioctanoate as well as other non-8-carbon species which have

also been found to be incorporated in the ghrelin peptide [17].

The increased octanoyl ghrelin levels in the stomach resulted in

an acceleration of gastric emptying in WT mice, but not in gust2/

2 mice. The effect on emptying was also significantly different

between WT and GHS-R2/2 mice, suggesting that the effect on

gastric emptying is mediated via the increase in octanoyl ghrelin

levels which involves a-gustducin. The local increase in ghrelin in

the stomach may affect gastric contractility via a direct interaction

with peripheral ghrelin receptors present on enteric nerves [33,41]

or via activation of vagal afferent endings [42]. It remains to be

investigated whether an octanoic-acid enriched diet may be useful

to treat hypomotility disorders in patients.

Several fatty acid responsive proteins have been identified that

may play a role in initiating fatty acid transduction including fatty

acid binding protein CD36 [43] and several GPCRs including

GPR40 and GPR120 [18,19]. The immunofluorescence stainings

showed that 64% of GPR40 immunoreactive endocrine cells

colocalized with ghrelin in the mouse stomach but not in the

duodenum. We have previously shown that the mouse stomach

contains two ghrelin cell populations: cells containing octanoyl and

desoctanoyl ghrelin and cells staining for desoctanoyl ghrelin only

[27]. We showed that GPR40 only colocalizes with the

desoctanoyl containing ghrelin population. Nevertheless, some

octanoyl containing ghrelin cells were in close contact with GPR40

positive desoctanoyl ghrelin containing cells. GPR40 was not

colocalized with the gustatory G-protein a-gustducin, but some

GPR40 immunoreactive cells were in close contact with a-

transducin. These findings together with the observation that

GPR40 is not colocalized with octanoyl ghrelin cells neither in the

stomach nor in the duodenum suggest that it is rather unlikely that

this receptor is directly involved in the octanoylation process of

ghrelin. Secondly we revealed the expression of GPR120 in both

the brush and endocrine cells in the mouse stomach. Some

GPR120 containing brush cells were in close contact with ghrelin

immunoreactive cells. In contrast to GPR40, GPR120 positive

endocrine cells colocalized with ghrelin in the duodenum but not

in the stomach.

A role for GPR120 in the octanoylation of ghrelin was studied in

vitro using the mouse ghrelinoma cell line, MGN3-1. The protein

expression of GPR120 in the MGN3-1 cells was validated by

immunofluorescence studies. Transfection of the cells with siRNA

specific for GPR120 did not block the increase in octanoylation

induced by addition of octanoic acid to the cell culture medium.

Unfortunately we could not perform siRNA studies for GPR40

since we could not validate the presence of GPR40 in this cell line.

Sensing of fatty acids may not only affect the octanoylation of

ghrelin but may also be important in the regulation of ghrelin

secretion. To further investigate the fatty acid sensing mechanisms

of the ghrelin cell we studied the effect of the long chain fatty acid,

a-linolenic acid, on ghrelin secretion. We showed for the first time

that a-linolenic acid specifically inhibits the release of octanoyl

ghrelin but not of total ghrelin. These findings imply that the

release of octanoyl and desoctanoyl ghrelin may be regulated

differently. Our data suggest that the ghrelin endocrine cell

contains the machinery to sense MCFA and LCFA directly.

The GPR120-containing brush cells in the stomach or the

GPR120-containing ‘‘open type’’ ghrelin cells in the duodenum

make GPR120 a plausible candidate for sensing long-chain fatty

acids in the lumen. Previous studies already demonstrated a role

for GPR120 in a-linolenic acid-induced GLP-1 and CCK

secretion in STC-1 cells [21,22,44]. Transfection of MGN3-1

cells with siRNA for GPR120 decreased GPR120 mRNA

expression but did not block a-linolenic acid-induced octanoyl

ghrelin suppression. In accordance, a specific agonist for GPR120,

grifolic acid [35], was not able to mimic the effect observed with a-

linolenic acid on ghrelin release. In accordance with the absence of

GPR40 in the ghrelinoma cell line, no effect on ghrelin secretion

was observed with the GPR40 agonist, MEDICA16 [35].

However, intragastric administration of grifolic acid increased

plasma ghrelin secretion in vivo. Since the ghrelin content in the

stomach was not affected by gavage of grifolic acid it is likely that

ghrelin was secreted from the ghrelin containing cells in the

duodenum which are colocalized with GPR120. Since grifolic acid

also stimulates GLP-1 secretion from the enteroendocrine cell line,

STC-1, indirect effects mediated via the release of GLP-1 or other

gut hormones cannot be excluded [35]. Further studies are

warranted to investigate this.

The full characterization of the receptors and transporters, as

well as the signaling pathways that mediate fatty acid detection

within the GI tract is of major relevance due to their apparent

contribution to important functions, like ghrelin octanoylation and

secretion and thus energy intake. We reported for the first time a

role for the G-protein, a-gustducin, in the octanoylation process of

ghrelin and provide evidence that the ghrelin cell can sense MCFA

(octanoic acid) and LCFA (a-linolenic acid) directly with opposite

effects on octanoyl ghrelin secretion. Our in vitro and in vivo data

suggest that GPR40 is not of major importance in the fatty acid

sensing cascade of the ghrelin cell, but in vivo studies with grifolic

acid point towards a direct or indirect role of GPR120 in ghrelin

secretion. The role of the membrane lipid-binding protein CD36

which plays a major role in the orosensory perception of LCFAs in

the mouse also warrants further investigation [45]. Studies in

CD36 null mice support an important role for duodenal CD36

fatty acid translocase in the dietary uptake of oleic acid [37].

Recent findings suggest that the expression of gustatory-

signaling elements, including GPR120 and a-gustducin, is

increased in morbidly obese patients [46]. Since these chemosen-

sory cells are part of the complex mechanisms regulating energy

homeostasis, this opens doors for strategies aimed at interfering

with lipid sensing mechanisms in the gut for the treatment of

obesity and other eating disorders.
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