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Abstract
In a probabilistic inference task (three probabilistic cues predict outcomes for two options), we examined decisions from 233
children (5–6 vs. 9–10 years). Contiguity (low vs. high; i.e., position of probabilistic information far vs. close to options) and
demand for selectivity (low vs. high; i.e., showing predictions of desired vs. desired and undesired outcomes) were varied as
configural aspects of the presentation format. Probability utilization was measured by the frequency of following the predictions
of the highest validity cue in choice. High contiguity and low demand for selectivity strongly and moderately increased
probability utilization, respectively. Children are influenced by presentation format when using probabilities as decision weights.
They benefit from perception-like presentations that present probabilities and options as compounds.
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What makes a good decision maker? Blaise Pascal, the late-
Renaissance mathematician and philosopher, suggested that
good decisions mimic the rules of probability. Even in highly
consequential choices (e.g., if you are wondering whether to
obey the Decalogue or addict yourself to sinful desires; the
Wager’s problem; Pascal, 1670), he recommends proceeding
like a cold-calculating gambler (i.e., weight the value of con-
sequences by their probabilities and choose the option with
the highest expected value). A dice player, for example, may
face the following two lotteries: (a) winning 70 Euros if the die
shows an even number; (b) winning 90 Euros if the die shows
a 1 or 6. Pascal would expect the gambler to bet on lottery (a),
because 70 × 1/2 > 90 × 1/3.

Empirical and everyday experiences tell us that individuals do
not generally follow this ideal. Sometimes they mistake possibil-
ities for probabilities (e.g., risks as feelings; Loewenstein,Weber,
Hsee, & Welch, 2001) or fail to integrate probabilities in a nor-
matively sound fashion (e.g., base-rate neglect; Bar-Hillel &
Fischhoff, 1981). Nevertheless, weighting is of paramount im-
portance even in many simple strategies that circumvent the in-
tegration of information. Lexicographic strategies (e.g., take-the-
best; Gigerenzer & Gaissmaier, 2011), for example, require the

individual to detect the most important dimension in a choice
situation. Consider, for instance, the standard structure of a
Brunswikian probabilistic inference task. There, several cues pre-
dict a distal entity (e.g., the future outcomes of options). The cues
differ with regard to their validity. In a probabilistic world, the
cues’ validities reflect the probabilities that outcomes are predict-
ed correctly.1 In an experimental setting, such cues can be advice
givers (e.g., testers) who make predictions about the quality of
products (Glöckner&Betsch, 2008). If their validities are known
and stated, the decision maker who applies a lexicographic strat-
egy should select the advice giver with the highest validity and
follow his or her recommendations. In many decision situations,
such a simplifying strategy is sufficient and yields comparable
accuracy to decisions by weighted information integration (e.g.,
Payne, Bettman, & Johnson, 1988; see also Gigerenzer &
Gaissmaier, 2011). However, differences in validity must still
be encoded, and the subsequent focus of attention should be
placed on the best cue. Hence, this simplifying strategy still re-
quires weighting (prioritization of a cue), although it relieves the
individual from weighted information integration.

At what time in cognitive development are humans able to
use probabilities as decision weights?2 Thework in the field of

1 Cue validity is differently defined in the literature. Our approach reflects the
conceptual background from research on decision-making in a multiple cue
environment (e.g., Jekel, Glöckner, & Bröder, 2018).
2 This debate is not limited to developmental psychology but is also a debated
issue in research on judgment and decision-making in adults (see, e.g., re-
search on base-rate neglect, which we briefly examine in the discussion).
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judgment and decision-making convergences in indicating
that the competence to use probabilities as weights emerges
rather late in cognitive development. Before the age of 10
years, children tend to neglect probabilities in lottery decisions
(Levin & Hart, 2003; Levin, Weller, Pederson, & Harshman,
2007) and probabilistic inference decisions (Betsch & Lang,
2013; Betsch, Lang, Lehmann, & Axmann, 2014; Betsch,
Lehmann, Jekel, Lindow, & Glöckner, 2018; Betsch,
Lehmann, Lindow, Lang, & Schoemann, 2016; Lang &
Betsch, 2018). Moreover, they are reluctant to apply “simple”
strategies, such as take-the-best, that shift weighting from in-
tegration to search processes (Mata, von Helversen, &
Rieskamp, 2011).

These findings are in sharp contrast to post-Piagetian re-
search in developmental psychology. Whereas early studies
document probability neglect until secondary school age (11–
12 years; e.g., Hoemann & Ross, 1971; Kreitler & Kreitler,
1986; Piaget & Inhelder, 1951), subsequent research suggests
astounding abilities to sensitize and utilize probabilistic infor-
mation even in preschool children (Denison & Xu, 2014;
Pasquini, Corriveau, Koenig, & Harris, 2007; Schlottmann,
2001; Schlottmann & Anderson, 1994; but see Girotto,
Fontanari, Gonzalez, Vallortigara, & Blaye, 2016, for
counterevidence).

Task-contingent performance: A chance
rather than a challenge

Aiming at identifying the origins of conflicting evidence, we
face a striking diversity in research paradigms. The presenta-
tion of probabilistic information differs. Children sometimes
learn probabilities via experiencing frequency distributions
(e.g., Pasquini et al., 2007), they are presented with distribu-
tions of objects in jars (e.g., Denison & Xu, 2014; Girotto
et al., 2016) or different sizes of areas on which a ball can
land (e.g., Schlottmann, 2001). The task may require
predecisional search for information on a board (e.g.,
Betsch, Lehmann et al., 2016; Mata et al., 2011) or all relevant
information is directly accessible (e.g., Denison & Xu, 2014;
Levin et al., 2007; Schlottmann, 2001). Dependent measures
also vary substantially, such as patterns of information search
(e.g., Betsch, Wünsche, Großkopf, Schröder, & Stenmans,
2018), evaluative judgments (e.g., Schlottmann, 2001), trust
in informants (Pasquini et al., 2007), approach behavior (e.g.,
crawling; Denison & Xu, 2014), or choice between multiple
objects (e.g., Betsch, Lehmann, et al., 2018; Levin et al.,
2007). These few examples illustrate task diversity.

Presumably, task features may be—at least partly—
responsible for the variations of results (see Fiedler, 2011,
for a methodological discussion). Some tasks may suit chil-
dren’s cognitive abilities better than others (see Betsch,
Lehmann, Lindow, & Buttelmann, 2020). As a consequence,

performance could be contingent on task features. One might
assume that tasks differ in their child friendliness (i.e., the ease
with which a task can be understood by children). From such a
viewpoint, the researcher is responsible for creating tasks that
maximize the likelihood that children can reveal their capac-
ities and potentials. Stretching this view to an extreme, one
might dismiss studies revealing deficits in children’s perfor-
mance and blame the researchers for failing to create child-
friendly tasks.

On the other hand, mixed evidence offers trajectories for
advancing our knowledge. It could be that differences in par-
adigms and findings reflect an underlying systematic relation
between task dimensions and cognitive development. Some
features may require higher order cognitive abilities so that
children can use probabilities as weights, whereas others suit
basic intuitive processes that evolve and consolidate very ear-
ly in development. We consider mixed evidence as a chance
rather than a challenge and task features as a potential means
to regulate decision behavior in order to better understand how
the ability of probability utilization evolves.

From perception to conception

Wohlwill (1968) came up with an analytical approach to op-
erationally place tasks alongside a continuum based on the
extent to which they demand conceptual understanding.
Perceptual and conceptual tasks mark its end points. A purely
perceptual task can be solved using intuition that immediately
arises vis-à-vis the perceptual input. Mastering a conceptual
task, in contrast, requires advanced cognitive skills and formal
conceptual knowledge. With cognitive development, “there is
a decreasing dependency of behavior of information in the
immediate stimulus field” (Wohlwill, 1968, p. 472; for a
similar view see Schlottmann & Wilkening, 2012). This no-
tion implies that the assessment and generalization of a child’s
developmental status is contingent upon the task’s position on
the continuum. Solving a perceptual task does not necessarily
imply that the child is also capable of solving a conceptual
task. Consequently, one must compare performance in differ-
ent types of tasks in order to properly assess the level of cog-
nitive development in individuals or a group of a certain age.
In the literature on child decision-making, however, re-
searchers commonly assess developmental status within tasks
(“their” paradigm). Research camps tend to stick with their
particular paradigm and produce strikingly different findings.
Not surprisingly, empirical evidence on children’s utilization
of probabilities as decision weights is strikingly mixed. There
is evidence, for example, that understanding probabilities be-
gins in infancy (Denison & Xu, 2014), whereas others find
that children do not become adaptive to probabilistic decision
environments until the end of elementary school (Betsch,
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Lehmann, et al., 2018) or even secondary school (Piaget &
Inhelder, 1951).

To advance our knowledge of competency development in
humans, researchers should systematically compare the per-
formance of children across tasks. To this end, one needs an
analytical framework identifying relevant task dimensions.
Wohlwill (1968) put forward an operational, three-
dimensional approach, suggesting that redundancy, selectivi-
ty, and contiguity are of paramount importance when locating
a task on the continuum between perception and conception.

Task dimensions: Redundancy, selectivity,
and contiguity

Broadly speaking, redundancy and selectivity both affect
differentiation between the figure and the ground. The more
stimuli jointly activate the same impression in the perceiver
(increasing redundancy), and the less irrelevant stimuli are
present that dilute or distract away from this impression
(decreasing demand for selectivity), the closer the task ap-
proaches perception. In contrast, in the absence of redun-
dancy and a high demand for selectivity, tasks require
conception.

In a groundbreaking study, Bruner, Goodnow, and Austin
(1956) gradually varied task attributes on these dimensions. In
an object selection task, participants (third-graders, fifth-
graders, adults) were presented with sets containing three geo-
metrical figures and were asked to identify the odd ones.
Figures varied with regard to shape, color, shading, and size.
Over a series of sets, redundancy decreased, whereas the de-
mand for selectivity increased. In most perceptual-like condi-
tion, the “odd” object differed on three dimensions (color,
size, shading) from the others, yielding high redundancy and
a low demand for selectivity. Only one attribute (color) varied
between the three objects and thus was irrelevant for identify-
ing the odd object. In this condition, all age groups performed
almost equally well and were able to identify the correct object
within a narrow time frame. In the most conceptual-like con-
dition, the task was characterized by the absence of redundan-
cy and a high demand for selectivity. Only one attribute
(shape) was shared by two objects, whereas none of the other
attributes was shared. Accordingly, participants had to detect
shape as the only relevant attribute and consequently select the
object that differed in shape from the others. In this condition,
error rate differed strongly between children and adults.
Moreover, even in adults, mean reaction times doubled in
comparison to the perceptual task condition.

The third dimension in Wohlwill’s framework is contigui-
ty, a dimension well known to affect virtually all aspects of
cognition and behavior. In perception, causal attribution, and
learning, just to mention some domains, spatial and temporal
distance of stimuli heavily affect information processing in the

individual. For instance, the distance between central and con-
textual stimuli is responsible for a number of perceptual illu-
sions (e.g., Attneave, 1954)—stimuli that occur at the same
time or in rapid succession are likely to be associated in mem-
ory (e.g., Hebb, 1949) or used as candidates for causal attri-
bution (e.g., Heider & Simmel, 1944). The higher the conti-
guity of relevant stimuli or stimulus features, the more likely it
is that the task can be solved without higher levels of
conception.

For illustration, consider two tasks from research on prob-
ability utilization in children. They produced strikingly differ-
ent results in children’s utilization of probabilities.
Schlottmann (2001) demonstrates that even preschoolers can
integrate probabilities and values in a multiplicative-like fash-
ion, as predicted by utility theory. In her task, she visualized
the probability and value of outcomes in the following manner
(see also Schlottmann & Wilkening, 2012, p. 62). A marble
was shaken in a tube with two clusters of coloured segments
(e.g., blue, yellow). Above each cluster, the potential gain was
depicted (crayons). Value was manipulated by varying the
number of crayons above each cluster (e.g., six for blue, one
for yellow). Probability (e.g., 80% chance of winning if the
marble stops in the blue cluster) was manipulated by varying
the number of segments in a cluster (e.g., four segments in the
blue, one segment in the yellow cluster). In the marble tube
task, spatial contiguity between probability and value is high.
The crayons are depicted directly above the right and left
cluster in the tube. The blue and the yellow clusters represent
the two potential outcomes of the task. As such, the outcomes
contain all relevant information in a contiguous
arrangement—values (number of crayons) and probability
(size/number of segments).

Betsch and colleagues (2014; Betsch, Lehmann, et al.,
2018; Betsch, Lehmann, et al., 2016) used an information
board approach to study probabilistic inference decisions in
children. The task contains several pieces of relevant informa-
tion that appear at different locations on the information board
and must be combined (see Fig. 1 for the computerized
version Mousekids). Specifically, the presentation comprises
options (houses), cues (animals), outcomes predicted by cues
(whether a house contains a treasure or a spider), and the cue
validities (probability that a cue makes correct predictions,
represented by “smart circles”). Notably, cue validities are
spatially dissociated from the options because these types of
information appear at the margins of the information board
matrix. In contrast to Schlottman’s results, Betsch and col-
leagues (2014; Betsch, Lehmann, et al., 2018; Betsch,
Lehmann, et al., 2016) consistently found that preschoolers
(around 5–6 years old) do not utilize probabilistic information.
Specifically, they did not systematically prioritize the predic-
tions of the cue with the highest validity (HVC; i.e., they
frequently preferred the option that was not recommended
by the HVC). And still two thirds of elementary schoolers
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(9–10 years old) also neglected probabilities in their decisions,
as evidenced by choices in opposition to the HVC’s recom-
mendation. This overall probability neglect is reported for the
standard information board (see Fig. 1a), where information
must be searched behind closed matrix cells (Betsch et al.,
2014; Betsch, Lehmann, et al., 2016), as well as for the open
board (see Fig. 1b), where all information is presented uncov-
ered (Betsch et al., 2014; Betsch, Lehmann, et al., 2018). Both
paradigms, the marble tube task and the information board
paradigm, involve similar information that must be processed.
That is, several values and probabilities (presented as magni-
tudes) describe two options. However, according to
Wohlwill’s (1968) framework, the marble tube task is closer
to perception than the information board paradigm due its
spatial contiguity (see Betsch, Lehmann, et al. 2018, for a
discussion).

Research approach: Varying task dimensions
within the same paradigm

Due to a plethora of potential confounds, it is difficult to draw
valid conclusions from comparing tasks from different para-
digms. Therefore, a promising approach might be to system-
atically vary task dimensions within the same paradigm. In
this study, we adopted the presentation format of Betsch and
colleagues’ information-board approach. We varied contigui-
ty and selectivity as between-subjects factors and used a pre-
sentation format similar to the open-board condition (Betsch
et al., 2014). All information is presented uncovered, thus
eliminating the need for active information search (opening
cells in the matrix). In deviation from prior presentation for-
mats, we presented the task on cards in order to vary
configural aspects (contiguity and demand for selectivity).
Figure 2 shows the replication condition (see Fig. 2a) and all
of the new experimental conditions in which contiguity is

increased and/or demand for selectivity is decreased. By re-
moving predictions of the undesired outcome—spiders—the
matrix only contains the relevant predictions of the cues (i.e.,
the treasures). Without spiders, the amount of displayed infor-
mation substantially decreased, as did the demand for selec-
tivity. Contiguity was increased by moving probabilistic in-
formation (the “smart circles”) from the margins onto the
cards. As a consequence, the spatial distance between the
picture of the house, the predicted treasures, and their proba-
bilities was minimized. All these features appear together on a
single card, thus forming a perceptual unity of the eligible
option. Importantly, the structure of the task is preserved.
Only spatial relations are altered.

Hypotheses

We examined the utilization of probabilities in choice in prob-
abilistic inference tasks. In our noncompensatory environ-
ment,3 it is normatively appropriate to prioritize the predic-
tions of the HVC (see explanation of research paradigm in the
Methods section for further explanation). The utilization of
probabilities should therefore manifest itself in choices that
are consistent with the HVC’s predictions.

We predict two main effects for contiguity and selectivity:

H1: In the conditions with high contiguity (see Fig. 2c–
d), the frequency of choices that are consistent with the

Fig. 1 Screenshots from Mousekids (Betsch, Lehmann, et al., 2016). a
Standard version. Individuals can search the predictions of three animals
(cues) that are hidden behind closed matrix cells. By touching a matrix
cell, the icon of a treasure or spider appears and indicates what the animal
thinks is contained in the house (outcome predictions for options). The
number of “smart circles” at the margin of the information board indicate

the cue validities (i.e., the probabilities that the animals’ predictions are
correct; i.e., 3 out of 6; 4 out of 6; 5 out of 6). bOpen-board version of the
game. The animals’ predictions are presented uncovered without the need
of active information search (Betsch et al., 2014; Betsch, Lehmann, et al.,
2018)

3 In a noncompensatory environment, dispersion of weights (probabilities or
cue validities) is so high that it is formally not possible to compensate the
weighted value of the HVC’s predictions by the sum of the weighted values
from all other cues. In our environment with two options and two outcomes,
the low-validity cue must be neglected because its predictions are exactly at
chance. Corrected for chance level, the remaining two cues have a validity of
.17 (.67–.50) and .33 (.83–.50). Thus, the second cue’s predictions can never
outweigh the predictions of the HVC if they are weighted by their probabilities
(see Jekel, Glöckner, Fiedler, & Bröder, 2012)
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predictions of the HVC increases compared with the con-
ditions with low contiguity (see Fig. 2a–b).
H2: In the conditions with a low demand for selectivity
(see Fig. 2b, d), the frequency of choices that are consis-
tent with the predictions of the HVC increases compared
with the conditions with a high demand for selectivity
(see Fig. 2a, c).

We also expect that the previously found effect for age
(Betsch et al., 2014; Betsch, Lehmann, et al., 2018; Betsch,
Lehmann, et al., 2016) will replicate in the altered paradigm:

H3: The frequency of choices that are consistent with the
predictions of the HVC is higher in elementary schoolers
than in preschoolers.

Method

This research has been approved by the research ethics board
of the University of Erfurt (project title BE 2012/11-2).

Participants and design

The selection of age groups and sample size (n > 25 per con-
dition) is consistent with prior research (Betsch et al., 2014;
Betsch, Lehmann, et al., 2016). Sample size allows for detect-
ing main effects of a medium effect size in an analysis of
variance (ANOVA) with α = .05, 1 − β > .85 according to a
power analysis conducted with G*Power (Faul, Erdfelder,
Lang, & Buchner, 2007). We studied two different age
groups: 6-year-olds (n = 117; 50.4% female; age: Mdn = 74
months,M = 73.33, SD = 5.28) and 9-year-olds (n = 116; 60%
female; age: Mdn = 109 months, M = 108.53, SD = 6.15).
Within each age group, participants were randomly assigned
to one of four conditions resulting from a 2 (contiguity high
vs. low) × 2 (demand for selectivity high vs. low) design.
Children (all native German speakers) were recruited in ele-
mentary schools and daycare centers located in middle-class
areas of a moderately large city in central Germany. Parents
had previously provided consent for their children to partici-
pate in child development research. Additional children (n =
7) were tested but excluded from analyses because they did
not pass the manipulation check (i.e., they rated one of the low
validity cues to be smarter than the HVC after the learning

Fig. 2 Mousecards. a–d The four different experimental conditions. a
The replication condition (see Fig. 1b). In this condition, the cards contain
two types of predictions (treasures, spiders). The cues (animals) with their
cue validities (“smart circles”, reflecting the probability that a cue’s pre-
diction will be correct) appear at the margins. As such, selectivity and
contiguity are not altered in comparison to the former paradigm

(Mousekids; Betsch et al., 2014, Betsch, Lehmann, et al., 2016; Lang &
Betsch, 2018). Participants make their choice by drawing one of the cards
from the game board and turning it upside down to inspect the outcome. If
the house contains a treasure, participants color in a “treasure point” at the
bottom of the game board
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sessions; see below, n = 4) or they did not finish the test
session (n = 3).

Research paradigm: Mousecards

We developed a card game version in accordance with the
information board environment used in prior research
(Mousekids; Betsch, Lehmann, et al., 2018; Betsch,
Lehmann, et al., 2016). Participants were on a treasure hunt
and repeatedly chose between two houses (i.e., two choice
options). They received a “treasure point” each time they
chose the house containing a treasure. Participants had to col-
lect as many “treasure points” as possible. Three cues
(animals) served as advice givers to help participants in their
choices. For each choice, the animals predicted in which
house the treasure might be located. Importantly, the animals
differed in their validity (i.e., in the probability that their pre-
dictions were correct). Most predictions of the HVC were
correct (p = .83), whereas the lower validity cues were less
frequently correct (p = .67) or uninformative (p = .50; see
Betsch et al., 2014).

The game consisted of two parts: a learning session and a
test session. In the initial learning session, participants learned
the validities of the cues. Specifically, they observed the per-
formance of the animals in six learning trials per cue. For each
correct prediction an animal made, it received a “smart circle.”
At the end of the learning session, cue validities were graph-
ically represented by the number of “smart circles” the animal
had earned (3 out of 6, 4 out of 6, 5 out of 6). In the subsequent
test session, participants made their choices with the help of
the three animals in 24 target trials. Prior to those, they worked
on two practice trials.

The learning session consisted of a stack of 18 learning
cards (six per cue). As shown in Fig. 3, the back of the learn-
ing cards displayed one of the three animals underneath a
house with a questioning person. On the front of each learning
card (white background; see Fig. 3a), the animal predicted a
treasure in the house. When turned upside down (grey back-
ground; see Fig. 3b–c), the card showed what was actually
contained in the house: either a treasure or a spider. When a
treasure was shown, the animals’ prediction was correct. In
this case, the animal received a “smart circle.” which

participants colored in on the upper left part of the game board
(see Fig. 3b).

The test session employed two stacks of 26 test cards, one
stack for each option, placed on the two right areas on the
game board. On the top, the test cards each showed a house
(see Fig. 2). Below the houses, the predictions of the animals
were shown. The display of these predictions varied between
experimental conditions. Specifically, in the two conditions
with high contiguity, the test cards showed all decision-
related information (i.e., both the predictions together with
the animals and their “smart circles”; see Fig. 2c–d). In con-
trast, in the conditions with low contiguity, the test cards only
displayed the cues’ predictions. A separate card, positioned at
the margin, displayed the animals with their “smart circles”
(see Fig. 2a–b). In the two conditions with high demand for
selectivity, the cues also made predictions about the undesired
outcome (spider; see Fig. 2a–c). To achieve a low demand for
selectivity, we removed the spiders from the test cards. As
shown in Fig. 2b and d, the test cards only showed the relevant
predictions (i.e., the treasures).

The front side looked the same as the respective backside,
with the exception that it was grey shaded and that the actual
outcome (treasure or spider) appeared in the house to indicate
its content (participants had already been familiarized with
this presentation during the learning phase; see Fig. 3).

Following Betsch et al. (2014), we employed three types of
prediction patterns (see Fig. 4). In the game, two versions of
the patterns appeared equally often, either as shown in Fig. 4
or in a mirrored version. In the first two types, the HVC (p =
.83) predicted a different option than the cue with the lowest
validity (p = .50), whereas the cue in the middle (p = .67) was
indifferent—either not predicting a treasure in any house
(Type 1) or predicting a treasure in both houses (Type 2). In
Type 3, the HVC contradicted the predictions of the two re-
maining cues. Note that regardless of pattern type, all decision
tasks were noncompensatory because the joint prediction of
the two cues with lower validity cannot compensate for a
prediction of the HVC. The cue with the lowest validity (p =
.50) is normatively uninformative (e.g., Lee, 2016; see
Footnote 3). If participants consider cue validities, they should
always follow the HVC and choose the option predicted by
that animal.

Fig. 3 Game board ofMousecards and two example cards of the learning
session. a The animals’ prediction on the front side of a learning card. b
An example of a backside (grey background) in which the house actually

contains a treasure. c An example of a backside in which the house
contains a spider. The two areas on the right sides of the game board
were used only in the test session and not in the learning session
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Payoffs were arranged in such a fashion that marginal prob-
abilities were identical for the two options (i.e., the probability
that the left or the right house contains a treasure was p = .50).
Thus, feedback did not differentially reinforce right or left
choices. Moreover, differences in cue validities were replicat-
ed with respect to the hit and false-alarm rates of the cues’
predictions. Specifically, payoffs reinforced the low validity
cue in 50%, the medium validity cue in approximately 62%,
and the HVC in 83% of the trials. To achieve this, both houses
contained treasures in eight trials. Note that a perfect replica-
tion of the cues’ validities in the payoffs is not possible due to
arithmetic constraints.

Procedure

The experimenter met the child in a quiet room at the primary
school or daycare center. As in Mousekids (Betsch, Lehmann,
et al., 2016), in Mousecards the experimenter first explained
that the purpose of the game is to find treasures. Then, the
experimenter introduced the three animals (a lion, an elephant
and a giraffe) that would play the game together with the child
and help the child to find treasures. The child stated which of
the three animals was the favorite animal. Accordingly, the
experimenter chose the deck of cards with the child’s favorite
animal on top (i.e., the lowest validity cue).

The purpose of the subsequent learning session was to
demonstrate how smart the animals were. The experimenter
told the child: “Do you see the house up there? Maybe there is
a treasure in the house, and maybe not. The animals will tell
you whether there is a treasure hidden there or not. But the
animals are not always right. Therefore, we are going to check
how often they are right.” Subsequently, each animal made six
predictions. For each prediction, the experimenter placed a
learning card on the game board that showed that the animal
predicted a treasure in the house (see Fig. 3a). Then, the ex-
perimenter turned the learning card upside down. When the

back showed a correct prediction, the child was instructed to
award a “smart circle” to the animal by coloring in one of the
circles next to the animal (see Fig. 3b). When the back of the
learning card showed a spider, the animal did not receive a
“smart circle.” because it had made an incorrect prediction
(see Fig. 3c). After six learning trials, the experimenter point-
ed out, “Now we know how smart the animal is,” and sum-
marized the number of “smart circles” gained by the animal
(e.g., “the animal gained 3 out of 6 smart circles” if p = .50).
After having finished the learning session for all three animals,
the experimenter asked the child which of the animals was the
smartest. This question served as the manipulation check for
learning the cue validities.

Then, the experimenter removed the learning cards from
the game board and proceeded with the cards of the test ses-
sion. Depending on the experimental condition, the experi-
menter either placed only the two cards with the predictions
on the two houses (Fig. 2c–d) or these two cards together with
an additional card showing the three animals with their “smart
circles” (Fig. 2a–b) on the game board. The experimenter then
explained the goal of the game (“you have to find as many
treasures as possible in order to buy more prizes afterwards”),
payoffs (treasure can be in one of the houses, in both, or in
none), actions (choosing a house and coloring treasure points
after success), and cue predictions. In the experimental condi-
tions with a high demand for selectivity, the experimenter
explained that the animals predict either a treasure or spider.
In contrast, in the experimental conditions with low demand
for selectivity, the experimenter explained: “In this game, you
will be shownwhen the animals expect a treasure in the house.
When the animals say nothing, it means that they think that a
spider is in the house.”

Preceding the test session, the child played two warm-up
trials, which did not count towards overall performance. In the
first warm-up trial, the experimenter verbalized the prediction
of the animals before the child chose a house. In the second

Fig. 4 Types of prediction patterns. Each pattern was used four times in
the depicted manner and four times in a mirrored version. In the mirrored
version of the Type 1 pattern, for example, the low validity cue predicts a

gain (“treasure”) for Option 2, while the HVC predicts a gain for Option 1
(adapted from Betsch et al., 2014)
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warm-up trial, it was the child’s turn to explain the prediction
of the animals. This was used to check whether the child
understood the game board. If the child’s explanation was
incorrect or incomplete, the experimenter corrected it. In the
subsequent 24 trials of the test session, the experimenter asked
the child to make a choice without further verbalization of the
predictions. If the chosen house contained a treasure, the child
colored in a treasure point at the bottom of the game board (see
Fig. 2). If it contained a spider, the child earned no treasure
point.

After completing the test session, the experimenter asked
the child to state which of the animals was the smartest and
which was the second smartest with respect to predicting
where treasures were hidden. Then, the child could trade the
treasure points for actual prizes. Performance-contingent
awarding ensured that children were motivated to make accu-
rate decisions. Moreover, every child received a personalized
certificate and was thanked for participating.

Results

Hypotheses testing

Figure 5 shows that the frequency of choices that are consis-
tent with the predictions of the HVC differs markedly between
experimental conditions and age groups. In both age groups,
the lowest mean values show up in the replication condition,
in which contiguity was low (cues appear at the margins) and
demand for selectivity was high (information about the unde-
sired outcome also appear). We conducted a full-factorial
ANOVA, with contiguity, selectivity, and age as independent
variables. Corroborating Hypothesis 1, the frequency of

choices consistent with the HVC’s predictions increased from
the low to the high contiguity conditions, F(1, 225) = 25.911,
p < .01, ηp

2 = .103. A similar but weaker main effect was
found for selectivity, F(1, 225) = 6.475, p = .012, ηp

2 =
.028. In line with Hypothesis 2, the frequency of choices con-
sistent with the HVC’s predictions is larger in the conditions
with a low demand for selectivity compared with the condi-
tions with a high demand. No interaction effects with age were
found, indicating that the influence of configural aspects of the
presentation format works the same in both age groups (all Fs
< 1). Finally, we found a strong effect for age, F(1, 225) =
74.778, p < .01, ηp

2 = .249. As predicted in Hypothesis 3,
elementary schoolers’ choices were more frequently consis-
tent with the HVC’s predictions than choices in preschoolers
(there were no other significant effects), Effect Selectivity ×
Contiguity interaction, F(1, 225) = 2.568, p = .11, ηp

2 = .011;
Effect Age × Selectivity × Contiguity interaction, F < 1.

Exploratory analyses

As in prior studies, we varied prediction patterns of the cues
(see Fig. 4). In an exploratory step, we analyzed whether con-
tiguity and selectivity influenced choice behavior differently
in the three pattern types. We considered the frequency of
choices that are consistent with the predictions of the HVC
pattern wise, yielding three dependent measures that could
range from 0 to 8 because participants encountered each pat-
tern eight times (for descriptive statistics, see Table 1). We
subjected these three dependent variables to a repeated-
measures ANOVA, with contiguity, selectivity, and age group
as between-subjects factors. Contiguity and selectivity did not
interact with pattern type (all Fs < 1.7). This means that con-
tiguity and selectivity did not differentially effect choice

Fig. 5 Mean frequencies of choices that are consistent with predictions of
the HVC for the age groups and the four variations of the presentation
format. Error bars indicate 95% CIs. Low contiguity / high selectivity =
replication condition with low contiguity (cues are placed at the margins)

and a high demand for selectivity (spiders, i.e., the predictions for the
nondesired outcomes, are also presented). The test session had 24 trials.
The dashed line indicates chance performance.
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behavior and are thus not dependent on specific constellations
of predictions.

In the repeated-measures part of the analysis, we only ob-
tained two effects, one main effect for pattern type, F(2, 450)
= 22.864, p < .01, ηp

2 = .092, and a two-way Pattern Type ×
Age Group interaction, F(2, 450) = 10.289, p < .01, ηp

2 = .044
(all Fs < 1.7). As is evident from Table 1, the lowest mean
frequency of choices that are consistent with the predictions of
the HVC was found in the third pattern, in which the HVC
contradicted the predictions of the remaining cues. This dif-
ference caused the main effect for the repeated-measures fac-
tor. The interaction effect reflects the finding that choice fre-
quencies of the two age groups approached each other in the
third pattern replicating prior findings (e.g., Betsch et al.,
2014). Due to the additivity of the three dependent measures,
the between-subjects effects reported in the ANOVA conduct-
ed for hypothesis testing were perfectly replicated; thus, we
refrain from reporting them here.

For exploration purposes, we attempted to classify strate-
gies. We hasten to add that this research was not designed for
sophisticated strategy classification (see Betsch, Lehmann,
et al. 2018, for strategy classification in children). As such,
the following results should be considered with caution. We
classified participants according to their choice behavior using
an outcome-based strategy classification method (Bröder &
Schiffer, 2003). We followed the procedure from prior work
and classified the same set of strategies (see Betsch, Lehmann,
et al., 2020). For each individual, we determined the likeli-
hood of the observed choices under each of the considered
strategies (choice model), assuming that strategies were ap-
plied with some error (error rate less than .05). Individuals
were classified to a choice model if their choices fitted the
model’s predictions perfectly or if the likelihood for the clas-
sified strategy was higher than for any other strategy.

Otherwise, the classification was considered unreliable, and
participants remained unclassified. Individuals with equal
likelihoods for two strategies also remained unclassified. We
assumed a uniform probability distribution of making errors
across all decisions within individuals, but variation between
individuals. Table 2 shows the classification results.

The first strategy is take-the-best (TTB; Gigerenzer &
Goldstein, 1996), a lexicographic strategy. TTB only con-
siders the predictions of the HVC and follows its positive
prediction (treasure). The second strategy, equal weight
(EQW; Payne et al., 1988), tallies positive predictions while
ignoring differences in probabilities. The third strategy, take-
the-first (TTF), follows the predictions of the cue at the top of
the board, which has the lowest validity. Application of TTF
might reflect the individual’s reading habits and a tendency
for selective inspection of the information board (see Betsch,
Wünsche, Großkopf, Schröder, & Stenmans, 2018). Fourth,
we checked for individuals who tended to switch between
options (SW; see Lang & Betsch, 2018). Fifth, we counted
individuals who could not be classified.

The highest rates of TTB users are obtained under high
contiguity, in preschoolers and elementary schoolers, al-
though the rate is lower in the former than in the later. This
finding substantiates the results from hypothesis testing
above. The second important observation is that the rates for
the maladaptive strategies, TTF and SW, are much higher in
preschoolers than in elementary schoolers. Roughly 16% of
individuals from both age groups are classified as applying the
probabilistic EQW strategy, which relies on tallying the num-
ber of the cues’ positive predictions (treasure). Interestingly,
the overwhelming majority of children can be classified when
we allow for an error rate of less than .05. This finding sug-
gests that our model space covers the toolbox of strategies that
children use.

Table 1 Mean frequencies of choices that are consistent with the predictions of the HVC depending on experimental condition

Preschoolers Elementary schoolers

Low contig /
high select

Low contig /
low select

High contig /
high select

High contig /
low select

Low contig /
high select

Low contig /
low select

High contig /
high select

High contig /
low select

Type 1 2.48 (1.91) 3.50 (1.71) 4.07 (2.12) 4.47 (2.13) 4.71 (1.92) 5.67 (2.01) 6.21 (1.91) 6.67 (1.63)

Type 2 2.70 (1.90) 3.53 (2.00) 4.00 (2.17) 4.60 (2.37) 4.89 (2.22) 5.93 (1.96) 6.36 (1.79) 6.57 (1.63)

Type 3 2.56 (1.76) 3.37 (2.17) 3.50 (2.32) 4.13 (2.24) 3.71 (2.02) 4.33 (2.47) 5.46 (2.44) 4.33 (2.25)

Half 1 3.90 (2.09) 4.73 (2.24) 5.30 (2.61) 6.50 (2.86) 6.61 (2.75) 7.80 (2.73) 8.57 (2.82) 9.20 (2.00)

Half 2 3.89 (2.82) 5.67 (2.73) 6.23 (3.90) 6.70 (3.41) 6.71 (2.62) 8.13 (3.16) 9.46 (3.06) 8.37 (2.33)

t(26) = .07
p* = .95
d = .01

t(29) = 1.94
p = .06
d = .35

t(29) = 1.60
p = .12
d = .29

t(29) = .36
p = .72
d = .06

t(27) = .21
p = .83
d = .04

t(29) = .67
p = .51
d = .12

t(27) = 1.38
p = .18
d = .26

t(29) = −2.59
p = .02
d = .47

Note. Low contig / high select = replication condition with low contiguity (cues are placed at the margins) and high demand for selectivity (spiders, i.e.,
the predictions for the nondesired outcomes are also presented). Standard deviations in parentheses. Paired-sample t tests for Half 1 (i.e., Trials 1 to 12) −
Half 2 (i.e., Trials 13 to 24) comparisons. *Bonferonni corrected α = .006
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Moreover, classification results allow us to rule out some
alternative interpretations of the data. Assume, for example,
that children have relied on the overall impression of positive
information closely associated with the option. In the condi-
tions with high contiguity, the option cards contain not only
the symbols of treasures in red color but also the smart circles
of the cues depicted in red color. Thus, the high contiguity
manipulation might have invited application of a mental mag-
nitude strategy that makes choices by the magnitude of red
color or the sum of treasure symbols and smart points.4 A
mental magnitude strategy, however, would not discriminate
options in the conditions with high selectivity in two thirds of
the choices. Due to pattern construction, Type 1 and Type 2
patterns provide the magnitude of red in the conditions with
high contiguity (the sum of smart circles and treasure symbols
is 13 for Type 1 and 14 for Type 2 in both options).
Accordingly, the application of the mental magnitude strategy
would lead to indecisiveness in two thirds of the choices. In
the conditions with low selectivity, however, a mental magni-
tude strategy discriminates and would lead to the same choices
as if the individual would have applied a TTB strategy. If the
manipulation of high contiguity (i.e., moving cues and smart
points into the representation of the option) would have fos-
tered the application of a mental magnitude strategy, the rate
of individuals classified as TTB users should increase in the
conditions with low selectivity and decrease in the conditions
with high selectivity within those that were presented with
high contiguity. Moreover, the rate of unclassified individuals
or those who reside with nonanalytic strategies such SW or
TTF should increase in the condition with high selectivity
(and high contiguity).

The information shown in Table 2 does not indicate such
an effect for selectivity within the conditions with high conti-
guity. The rate of TTB users is equally high in preschoolers

(26.7%) and quite similar in elementary schoolers (60% to
64.3%). Only one child was unclassified in these conditions,
and rates of users of nonanalytic strategies do not vary in the
direction as expected by a mental magnitude strategy. These
findings speak against an alternative interpretation in terms of
a mental magnitude approach.

To investigate potential influences of feedback learning
or motivational losses, we analyzed children’s responses
across test trials. As in prior studies (e.g., Betsch et al.,
2014), there were only slight changes in performance be-
tween the first and second half of trials (see Table 1).
There was a slight tendency towards improvement. Only
in one of eight conditions did performance decrease (ele-
mentary schoolers, condition with high contiguity and low
selectivity). Additionally, the inspection of the individual
performance curves across the 24 trials (see Fig. 6) sug-
gests a linear trend towards an increase in accumulated
HVC-consistent choices (y-axis) over trials (x-axis), addi-
tionally suggesting that motivation did not decrease dur-
ing the experiment. Figure 7 shows the rate of individuals
(y-axis) that followed the HVC on each of the 24 trials (x-
axis). If individuals profited from feedback, one would
expect an increase over trials. However, the average rate
of HVC followers obviously remains quite stable.
Altogether, we can rule out the possibility that results
are biased by participants’ loss of motivation. Still, par-
ticipants did not systematically profit from feedback after
choice. Recall that feedback reinforced the validities of
the cues. Such a feedback structure is necessary, but is
not a sufficient condition to enhance learning in the pro-
posed direction. Bröder and colleagues (Bröder, Glöckner,
Betsch, Link, & Ettlin, 2013) varied feedback in
multiattribute decisions so that it reinforced either option
or strategy routinization. The authors showed that the di-
rection of learning varies strongly dependent on subtle
features of the presentation. According to the attention-4 We thank an anonymous reviewer for making us aware of this possibility.

Table 2 Results of exploratory strategy classification

Preschooler Elementary schooler

Low contig /
high select

Low contig /
low select

High contig /
high select

High contig /
low select

Low contig /
high select

Low contig /
low select

High contig /
high select

High contig /
low select

n % n % n % n % n % n % n % n %

TTB 3 11.1 2 6.7 8 26.7 8 26.7 9 32.1 15 50.0 18 64.3 18 60.0

EQW 7 25.9 7 23.3 3 10.0 1 3.3 4 14.3 6 20.0 2 7.1 7 23.3

TTF 12 44.4 11 36.7 13 43.3 14 46.7 5 17.9 5 16.7 6 21.4 1 3.3

SW 5 18.5 10 33.3 6 20.0 7 23.3 10 35.7 4 13.3 2 7.1 3 10.0

Unclass. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3.3

Total 27 30 30 30 28 30 28 30

Note. TTB = Take-The-Best; EQW = Equal Weight; TTF = Take-The-First; SW = switching between options; Unclass. = individuals who could not be
classified. We also considered random guessing in the strategy classification, but no participant was classified to behave randomly
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gated learning approaches (e.g., Roelfsema & van Ooyen,
2005), the distribution of attention determines individual’s
learning from feedback. In our tasks, there are at least
three categories that individuals may attend to when they
encode the feedback. Accordingly, finding a treasure may
be associated with the option, the cue, or a certain strate-
gy. Note that the environment may foster the association
between feedback and the option. The option is represent-
ed by a card. The feedback appears on the option if the
individual turns over the card. This presentation format
may have obstructed cue reinforcement and hence might
explain why feedback had a null effect on performance.

Discussion

At what age are humans capable of using probabilities as
decision weights? Conflicting evidence in the literature makes
it difficult to answer this question. Aiming at identifying ori-
gins of variance in results, we studied the effects of configural
aspects of presentation format in a probabilistic inference task.
As a theoretical background, we draw on a model put forward
by Wohlwill (1968). According to this approach, tasks are
characterized by the extent to which they demand conceptual
understanding. A purely perceptual task can be solved upon
an intuition that immediately arises vis-à-vis the perceptual

Fig. 6 Individual performance over the 24 trials (horizontal axis) in all
conditions. The vertical axis shows the accumulated number of choices
consistent with the predictions of the HVC separately for each
participant.. a Low contiguity/high selectivity. b Low contiguity/low

selectivity. c High contiguity/high selectivity. d High contiguity/low se-
lectivity. e Low contiguity/high selectivity. f Low contiguity/low selec-
tivity. g High contiguity/high selectivity. h High contiguity/low
selectivity
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input. Mastering a conceptual task, in contrast, requires ad-
vanced cognitive skills and formal conceptual knowledge.
Wohlwill defined three key dimensions that determine task
position on a scale with perception and conception at its end
points: contiguity, selectivity, and redundancy. In this study,
we orthogonally varied two of these dimensions: contiguity
and selectivity. In support of our hypotheses, an increase in
contiguity and a decrease in the demand for selectivity re-
duced probability neglect in children. These findings highlight
the importance of task characteristics. Children up to 10 years
of age are influenced by presentation format when it comes to
using probabilities as weights in decision-making.

Why presentation format matters

Children benefitted from a lower demand for selectivity that
was achieved by removing predictions of the undesired out-
come. As such, this manipulation reduced the amount of in-
formation in the presentation, and, hence, reduced distraction
by irrelevant information. A finding that may not be overly
surprising if one assumes that (younger) children are likely to
fail to suppress distracting information due to immature exec-
utive control (Diamond, 2013).

The effect for contiguity, however, is striking. Shifting
cues’ positions strongly impacted decisions. We believe that

Fig. 7 Rate of participants that follow the prediction of the HVC in each
of the 24 trials in all conditions. a Low contiguity/high selectivity. b Low
contiguity/low selectivity. c High contiguity/high selectivity. d High

contiguity/low selectivity. e Low contiguity/high selectivity. f Low
contiguity/low selectivity. g High contiguity/high selectivity. h High
contiguity/low selectivity
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this is not only an effect of changing distances. In the high
contiguity condition, cues together with their predictions were
included in the presentation of the option itself (the card). As
such, the cards formed compounds integrating several pieces
of information in the representation of the option.

Compound representations of options is a natural format.
The following incident was reported by the daughter of one of
the authors. Hannah and Kati are soccer enthusiasts. They plan
to put together a soccer team at school. Recently, a new girl
joined the class. Yesterday, she wore a number 10 jersey from
the local soccer club. Although they are not friends yet,
Hannah suggests asking her to join their team. “Yup,” says
Kati, “great idea. She’ll surely stir up the midfield.” Kati’s
judgment reveals a great deal of underlying inferences. She
takes the jersey as a cue for expertise in soccer. Presumably,
she assumed that the girl actually plays in a junior team of the
local club. Because of the prestigious number 10 (associated
with playmakers), Kati expects the girl to perform excellently
on the soccer field. This is a probabilistic inference par
excellence. Importantly, however, the probabilistic cue (the
jersey) is an integral part of the representation of the “option”
(i.e., the new classmate who is considered as a candidate for
the team).5

Compound representations maximize contiguity. They can
also be found in tasks that are used in developmental research.
The marble tube task (Schlottmann, 2001), outlined in the
Introduction, is such an example. Schlottmann (2001) found
that even preschoolers utilized probabilistic information in the
task. In discussing her results, she emphasized that perfor-
mance of their participants revealed “intuitive” rather than
analytic capabilities (see also Schlottmann & Wilkening,
2012, for insightful discussions). Given our findings, we
should emphasize the role of task presentation. Under some
presentation formats, intuition will yield a high level of accu-
racy, whereas under others it may fail. If the task is character-
ized by low contiguity and a high demand for selectivity, as in
the Mouselab approach used by Betsch and colleagues (e.g.,
Betsch et al., 2014; Betsch, Lehmann, et al., 2018; Betsch,
Lehmann, et al., 2016), intuitive capabilities do not suffice
to solve the task properly. With this, our findings align with
the basic tenets of default-interventionist models on the inter-
play of automatic and deliberate processes in decision-making
(e.g., Evans, 2008; Glöckner & Betsch, 2008). The work of
Söllner, Bröder, and Hilbig (2013) with adult participants has
strikingly demonstrated that automatic integration, which en-
ables a perception-like, holistic picture without mental effort,
is only likely if information is accessible with minimal need

for visual search. As soon as the presentation format requires
visual search, automatic integration processes are impaired
and deliberation becomes necessary (Söllner et al., 2013).

Methodological and theoretical implications

The first lesson to be learned from our study pertains to the
methodological level. Findings are contingent on research par-
adigms. To evaluate results, we have to take into account the
relation between task properties (e.g., presentation format) and
psychological processes. To compare tasks, it is helpful to
analyze their properties within a conceptual framework. We
need to systematically control and vary task features to assess
capabilities in general and the level of decision competence in
particular.

Second, sensitivity to probabilistic information under par-
ticular task conditions should not be confused with under-
standing. Conceptual understanding of the probability concept
is not a necessary condition for utilization of probabilities as
decisionweights in a perceptual task. Children of the same age
who solved a perceptual task with bravura might get lost if
they face a structurally equivalent task under altered figural
conditions. Our study shows that probability neglect within
the same age group varies as a function of formally irrelevant
changes in presentation. Due to randomization of participants
to experimental conditions, these effects cannot be attributed
to individual variations on the conceptual level. Conceptual
understanding is a hypothetical construct that we cannot di-
rectly observe. In contrast, we can directly observe and mea-
sure performance (e.g., the portion of normatively correct
choices). Performance, however, can result from many differ-
ent processes, some driven by conceptual analysis and others
by intuition. If we generally attributed good performance to
understanding, we would neglect crucial differences in cogni-
tive processes.

For illustration purposes, consider the following example.
Mike and Tom separately go fishing for trout in different lakes
and sell their catch at the market. Assume that each fish sells
for the same amount of money (i.e., the value is a constant).
Lakes, however, differ with regard to the prevalence of trout
and so, accordingly, does the likelihood that fish are caught
within a certain amount of time, say p = .7 for Lake A and p =
.4 for Lake B. In time, Mike and Tom prefer Lake A. This
performance is adaptive with regard to the probability distri-
bution of the environment, assuming that the goal of two
fishers is to maximize their gains at the fish market. A month
later, Mike and Tom explore two other lakes, C and D. Again,
there is the same strong difference with regard to the preva-
lence of trout, pC = .7 and pD = .4. However, there is an
additional feature. Trout in Lake D frequently have highly
distinct spotted patterns on their body. However, this is an
irrelevant feature when it comes to selling, because they sell
for the same price at the market as the unspotted ones.

5 According to the results of our study, the probabilistic cue (jersey with the
number 10) should be less likely to be used if it was spatially separated from
the visual representation of the girl (i.e., the girl wears a neutral T-shirt and the
jersey is placed on the chair next to her together with her school bag). Such a
cue constellation converged with our low-contiguity condition in which the
probabilistic cue was presented next to the option.
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Nevertheless, we observe that Tom prefers Lake D containing
spotted trout, whereas Mike prefers Lake C with the higher
success rate in terms of catching fish. If we assume that the
fishers’ aspirations have not changed (they still wish to max-
imize their profit at the market), the difference in performance
is surprising and informative. It is surprisingwith regard to our
initial impression that both had the same understanding of
probability, given their convergingly adaptive behavior when
choosing between Lakes A and B. It is informative, however,
if we are interested in mental processes. The change in fea-
tures of the environment appears to have affected Tom’s but
not Mike’s behavior. One could hypothesize that they applied
different rules when making their choices. When asked for the
reasons behind their preferences, Mike might tell us that he
precisely protocols information such as the location, number
of fish caught, number of attempts, and time spent. Therefore,
he knows exactly in which lake one catches more fish per
hour. Tom, on the other hand, might tell us that he remembers
very well in which lake he caught a certain fish. The last one
had a pattern that reminded him of a smiley face. He never had
a better catch than at the lake with the spotted trout. Mike’s
strategy is surely analytic revealing an understanding of
proportions.

Tom’s narrative is compatible with the availability heuris-
tic described as an intuitive approach to judgment by Tversky
and Kahneman (1973). According to this heuristic, one can
judge probability or frequency by the ease with which in-
stances come to mind. This heuristic exploits associative
strength in memory, which is quite a valid proxy variable on
many occasions because it reflects experienced frequencies.
Yet availability can be biased if other features enhance the
recall of events, such as the salient patterns on the bodies of
trout from Lake D. In Lakes A and B, trout did not signifi-
cantly differ in saliency. Accordingly, the ease with which
exemplars can be recalled later should only be driven by the
experienced frequency. In such an environment, application of
the intuitive availability heuristic will result in a similar level
of accuracy as formal rules. Most importantly, however, the
availability heuristic can be applied without any understand-
ing of the concepts of probability and chance. To distinguish
concept-informed rules from intuitive heuristics, one must
consider critical tasks in which the latter yields systematic
biases. This research technique was the ingenious fundament
of the heuristics-and-biases approach to the identification of
mental processes (e.g., Kahneman, Slovic, & Tversky, 1982).

The example illustrates that adaptive performance should
not be confused with conceptual understanding. The implica-
tion for research on cognitive development is straightforward.
Environments that suit intuition are not overly informative if
we wish to learn about the development of conception and
understanding. For the sake of scientific progress, the detec-
tion of errors and failures is as important as demonstrating
success in adaptation. This notion does not only apply to

research with children. Conceptual understanding varies
widely when it comes to probabilistic reasoning, even in
adults. Base-rate neglect is a prominent example. Gigerenzer
and Hoffrage (1995) showed that adults were able to use base-
rates if probabilistic information was conveyed in a frequency
rather than probability format. Granting this finding, one may
be tempted to conclude that adult humans generally “under-
stand” the basic principles of conditional probability theory if
information were presented in a suitable format (i.e., in fre-
quencies). Fiedler, Brinkmann, Betsch, and Wild (2000),
however, demonstrated that even when probabilities were pre-
sented in frequency formats, adult participants were not im-
mune to systematic biases. Their results indicate that these
biases were due to a lack of understanding of the relation
between probability, base-rate, and sampling constraints.

We showed that contiguity and selectivity are important
features of a task. It is beyond the scope of this study, howev-
er, to uncover the processes associated with these different
presentations. In line with Wohlwill’s (1968) approach, one
should expect that moving along the continuum from percep-
tual to conceptual tasks, cognitive processes move from
bottom-up to more top-down processing. Indicators for such
a tendency should also be found in adults, since a number of
aspects might encourage rapid bottom-up processing in per-
ceptual tasks. The decrease of the demand for selectivity re-
sults in increased salience of the relevant information. In the
presence of contiguity, it becomes less likely that the individ-
ual must actively engage in linking relevant information (e.g.,
weights, prediction values, options). These advantages might
manifest themselves in behavioral processes such as differ-
ences in gaze patterns between the extreme conditions (high
contiguity and low demand for selectivity vs. low contiguity
and high demand for selectivity). Obviously, one should ex-
pect that the number of changes of fixations is lower in the
perceptual than in the conceptual condition. Additionally, spe-
cific gaze pattern and fixation times might indicate differences
in top-down driven elaborations. To uncover the processes
associated with different presentation formats, it might be a
promising line of further research to use eye-tracking method-
ology in this paradigm.6

Evaluating decision competence in children

If sensitivity to probabilistic information under particular task
conditions does not necessarily imply a probabilistic under-
standing, how can we then evaluate decision competence in
children? To grasp the limitations in the competence of chil-
dren in terms of using probabilities as decision weights, it may
help to consider results from decision research with adults.
Adults were found to make use of a so-called equal-weight

6 We are grateful to one anonymous reviewer who suggested this way of
research.
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rule, which ignores probabilities (i.e., weights each outcome
with a constant instead of its stated probability; Payne et al.,
1988). Application of this rule can be adaptive in environ-
ments in which the dispersion of probability is low.
Accordingly, a smart decision maker with proper insight into
the formal underpinnings of probability theory can deliberate-
ly decide to neglect a low-dispersive probability distribution,
but at the same time use probabilities in a different
environment.

Yet what are the necessary conditions for judging decision
competence? To address this issue, we have to entangle the
dynamics of stability and variation in decision behavior. An
adaptive decision maker will change between strategies of
searching and utilizing decision information depending on
context features. This is a backbone assumption of the bound-
ed rationality approach (Simon, 1955; see also Shah &
Oppenheimer, 2008). It requires the decision maker to be
highly sensitive to context features (e.g., weight distributions),
effectively manage resources (e.g., limiting information ac-
quisition under time pressure), and put decision-making under
executive control (e.g., strictly prioritizing and focusing
strong-weight information and suppressing irrelevant infor-
mation). These capabilities together enable the individual to
change decision behavior contingent upon contextual chang-
es. The resulting behavioral variations are manifestations of
decision competence. They must not be confused with within-
task variations. Decision theory scaffolds this position by the
axioms of rationality (e.g., von Neumann, & Morgenstern,
1947). One of them, the axiom of invariance, demands that
decisions should be immune to variations in presentation if the
structure and content of the task are unchanged. Obviously,
children in our study violated this axiom. The rate with which
children utilized probabilities differed greatly between presen-
tation conditions even though the structure of the task and
situation remained constant.

In a nutshell, a competent decision maker should show in-
variance in decision behavior irrespective of changes to the
presentation format. However, he or she should adapt to varia-
tions in task structure and environmental demands (i.e., by
changing strategies of information acquisition). In probabilistic
environments, even 9-year-old to 10-year-old children exhibit
severe shortcomings in adaptively tuning information search
and decisions to the structure and environmental demands
(e.g., Betsch, Lehmann et al., 2018; Betsch, Lehmann, et al.,
2016; Lindow & Betsch, 2018; Mata et al., 2011). In addition,
their performance strongly varies depending on presentational
features—as the present research demonstrates. As such, the
pronounced tendency to utilize probabilities under high conti-
guity and low demand for selectivity cannot be interpreted in
isolation to the other conditions. Due to the fact that probability
neglect increases in the counter conditions, the differences be-
tween conditions must be considered an indicator of decision
competence. These differences highlight the deficit.

The problem of conflict in choice tasks

In our study, the preschoolers’ success rate was around chance
in some conditions and quite low across all manipulations,
even in conditions with high contiguity. This finding is incon-
sistent with results from other studies showing that even chil-
dren younger than 6 years are responsive to variations in prob-
ability in different domains, such as causal reasoning (Gopnik
& Sobel, 2000), judging preference (Kushnir, Xu, &
Wellman, 2010), trusting informants (Pasquini et al., 2007),
and evaluative judgment (Schlottmann, 2001).

Note that we obtained these results although we encour-
aged children to utilize probabilistic information by instruc-
tion (i.e., animals will help, but their smartness matters).
Moreover, we reinforced cue validities using payoff feedback,
and only considered children in our analyses who passed the
manipulation check before and after the test sessions (i.e.,
children who recognized which animal was the smartest in
predicting treasures).

One might speculate that our paradigm was simply too de-
manding for young children to learn and use probabilistic
information. Betsch, Lang, Lehmann, Förster, and Stelzel
(2020) decomposed the treasure-hunt paradigm into three con-
secutive steps involving discrimination between probabilistic
cues, making choices given the prediction of one probabilistic
cue, and making choices given the predictions of two cues mak-
ing contradictory predictions. The results showed that children (6
vs. 9-year-olds) performed equally well as adults in discrimina-
tion tasks and inferences based on one probabilistic cue.
However, when two cues were present that made contradictory
predictions, a strong age effect emerged. Six-year-olds failed to
utilize probabilities to differentially weight predictions, whereas
some 9-year-olds tended to do so, although they did not achieve
adult-levels of performance. The latter finding is in line with the
results from the present study showing that young children still
have problems weighting probabilistic cues under conflicting
predictions. This suggests that conflict in multiple-cue choice is
responsible for drops in performance rather than overcharging
probability learning in the current paradigm. Gualtieri,
Buchsbaum, and Denison (2019) presented children (4–5 years)
with base-rate and testimony information that conflicted in one
condition. Their results showed that children were responsive to
both kinds of probabilistic information (although they refrained
from integrating them when making probabilistic inferences).
This finding appears to challenge a conflict account. Yet consider
another recent study by Betsch and colleagues (2020). The au-
thors integrated the trust in informants’ paradigm with
Mousekids. Interestingly, young children used the informants’
validities when generalizing trust to other domains, but not for
choices. The authors attributed these differences in performance
to the specific nature of choice tasks. Contrary to judgment tasks,
behavioral choices involve opportunity costs. If one option is
chosen, the other is rejected, and the actor loses potential gains

840 Mem Cogn  (2021) 49:826–842



of the nonchosen alternative. In choice tasks based on the pre-
dictions of cues, as in our paradigm, participants face a double
conflict: the conflict between predictions of the cues and the
conflict inherent in choice tasks (i.e., the opportunity cost prob-
lem). Most evidence in support of probability utilization in chil-
dren stem either from judgment tasks (see above) or feedback-
based choice tasks (without probabilistic cues; e.g., Kerr &
Zelazo, 2004).

At the moment, we can only speculate that young children’s
drop in performance originates from being confronted with a
conflict on two levels, incoherent predictions of the cues, and a
choice among two promising options. A potential reason might
be that this double conflict increases the need for confidence.
Research in the domain of adult decision-making shows that
conflicting information can result in an increase in evidence ac-
cumulation in order to increase confidence (Lee & Cummins,
2004). In the case of this more extensive consideration, the struc-
ture of weights can be changed in order to achieve coherence
(Betsch & Glöckner, 2010; Betsch, Ritter, Lang, & Lindow,
2016; Glöckner & Betsch, 2008). Consequently, the “neglect”
of probabilities on the surface level might stem from a process of
restructuring weights in order to increase coherence.
Accordingly, future research on children’s decision-making
might explore the link between subjective confidence under con-
flict and its effects on the maintenance of or changes in the
subjective structure of weights.
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