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Background and Purpose: Ischemic brain edema can be measured in computed

tomography (CT) using quantitative net water uptake (NWU), a recently established

imaging biomarker. NWU determined in follow-up CT after mechanical thrombectomy

(MT) has shown to be a strong predictor of functional outcome. However, disruption of

the blood–brain barrier after MT may also lead to contrast staining, increasing the density

on CT scans, and hence, directly impairing measurements of NWU. The purpose of this

study was to determine whether dual-energy dual-layer CT (DDCT) after MT can improve

the quantification of NWU by measuring NWU in conventional polychromatic CT images

(CP-I) and virtual non-contrast images (VNC-I). We hypothesized that VNC-based NWU

(vNWU) differs from NWU in conventional CT (cNWU).

Methods: Ten patients with middle cerebral artery occlusion who received a DDCT

follow-up scan after MT were included. NWU was quantified in conventional and VNC

images as previously published and was compared using paired sample t-tests.

Results: The mean cNWU was 3.3% (95%CI: 0–0.41%), and vNWU was 11% (95%CI:

1.3–23.4), which was not statistically different (p= 0.09). Two patients showed significant

differences between cNWU and vNWU (1 = 24% and 1 = 36%), while the agreement

of cNWU/vNWU in 8/10 patients was high (difference 2.3%, p = 0.23).

Conclusion: NWU may be quantified precisely on conventional CT images, as the

underestimation of ischemic edema due to contrast staining was low. However, a

proportion of patients after MTmight show significant contrast leakage resulting in edema

underestimation. Further research is needed to validate these findings and investigate

clinical implications.

Keywords: net water uptake, mechanical recanalization, dual-energy computed tomography, virtual non-contrast

image, brain edema, ischemia, acute stroke
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INTRODUCTION

Randomized control trials demonstrated that mechanical
thrombectomy (MT) of anterior large vessel occlusion
(LVO) in acute stroke patients improves the clinical
outcome compared to standard therapy (1). Yet, the clinical
outcome, even after successful recanalization varies widely
(2), and is subject of ongoing investigations. Different
parameters influence the outcome, for example, the time
from clinical onset to reperfusion, patient age, the National
Institutes of Health Stroke Scale (NIHSS) at admission,
the Alberta stroke program early computed tomography
(ASPECT) score at admission, and the baseline functional

status (3).
Recently, it has been observed that the degree of edema

formation in early follow-up imaging captured by net water
uptake (NWU), a quantitative imaging biomarker, is an indicator

of the response to MT (4). NWU is an accurate predictor

of functional outcome and outperforms clinical variables, for
example, age, NIHSS, and/or ASPECTS (4). These results are
in accordance with other studies describing a strong correlation

FIGURE 1 | Upper row: Follow-up dual-layer dual-energy CT within 12 h in a 70-year-old man with left MCA occlusion (initial NHISS 7; ASPECTS 8) after

thrombectomy (TICI 3), time onset to reperfusion 184min. Conventional polychromatic image (first and third from the left), VNC image (second and fourth from the

left). Example of ischemic ROI placement (red) and contralateral normal ROI placement (green). Lower row: Follow-up dual-layer dual-energy CT within 12 h in an

89-year-old man with right MCA occlusion (initial NHISS 17; ASPECTS 8) after thrombectomy (TICI 3), time onset to reperfusion 154min. Conventional polychromatic

image (first and third from the left), VNC image (second and fourth from the left). Example of ischemic ROI placement (red) and contralateral normal ROI

placement (green).

between NWU quantified in CT and the final infarct volume
(5, 6).

Cerebral edema is the pathophysiological response of ischemic
brain tissue undergoing infarction, which is evident in CT by
means of progressive tissue hypoattenuation (7). Reperfusion
after LVO has been associated with increased edema formation
caused by microvascular damage probably resulting in an
extension of the initial infarct area (8), but recently, it has been
observed that MT might reduce cerebral edema (9, 10) and is
associated with a lower risk for progressive edema compared to
intravenous thrombolysis (11).

Disruption of the blood–brain barrier after MT may not only
lead to edema but also to hemorrhage and/or contrast staining
(12), increasing the density on CT scans, and hence, directly
impairing measurements of brain edema on conventional
polychromatic CT images (CP-I). Lesion hyperattenuations are
common findings after LVO and are described in up to 84% of
patients directly after MT, and ∼20% after 24 h, which could
result in an underestimation of brain edema on conventional
polychromatic images (CP-I) (13). Follow-up CT is routinely
performed after MT, in particular to rule out hemorrhage (14),
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but differentiation between tissues densities of similar Hounsfield
units, for example, blood and contrast medium remains difficult
in this modality.

Recently, dual-energy imaging methods have become
increasingly popular in research and clinical practice because of
their capability to discriminate between tissues of similar X-ray
attenuation but different atomic numbers (15–19). Dual-energy
CT technology is based upon the light-matter interaction and
different absorption characteristics of specific substances. Iodine
for instance increases X-ray absorption at 32.2 keV (16, 20).
Different technical methods are available to capture these
characteristic absorption profiles of substances and generate
dual-energy CT datasets, which can be used to calculate virtual
non-contrast images (VNC-I).

Considering the clinical relevance of cerebral edema as
an indicator for malignant infarction as well as for outcome
prediction, we aim to investigate the potential underestimation
of edema on conventional CT images due to contrast staining
by using DDCT scans for VNC-based NWU quantification.
We hypothesized that NWU quantification in follow-up
imaging after MT differs significantly between conventional
polychromatic and VNC images.

MATERIALS AND METHODS

Study Population
The data that support the results of this study are available
from the corresponding author, upon reasonable request. The
local ethics committee approved the study (Ethics Committee
of the Medical Faculty of the Christian-Albrechts-University,
Kiel; Number D 567/18) and waived the requirement to obtain
informed consent. We retrospectively analyzed the data of 10
consecutive patients referred to our hospital between September
2019 and January 2020 who received DDCT scans of the
cranium after MT of a LVO of the anterior circulation within
the standard clinical protocol. MT was performed according to
the ESO/ESMINT-Guidelines (21). Data was anonymized and
analyzed, retrospectively.

Image Acquisition and Reconstruction
Image acquisition was performed on a dual-energy dual-layer CT
(IQon spectral CT, Philips Healthcare, USA) with 120 kVp and
230 mAs. IntelliSpace (Version 11.1, Philips Healthcare, USA)
was used as post-processing software. The VNC-I and the CP-
I were generated from spectral based datasets and reformatted
with 5-mm slice thickness. The CP-I were reconstructed using
iterative model-based reconstructions (level 1, filter UB), whereas
the VNC-I were generated using a spectral reconstruction mode
(level 2).

Image Analysis
The data were analyzed using IntelliSpace (Version 11.1, Philips
Healthcare, USA). The rater was blinded for all patient-related
data and clinical information. A standardized procedure to
quantify the proportion of ischemic edema due to NWUwas used
as previously published (5, 22). In summary, a region of interest
(ROI) was placed for density measurements according to the

extent of ischemic hypoattenuation identified on conventional
images with hindsight knowledge of VNC-I, and the core
lesion in CT perfusion imaging was mirrored to the unaffected
contralateral brain hemisphere. ROI histograms were sampled
between 20 and 80 Hounsfield units to exclude voxels belonging
to calcifications or cerebrospinal fluid. Both measurements were
then used to calculate the proportion of edema within the
lesion, obtaining NWU of CP-I (cNWU) (23, 24). This procedure
was subsequently repeated on VNC-I to calculate VNC-based
NWU (vNWU).

Statistical Analysis
Data is reported using standard descriptive statistics. All
statistics were calculated using MedCalc (version 11.5.1.0,
Mariakerke, Belgium). P-values < 0.05 were considered
statistically significant. cNWU and vNWU were compared using
paired sample t-tests with means and 95% confidence intervals.
The difference of both measurements was compared for every
patient (1NWU = vNWU – cNWU). Bland-Altman plots were
used to illustrate measurements of vNWU and cNWU for every
patient (Figure 2).

RESULTS

In this pilot study, 10 consecutive patients (five female and five
male) were included with mean age of 81 years (range: 53–99).
Within this group, patients had been examined 12h (± 6h) after
MT (median 9.5h). The pattern of vessel occlusion was nine M1-
occlusions and one proximal M2-occlusion. Post-interventional
TICI score was 2b-3 in nine cases and 2a in 1 case. The median
ASPECTS was 8 (range: 4–10), and the mean core lesion volume
defined by regional cerebral blood flow<30%was 11.5ml (range:
0–57ml). The median NIHSS was 14 (interquartile range: 6–18).

Figure 1 demonstrates the CP-I and VNC-I, which were used
for further image analysis. Overall, the mean NWU was 3.3%
(95%CI: 0–0.41%) in cNWU and 11% (95%CI: 1.3–23.4%) in
vNWU. The mean difference between cNWU and vNWU was
7.7%, which was not statistically different (p= 0.09).

Eight out of 10 patients showed a high agreement of NWU
with a mean difference of only 2.3% between cNWU and vNWU
(p = 0.23). Two out of 10 patients were significant outliers with
high differences in NWU between cNWU and vNWU of 24 and
36%, respectively. For other aspects, these two patients were in
range of the cohort. Age was 70 (86) years, ASPECTS was 8 (8),
final TICI was 3 (3), core size lesion 0 (28) ml, and time from
MT to follow-up CT scan was 7 h (10 h). The Bland-Altman Plot
(Figure 2) shows the exact differences in NWU for each patient
in percent.

DISCUSSION

This is the first study to investigate VNC-I for the use of NWU
quantification, targeting a potential underestimation of cerebral
edema in conventional CT images due to contrast staining in
stroke lesions. This was done by comparing NWU in CP-I and
VNC-I from DDCT scans, using a previously published method
(6). The benefit of VNC-I to visually improve the detection of
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FIGURE 2 | Bland-Altman Plot showing the variable difference of cNWU and vNWU in percent. The mean difference between both methods was −0.08 with only one

patient outside ±1.96 standard deviations.

cerebral edema in acute stroke lesions was shown (25, 26), but
measuring the impact of VNC-I on NWU quantification has not
been investigated before.

The main finding of this pilot study was that cNWU and
vNWU did not show a significant difference in quantified NWU
(p = 0.09). By trend, vNWU had a slightly higher NWU
compared to cNWU (11 vs. 3.3.%), which was mainly caused by
two outliers in our study group showing significant differences in
NWU of 24 and 36%, respectively (Figure 2). The agreement of
the other eight patients was high. This implies the possibility of
a small subgroup of patients, which might show a stronger than
average hyperattenuation in CP-I and thus an underestimation
of true cerebral edema in cNWU. The underlying cause remains
uncertain but possible cofounders influencing contrast staining
in stroke lesions are: kidney function, diagnostic multimodal
CT examinations before MT, and the recanalization procedure
itself, resulting in different contrast agent preloads. Another
already described cofounder to impact cNWU measurements
is the time at which the follow-up CT is taken. Lesion
hyperattenuations are decreasing in time with up to 84% patients
having hyperattenuated lesions directly after MT but only 20% of
patients after 24 h (6, 13). Detailed data describing the dynamics
of hyperattenuations in acute and subacute stroke lesions are still
lacking, and further investigations are needed to determine the
temporal relationships.

Our results support previous studies describing NWU in
acute stroke lesions as a reliable quantitative imaging biomarker

to measure edema in acute stroke lesions (9, 23, 24, 27–
29). NWU hereby demonstrates a more accurate quantification
of cerebral edema than other methods, such as midline shift
measurements, which may significantly depend on age and
volume of cerebrospinal fluid (30). This is in accordance with
studies showing that NWU is a good predictor of functional
outcome and does so more accurately than clinical variables (e.g.,
NIHSS) or final infarct volume (4–6), while other parameters
like ASPECS show low interrater agreement reliability (31). Thus,
NWU could serve as an interesting biomarker and imaging end
point in stroke trials.

We hypothesized that the densitometric assessment of NWU
could be impaired significantly by, even visually inapparent,
iodine contrast staining on CP-I after MT, leading to an
underestimation of cerebral edema. But the agreement between
cNWU and vNWU was high in eight out of 10 patients showing
a mean difference of only 2.3%, confirming cNWU and vNWU
as a reliable imaging source to quantify NWU.

To our best knowledge, this is the first study to
investigate whether residual contrast enhancement
affects quantification of NWU in CP-I. As our results
demonstrate: contrast staining after MT does not
alter the measurement of NWU on CP-I significantly.
However, a certain proportion of patients showed a
significant difference in NWU between cNWU and
vNWU, suggestive to interindividual factors influencing
contrast staining.
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Designed as a pilot and feasibility study, the number of
included patients was small, resulting in low power. Yet,
our results confirm previous studies that NWU can be
determined reliably on CP-I as well as VNC-I and stimulate
future research regarding the potential benefit of VNC-based
NWU quantification.

In conclusion, this is the first study to investigate NWU
using dual-energy dual-layer CT scans, demonstrating a
strong agreement between cNWU and vNWU. Significant
differences in cNWU and vNWU are seen in a small
subgroup of patients, which should be subject for
further research.
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