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The role of cell death in the pathogenesis of autoimmune disease:
HMGB1 and microparticles as intercellular mediators
of inflammation
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Abstract Cell death is critical to normal homeostasis,

although this process, when increased aberrantly, can lead

to the production of pro-inflammatory mediators promot-

ing autoimmunity. Two novel intercellular mediators of

inflammation generated during cell death are high mobility

group box 1 (HMGB1) protein and microparticles (MPs).

HMGB1 is a nuclear protein that functions in transcription

when inside the nucleus but takes on pro-inflammatory

properties when released during cell death. Microparticles

are small, membrane-bound structures that extrude from

cells when they die and contain cell surface proteins and

nuclear material from their parent cells. MPs circulate

widely throughout the vasculature and mediate long-dis-

tance communication between cells. Both MPs and HMGB1

have been implicated in the pathogenesis of a broad spectrum

of inflammatory diseases, including the prototypic auto-

immune conditions systemic lupus erythematosus and

rheumatoid arthritis. Given their range of activity and asso-

ciation with active disease, both structures may prove to be

targets for effective therapy in these and other disorders.
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Introduction

Cell death is a ubiquitous and inevitable process that

normally occurs without clinically evident immunologic

sequelae. In the setting of inflammatory and autoimmune

diseases, however, an increase in the extent of cell death or

defects in the clearance of dead cell debris may contribute

significantly to immune disturbances underlying autoim-

munity. An increasing body of evidence suggests that two

major products of cell death, extracellular high mobility

group box protein 1 (HMGB1) and cellular microparticles

(MPs), have important roles in inflammation and the

pathogenesis of prototypic autoimmune conditions such as

rheumatoid arthritis (RA) and systemic lupus erythemato-

sus (SLE). These structures may also arise during cell

activation, although the close linkage between immune cell

activation and activation-induced cell death may compli-

cate interpretation of their origin.

Both HMGB1 and MPs are released during the death of

cells, and both induce pro-inflammatory cytokine expres-

sion, as illustrated in Fig. 1. HMGB1 is a non-histone,

DNA-binding nuclear protein that has dual function.

Within the nucleus, HMGB1 binds to DNA and regulates

transcription and chromosome architecture. In its extra-

cellular form, however, HMGB1 functions as a

pro-inflammatory cytokine. In contrast, MPs are small,

membrane-bound vesicles that display surface markers and

nucleic components characteristic of the parent cells.

While MPs are present in the peripheral blood of healthy

individuals, marked elevations occur in many disease states

characterized by high cell turnover or cell death. Further-

more, MPs can function as disease effectors, playing a role

in local and long-range signaling in cellular processes that

underlie inflammation and thrombosis. The association

between increased blood levels of HMGB1 and MPs with
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active disease provides tantalizing new clues about the

mechanisms of inflammation in autoimmunity, and sug-

gests potential targets for therapeutic intervention.

HMGB1 and its function

HMGB1 is a 30 kDa non-histone, chromatin-binding protein

ubiquitously expressed in eukaryotic cells and highly pre-

served across mammalian species [1]. HMGB1 contains 215

amino acids and has a tripartite structure consisting of two

DNA-binding domains, the A box and the B box, and a

C-terminal tail domain [2, 3]. Unlike histones, HMGB1 binds

to DNA with low affinity and can move from the nucleus to

the cytoplasm depending upon cell cycle phase [4].

Functionally, the role of HMGB1 depends upon its

location. When inside the nucleus, HMGB1 acts as an

architectural protein that binds to DNA and can impact

transcription. HMBG1 recognizes particular DNA confor-

mations (e.g., bent DNA) rather than specific nucleic acid

sequences and binds in the minor groove of the DNA helix.

As a result, HMGB1 can distort DNA and thereby enhance

interactions with several proteins, including p53, NF-jB,

progesterone receptors, estrogen receptors, and gluco-

corticoid receptors [5–7]. HMGB1 appears essential for

survival, as suggested by its evolutionary conservation as

well as the observation that HMGB1 knockout mice suc-

cumb to hypoglycemia within 24 h of birth; death in the

knockout mice likely results from impaired activation of

glucocorticoid receptor-responsive genes [8]. Thus, by

recognizing DNA and modifying its structure, HMGB1

plays an important role in transcriptional regulation. In

addition to its nuclear form, a cell-membrane form of

HMGB1 (also known as amphoterin or p30) promotes

neurite outgrowth, smooth muscle cell chemotaxis, and

tumor cell metastasis [9–11].

Once outside the cell, HMGB1 has an entirely different

role and functions as a pro-inflammatory cytokine with

effects similar to TNFa. In vitro studies using purified

HMGB1 demonstrate immunological activities likely

implicated in inflammatory disease. Although the activity

of HMGB1 preparations varies depending on the condi-

tions of isolation and purification, both native and

recombinant forms of this protein can induce expression of

pro-inflammatory cytokines in vitro, including TNF-a, IL-

1, IL-6 and nitric oxide (NO) in neutrophils, macrophages

and pituicytes [12–14]. As a mediator of endothelial

function, HMGB1 activates human umbilical venular

endothelial cells (HUVEC) to upregulate adhesion mole-

cules, and activated HUVEC cells release HMGB1 [15,

16]. Among its other functions, HMGB1 can also promote

dendritic cell maturation and migration in vitro [17, 18].

The signaling systems triggered by HMGB1 are not

fully understood, although receptor for advanced glycation

end products (RAGE) is one receptor for HMBG-1. RAGE

belongs to the IgG superfamily and is present on the sur-

face of many cell types [19]. RAGE knockout mice have

enhanced survival in sepsis models, and RAGE blockade

attenuates the HMBG-1-induced inflammatory response

[20]. Other in vitro evidence suggests that toll-like recep-

tors (TLR) 2 and 4 may participate in HMGB1 signaling

[21, 22].

HMGB1 release from cells

Cells release HMGB1 following cell activation or cell

death, two processes central in inflammation. In activated

Fig. 1 This schematic depicts MP and HMBG1 release from cells

and subsequent immunologic effects. Microparticles (MPs) and

extracellular HMGB1 share several similar biological activities. Both

MPs and HMGB1 are released from several cell types following

activation, necrosis or apoptosis. MPs achieve release from cells via

budding and retain cell surface markers of parent cells. HMBG1

protein becomes biologically active after release from the nucleus and

extrusion into the extracellular space. Both MPs and HMBG1 exert

pro-inflammatory effects, including expression of inflammatory genes

and cytokines, upregulation of endothelial cell adhesion molecules,

and stimulation of dendritic cells
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cells including macrophages, HMGB1 translocates to the

cytoplasm, enters lysosomes and, via exocytosis, reaches

the extracellular milieu [23]. During the process of trans-

location, HMGB1 is phosphorylated [24]. As HMGB1

contains no signal sequence, the protein does not travel

through the Golgi apparatus or endoplasmic reticulum [25].

In contrast, during necrosis, HMGB1 readily leaves cells,

likely because its binding to DNA is weak in comparison

to that of the histones, for example. As a result, when cell

permeability breaks down during necrotic cell death,

HMGB1 diffuses away from chromatin to enter the extra-

cellular space. At present, Western blotting is the primary

approach for measuring extracellular HMGB1.

While initial studies suggested that apoptotic cells do

not release HMGB1 even when undergoing secondary

necrosis, recent observations indicate that apoptotic death

is also a setting for the release of this protein [25]. Fol-

lowing induction of apoptosis in Jurkat T cells by a variety

of chemical agents, HMGB1 appears in the medium as

shown by Western blotting; confocal microscopy can

also demonstrate the translocation of HMGB1 during this

death process [26]. Together, these findings suggest that,

depending upon the cell type and the stimulus for death,

HMGB1 release can follow apoptosis as well as necrosis

and therefore mark death irrespective of the biochemical

changes occurring in cells during these processes.

HMGB1 in inflammatory and autoimmune diseases

HMGB1 was initially described as an inflammatory protein

released in vitro by LPS-stimulated macrophages and as a

late mediator of murine LPS-induced sepsis [27]. Sub-

sequent studies in animal models provided support for

the role of HMGB1 in sepsis, including the attenuation of

murine sepsis by anti-HMBG1 antibodies [27]. Further

studies demonstrated that patients with sepsis have elevated

HMGB1 levels which increase with disease severity.

Beyond its role in sepsis, HMGB1 has been implicated in

the pathogenesis of a broad spectrum of acute and chronic

inflammatory conditions with elevated levels in the clinical

settings of acute lung injury, cancer, inflammatory bowel

disease, Sjogren’s syndrome, Churg–Strauss syndrome,

SLE and RA [28–31]. In fact, HMGB1 may be an autoan-

tigen recognized by perinuclear anti-neutrophil cytoplasmic

antibodies (p-ANCA) [32].

Rheumatoid arthritis

In both animal models of inflammatory arthritis and in

patients with RA, elevated levels of both intra- and extra-

cellular HMGB1 are seen in synovial tissue [33]. The

synovial fluid of patients with RA also shows enhanced

levels of HMGB1 compared to that of osteoarthritis con-

trols [34]. Further supporting the role of HMGB1 in

inflammatory arthritis is the observation that intra-articular

injection of HMGB1 into rodent knee joints induces

synovitis and stimulates release of proinflammatory cyto-

kines from synovial macrophages [35]. In animal models

of collagen-induced arthritis, anti-HMGB1 antibody can

produce clinical improvement in the joint count, joint

pathology and cachexia similar to that seen with anti-TNFa
therapy [36]. Studies investigating serum levels of HMGB1

in RA have yielded mixed results [37, 38]. Sera of ANA

positive children with pauciarticular juvenile RA dem-

onstrate antibodies to HMGB1 or HMGB-2 [39, 40].

Together, these observations suggest that HMGB1 is a

mediator of inflammatory arthritis and may serve as a

potential therapeutic target.

Systemic lupus erythematosus

Because it can induce proinflammatory cytokines, HMGB1

has emerged as a potential pathogenic protein in SLE. In

fact, elevated levels of anti-HMGB1 antibody are present

in the serum of patients with SLE and increased extracel-

lular HMGB1 expression is seen in biopsies of cutaneous

lupus lesions [37, 41]. Of particular interest is the finding

that, in vitro, HMGB1 is present in DNA-containing

immune complexes that stimulate TLR9-RAGE mediated

dendritic cell production of cytokines, including interferon-

a. These complexes also bind to and activate B cells via

RAGE [42]. Additionally, anti-dsDNA sensitive, nephrit-

ogenic T cell lines from patients with active lupus nephritis

proliferate in response to HMG proteins [43]. As SLE is a

disease characterized by the formation of autoantibodies

to cell nucleus constituents, high levels of cytokine ex-

pression (particularly interferon-a), formation of immune

complexes, and autoreactive B cells, these data support the

role of HMGB1 in the pathogenesis of SLE. Studies

assessing the efficacy of blocking HMGB1 activity in SLE

are needed to further elucidate the role of this novel

inflammatory protein in SLE.

Microparticles and their function

Like HMGB1, MPs are released from activated and dying

cells and promote inflammation. Originally described as

inert ‘‘platelet dust,’’ MPs are small (0.1–1 lm) membrane-

bound vesicles that circulate in the blood [44]. While

platelet-derived MPs are the most abundant particle species

in peripheral blood, circulating MPs can also arise from

lymphocytes, monocytes, endothelial cells, and other cell

types. MPs contain membrane, cytoplasmic and nuclear

components characteristic of their precursor cells [45].
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Despite their initial description as inert debris, MPs are

potently active physiologically, and can mediate inflamma-

tion, hemostasis, thrombosis, angiogenesis, and vascular

reactivity. Because of their small size, MPs widely circulate

throughout the vasculature, allowing participation in both

local and long-range signaling. In their interaction with cells,

MPs bind via surface ligands, representing a kind of direct

long-distance cell–cell communication for cells typically

remote from each other. Furthermore, in a novel mechanism

for the intercellular interaction, MPs can transfer surface

molecules, including receptors, to other cells, as well as

exchange membrane and cytoplasmic proteins [46, 47].

Receptor transfer can enlarge the responses that can be

mounted by a given cell type; such transfer can also confer

sensitivity to infection by an organism (e.g., HIV), requiring

a particular cell surface molecule to allow entry [48].

Since platelet MPs were the first species identified,

investigation of the role of these structures initially focused

on the clotting system. MPs play a role in normal hemo-

stasis and also have diverse properties that could promote

the pathogenesis of thrombotic disorders. Phosphatidyl-

serine and tissue factor are both exposed on the outer

membranes of MPs and are central players in the coagu-

lation cascade. MPs also interact with factors Va, VIII, and

IXa, thereby facilitating assembly of the prothrombinase

complex [49–52]. Among other activities, platelet MPs

bind b-2-glycoprotein-1 antibodies, suggesting a possible

role in antiphospholipid antibody syndrome (APS) [53]. As

shown in in vitro experiments, MPs isolated from patients

in various clinical settings (including sepsis, thrombotic

thrombocytopenic purpura, sickle cell disease and cardio-

pulmonary bypass grafting) have procoagulant activity

[54–57]. This activity may be relevant clinically since MP

concentrations are elevated in prothrombotic disorders

including acute coronary syndromes, venous thromboem-

bolism, heparin-induced thrombocytopenia, vasculitis,

paroxysmal nocturnal hemoglobinuria and thrombotic

thrombocytopenic purpura [58–63].

In addition to their thrombotic effects, MPs have potent

pro-inflammatory activities and are potentially important

mediators of autoimmune and inflammatory diseases.

Among these activities, platelet MPs can induce the binding

of monocytes to endothelial cells and promote survival of

hematopoietic cells [64]. Furthermore, platelet MPs can

promote leukocyte–leukocyte aggregation, likely due to

interactions between P-selectin expressed on platelet MPs

and its ligand on leukocytes [65]. The mechanisms by which

MPs mediate these effects may include the transfer of ara-

chidonic acid to other cells, leading to increased adhesion of

monocytes to endothelium [47, 66]. Other pro-inflammatory

roles of MP include the secretion of IL-1b [67].

In contrast to actions promoting inflammation, T-cell-

derived MPs can induce macrophage apoptosis. This

killing action can potentially impair a key element of the

immune system and in turn trigger MP release from the

dying macrophage to augment other immunological and

vascular events [68].

Microparticle release from cells

Similar to HMGB1, activation and cell death promote MP

release, and the exact mechanisms underlying these pro-

cesses remain unknown. During cell activation by a variety

of stimuli, a rise in intracellular calcium is followed

by remodeling of the plasma membrane. This membrane

modification can cause phosphatidylserine exposure and

bleb formation, leading to the extrusion of MPs to the

extracellular space [69]. During apoptosis, MP release

occurs in association with membrane blebbing, a charac-

teristic feature of programmed cell death. Blebbing

involves a dynamic redistribution of cellular contents,

perhaps related to volume stress that occurs as cells die.

Rho-associated kinase 1, ROCK-1, an effector of Rho

GTPases, is essential for apoptotic membrane blebbing

[68]. Not all cells bleb, however, and the blebbing process

can differ during the stage of apoptosis. Like HMGB1, MP

release appears to occur late in the cell death process and

may occur concurrently with cell fragmentation and the

formation of apoptotic bodies; apoptotic bodies represent

shrunken and collapsed cells with nuclear fragmentation.

Any eukaryotic cell undergoing activation or death

should theoretically release MPs, but most research has

focused on hematopoietic cell types (e.g., platelets, leu-

kocytes and erythrocytes) as well as vascular cells

including endothelial cells. Other cells, including tumors,

smooth muscle cell and synovial cells, can also release

MPs, although these MPs may be more readily detected in

the tissue or origin or at sites of inflammation (e.g., in the

synovium or synovial fluid), rather than the blood.

Given the generation of MPs during exocytosis or blebbing

of membranes, their origin can be tracked by cell-specific

protein markers. Thus, the presence of CD4, CD3 or CD8 on

the MP surface indicates lymphoid origin while platelet MPs

are marked by the expression of glycoprotein IIb–IIIa,

P-selectin/CD42a. Similarly, endothelial MPs display surface

CD31 or CD 146 [70, 71]. MPs can express a different set of

surface markers than the precursor cells, however, as has been

observed with erythrocyte MPs [72]. The rules for the incor-

poration of different proteins into MPs are not known.

Microparticles in inflammatory and autoimmune

disease

Like HMGB1 and other consequences of cell activation or

death, elevated MP levels occur in the blood of patients
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with many different diseases. As a group, these diseases are

characterized by disturbances of the immune system vas-

culature and include atherosclerosis, malignancy, multiple

sclerosis, vasculitis RA and SLE [62, 73–75].

Rheumatoid arthritis

In the pathogenesis of RA inflammation, angiogenesis and

thrombosis occur prominently, and the course of disease is

marked by accelerated atherosclerosis. MPs may play a

role in both articular and extraarticular manifestation,

suggesting that their levels could serve as biomarkers. In

patients with RA, platelet MPs levels in the blood are

elevated and appear to correlate with disease activity [76].

While platelet MPs are found in the plasma of RA subjects,

in the synovial fluid, MPs derived from granulocytes and

monocytes dominate. Also present in synovial fluid are T

cell, B cell, platelet and erythrocyte MPs. Synovial MPs

from patients with RA and other inflammatory arthritides

stimulate tissue factor/factor VII-dependent thrombin

generation. This local hypercoaguability may promote

intraarticular inflammation and the formation of fibrin

clots, known as ‘‘rice bodies’’ [77].

In addition to promoting inflammation, MPs may con-

tribute to the erosion of cartilage and bone via effects

on synovial fibroblast activity. As observed in in vitro

experiments using cells from patients with RA and other

inflammatory arthritides, incubation of fibroblast-like

synoviocytes with autologous MPs induces expression of

MCP-1, IL-6, IL-8, VEGF, ICAM-1 and RANTES and a

decrease in GMCSF [78]. Furthermore, in in vitro studies,

MPs derived from T cells and monocytes can induce

synovial fibroblast production of matrix metalloproteinases

(MMPs), including MMP-1, MMP-3, MMP-9 and MMP-

13 [78]. Taken together, these data suggest that MPs can

mediate cellular interactions responsible for synovial acti-

vation and articular destruction [77].

Systemic lupus erythematosus and APS

In view of the inflammation and vascular abnormalities

characteristic of SLE, the presence of MPs in peripheral

blood could provide a novel marker reflecting dysregulation

in the major cell populations underlying disease. Elevated

levels of platelet MPs have been described in individuals

with SLE [79]. In one study, patients with antiphospholipid

antibodies and elevated levels of platelet MPs but not

endothelial MPs predicted thrombosis [80]. In contrast,

another investigation found that endothelial MPs were

elevated in subjects with APS compared to controls with

and without non-APS thrombosis. Additionally, in vitro,

APS plasma induced a fourfold increase in the release of

endothelial MPs from human umbilical endothelial cells

[81]. In one study, MPs, primarily platelet-derived, were

elevated in SLE and correlated with thrombin generation,

although levels did not correlate with disease activity or the

presence of antiphospholipid antibody [82].

Conclusion

HMGB1 and MPs are novel mediators of inflammation,

liberated in the settings of cell activation and cell death.

Both are potentially important players in immune-mediated

diseases and can participate in local and long-range inter-

cellular communication. In many inflammatory and auto-

immune diseases, but particularly RA and SLE, MPs and

HMGB1 may play important roles in pathogenesis and, as

potential targets for treatment, may also provide new

opportunities for therapeutic intervention.
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