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Hormone antagonist therapy for estrogen receptor positive (ER+) breast cancer patients post radical surgery and radiation therapy
has a poor prognosis and also causes bone loss. 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] is a potent antitumor agent in pre-
clinical studies, but caused hypercalcemia when its effective antitumor doses were used. Therefore, we investigated the effects
of a less-calcemic 1α,25(OH)2D3 analog, 19-nor-2α-(3-hydroxypropyl)-1α,25-dihydroxyvitamin D3 (MART-10), on ER+MCF-7
cells. We demonstrate that MART-10 is 500- to 1000-fold more potent than 1α,25(OH)2D3 in inhibiting cell growth in a dose- and
time-dependent manner. MART-10 is also much more potent in arresting MCF-7cell cycle progression at G0/G1 phase as compared
to 1α,25(OH)2D3, possibly mediated by a greater induction of p21 and p27 expression. Moreover, MART-10 is more active than
1α,25(OH)2D3 in causing cell apoptosis, likely through a higher BAX/Bcl expression ratio and the subsequent cytochrome C release
from mitochondria to cytosol. Based on our in vitro findings, MART-10 could be a promising vitamin D analog for the potential
treatment of breast cancer, for example, ER+ patients, to decrease the tumor relapse rate and the side effect on bone caused by
antihormone regimens. Thus, further in vivo animal study is warranted.

1. Introduction

Breast cancer ranks first globally among the most commonly
diagnosed and cancer-related deaths in women [1]. Over
1.38 million new breast cancer cases and 458,400 breast
cancer-related deaths have been reported worldwide in 2008.
Estrogen receptor (ER), which is present in nearly 70% of all
breast cancer patients, plays a crucial role in the progression
of breast cancer [2]. Thus, ER antagonists, tamoxifen and

raloxifene, have been widely used to treat breast cancer and
have contributed to a better prognosis for ER positive (ER+)
breast cancer. However, only a 50% reduction in tumor
relapse has been achieved by ER antagonist therapy [3].
Furthermore, the antagonists have serious side effects on
bone [4], which highlights the necessity of seeking alternative
treatments for ER+ breast cancer.

Vitamin D is well known as a modulator of calcium
and bone metabolism. For the past three decades, abundant
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evidence has been accumulated to indicate that the
active form of vitamin D, 1α,25-dihydroxyvitamin D3,
1α,25(OH)2D3, or calcitriol, possesses many actions not
associated with calcium and bone metabolism [5]. They
include antiproliferation, antiangiogenesis, proapoptosis,
prodifferentiation, and immune regulation in a cell- and
tissue- specific manner [5–9].

1α,25(OH)2D3 exerts its effects through binding to
vitamin D receptor (VDR). The receptor is expressed in most
human cancer cell lines and its growth can be inhibited by
1α,25(OH)2D3 [10–14]. However, the clinical application of
1α,25(OH)2D3 is hindered by its lethal hypercalcemic side-
effect after its systemic administration at a concentration
sufficient to inhibit tumor cell growth [15]. To overcome
this drawback, thousands of vitamin D analogs have been
synthesized aiming to minimize its calcemic side effect while
maintaining or even potentiating the antitumor activities
[16, 17].

For breast cancer, 1α,25(OH)2D3 and its analogs, includ-
ing EB1089, ILX 23-7533, and 22-oxa-1α,25(OH)2D3, have
been shown to be effective in suppressing breast cancer cell
growth in vitro and in vivo either alone or in combination
with other drugs [18]. However, no significant benefit on
survival has been observed in clinical trials [19, 20].

MART-10 (19-nor-2α-(3-hydroxypropyl)-1α,25-dihy-
droxyvitamin D3) [21] has been shown to be more active in
VDR transactivation [22]. Most importantly, MART-10 is
far more potent in inhibiting liver and prostate cancer cell
proliferation [11, 22, 23] and prostate cancer cell invasion
[24], and it did not raise serum calcium in vivo in an
animal model [24]. These findings suggest that MART-10
could be a good candidate for breast cancer treatment.
We, therefore, study the antiproliferative and proapoptotic
effects of MART-10 in ER+ MCF-7 breast cancer cells and
the potential mechanisms involved.

2. Materials and Methods

2.1. Vitamin D Compounds. 1α,25(OH)2D3 was purchased
from Sigma (St. Louis, MO, USA). MART-10 was synthesized
as previously described [21].

2.2. Cell Culture. Human breast cancer cell lines, MCF-
7 and MDA-MB-231, were obtained from Bioresource
Collection and Research Center (BCRC, Taiwan). Both MCF-
7 and MDA-MB-231 cells were grown in DMEM (Sigma)
supplemented with 5% fetal bovine serum (FBS). Culture
medium was changed 3 times per week.

2.3. Cell Proliferation Assay by Cell Number Counting. Cell
counting was conducted using a hemocytometer as previ-
ously described [11]. Cells were treated every two days and
counted on day 7.

2.4. Western Blot for Protein Expression. The procedures for
protein extraction, blocking, and detection were described
previously [11]. The primary antibodies used in this study
were monoclonal antibodies against VDR (D-6, Santa Cruz

Biotechnology, Santa Cruz, CA, USA), p21 (2946, Cell Signal,
Beverly, MA, USA), p27 (3698, Cell Signal), cytochrome
C (clone 7H8.2C12, BD Biosciences Pharmingen), Bax
(554104, BD), and Bcl-2 (05-729, Millipore, Bedford, MA,
USA). The secondary antibodies (1 : 5000) were anti-rabbit
(111-035-003, Jackson Immunoresearch, West Grove, PA,
USA) or anti-mouse secondary antibodies (Zymed 81-6520).
The blots were detected using ECL reagents (WBKLS0500,
Millipore, Billerica, MA, USA). Membranes were detected by
VersaDoc Imaging System (Bio-Rad, Hercules, CA, USA) for
analysis.

2.5. Cell Cycle Analysis by Flow Cytometry. Flow cytometry
for cell cycle analysis was performed using a FACSCalibur
(BD Biosciences, San Jose, CA, USA) as described previously
[11, 25]. Briefly, after exposure for two days to indicated
concentrations of 1α,25(OH)2D3, the cells were collected and
fixed in ice-cold 75% ethanol at 20◦C overnight. The fixed
cells were stained in propidium iodide (PI) buffer containing
100 mM sodium citrate, 0.1% Triton X-100, 0.2 mg/mL
RNase, and 50 μg/mL PI at 4◦C for 1 h. Flow cytometry and
cell cycle analysis were then performed using a FACSCalibur.

2.6. Apoptosis Analysis by Flow Cytometry. MCF-7 cell apop-
tosis was analyzed using a flow cytometer with Annexin
V-FITC (fluorescein isothiocyanate) and propidium iodide
(PI) staining kit (Strong Biotech Corporation, Taiwan) to
distinguish early apoptotic from necrotic cells as previously
described [11, 26]. Briefly, three days after the indicated
concentrations of MART-10 or 1α,25(OH)2D3 treatment,
MCF-7 cell apoptosis was analyzed using a flow cytometer
with Annexin V-FITC (fluorescein isothiocyanate) and pro-
pidium iodide (PI) staining. Apoptosis Detection Kit (Strong
Biotech Corporation, Taiwan) was applied in the present
study. Briefly, cells from each sample were suspended in a
mixture of 2 μL Annexin V-FITC, 2 μL propidium iodide
(PI), and 100 μL AnnexinV-FITC binding buffer and then
incubated at room temperature for 15 min. According to
the cell density, 0.4–0.8 mL binding buffer was added. The
samples were analyzed using a flow cytometer FACS Calilbur
(BD Biosciences). The cell population was separated into
three groups, that is, live cells with a low level of fluorescence,
apoptotic cells in the earlier period with green fluorescence
(Annexin V positive), and necrotic and advanced stage apop-
totic cells with both red and green fluorescence (Annexin V
and PI positive).

2.7. Apoptosis Analysis by TUNEL Assay. TUNEL assay was
used to measure DNA fragmentation [27]. Briefly, cells were
plated on autoclaved glass coverslips in six-well culture plates
and treated with MART-10 or 1α,25(OH)2D3 as indicated in
the figure legends. Cellular DNA was stained with apoptosis
detection kits (Millipore Billerica, MA, USA), and the assay
was performed according to the recommendations from the
manufacturer (Millipore Billerica).

2.8. Statistical Analysis. The data from each group were com-
pared by the student t-test. P-value < 0.05 was considered as
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Figure 1: VDR expression in MCF-7 cells and MDA-MB-231 cells and the antiproliferative activity of 1α25(OH)2D3and MART-10 in MCF-
7 cells. (a) VDR expression in MCF-7 (lanes 1, 3, and 5) and MDA-MB-231 cells (lanes 2, 4, and 6) as determined by western blot method.
Sixty μg proteins were added in each lane. VDR was expressed much more prominently in MCF-7 than in MDA-MB-231 cells. (b) The dose-
dependent inhibitory effects of 1α25(OH)2D3 and MART-10 on the growth of MCF-7 cells. Cells were plated at 5,000 cells per cm2 in 35 mm
dishes. Two days after plating, cells were treated with 1α25(OH)2D3 or MART-10 for 1 week at the indicated concentrations as described in
the Materials and Methods. Cell numbers were obtained using a hemocytometer. Results are presented as the percentage of control. Each
value is a mean ± SD of three to five determinations. ∗P < 0.05, ∗∗P < 0.001 versus control. (c) The time-dependent inhibitory effects of
1α25(OH)2D3 and MART-10 on the growth of MCF-7 cells. Cells were grown and treated with 1α25(OH)2D3 or MART-10 at the indicated
concentrations two days after plating and counted on days 3, 5, and 7, respectively. Cell numbers were obtained using a hemocytometer.
Results are presented as the percentage of control. Each value is a mean ± SD of three to five determinations. ∗P < 0.05, ∗∗P < 0.001 versus
control. (d) The dose-response effects of 1α,25(OH)2D3 and MART-10 treatment on the growth of MDA-MB-231 cells. Cells plated at 5,000
cells per cm2 in 35 mm dishes were grown and treated with 1α,25(OH)2D3 or MART-10 at indicated concentrations for 1 week two days
after plating as described in the Materials and Methods. Cell numbers were obtained using a hemocytometer. Results are presented as the
percentage of control. Each value is a mean ± SD of three to five determinations. ∗P < 0.05, ∗∗P < 0.001 versus control.

a significant difference. Functions of Excel 2007 were used to
calculate test statistics.

3. Results

3.1. VDR Expression in MCF-7 Cells. Since the genomic
actions of 1α,25(OH)2D3 are mediated through VDR, we
first analyzed the expression of VDR in MCF-7 cells. The

expression in MDA-MB-231 cells served as a negative control
[28]. As demonstrated in Figure 1(a), VDR was highly
expressed in MCF-7 cells (lanes 1, 3, and 5), whereas very
little or no expression (lanes 2, 4, and 6) was found in MDA-
MB-231 cells as previously reported [28].

3.2. Antiproliferative Effect of MART-10 and 1α,25(OH)2D3

on MCF-7 Cells. To compare the antiproliferative activity of
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MART-10 and 1α,25(OH)2D3 in MCF-7 cells, the cells were
treated with either MART-10 or 1α,25(OH)2D3, and the cell
numbers were counted on 7th day as previously described
[11]. As shown in Figure 1(b), either 1α,25(OH)2D3 or
MART-10 caused a dose-dependent inhibition of cell growth.
However, MART-10 caused a 50 ± 9% inhibition at 10−10 M,
whereas, no inhibition was observed with 10−10 M of
1α,25(OH)2D3. Only when 10−7 M 1α,25(OH)2D3 was used,
a 58 ± 6% inhibition was obtained. Thus, it is concluded
that MART-10 is about 500- to 1000-fold as potent as
1α,25(OH)2D3 to repress MCF-7 cell growth.

Figure 1(c) shows a time course inhibition of MCF-7
cell growth by 1α,25(OH)2D3 and MART-10 at 10−7 M.
1α,25(OH)2D3 inhibited MCF-7 cell growth by 14±5, 46±6
and 61 ± 3% on the 3rd, 5th, and 7th day, whereas a 20 ±
3, 60 ± 3, or 84 ± 4% growth inhibition by MART-10 was
observed at the same time points. A greater inhibition by
MART-10 was observed at each time point.

Figure 1(d) demonstrates that MDA-MB-231 cells were
not as responsive as MCF-7 cells to 1α,25(OH)2D3 and
MART-10 treatments. Only a 13± 6% and a 16± 5% inhibi-
tion were observed in the presence of 10−6 M 1α,25(OH)2D3

and 10−7 M MART-10, respectively. The results are in agree-
ment with the VDR expression data obtained by western blot
analysis showing much less expression of VDR in MDA-MB-
231 cells than in MCF-7 cells (Figure 1(a)).

3.3. Induction of Cell Cycle Arrest at G0/G1 Phase and the
Cyclin Dependent Kinase (CDK) Inhibitors, p21 and p27, by
MART-10 and 1α,25(OH)2D3 in MCF-7 Cells. Since MART-
10 and 1α,25(OH)2D3 showed a significant inhibition in the
growth of MCF-7 cells, we next conducted cell cycle analysis
by flow cytometry to further understand the mechanisms
mediating the inhibition. When MCF-7 cells were treated
with 10−8, 10−7, and 10−6 M 1α,25(OH)2D3 for two days,the
fraction of cells arrested at G0/G1 phase increased by 5.81%,
13.34%, and 13.78%, respectively, whereas we observed an
increase in cell arrest at G0/G1 by 10.45%, 15.36%, and
19.93% in the presence of 10−9, 10−8, and 10−7 M of MART-
10, respectively, as compared to the controls (Figure 2 and
Table 1). It is clear that although either 1α,25(OH)2D3 or
MART-10 can significantly arrest MCF-7 cell cycle pro-
gression at G0/G1, MART-10 is much more potent than
1α,25(OH)2D3 in this respect.

Since p21 and p27 have been implicated in the G0/G1

arrest by 1α,25(OH)2D3, we next examined the expression of
p21 and p27 in the presence of 1α,25(OH)2D3 or MART-10
by western blot analysis. Figure 3(a) demonstrates that p21
expression increased 1.56 ± 0.4, 1.91 ± 0.3, and 2.1 ± 0.45
time over the control group, after treating with 10−9, 10−8,
and 10−7 M of 1α,25(OH)2D3 for two days, respectively,
whereas 1.8±0.3, 2.8±0.6, and 3.1±0.5 fold expressions were
induced by MART-10 at 10−9, 10−8, and 10−7 M, respectively.
As for p27 expression, 1α,25(OH)2D3 induced 1.29 ± 0.3,
1.66 ± 0.4, and 1.82 ± 0.45 time over the controls upon
treatment with 10−8, 10−7, and 10−6 M of 1α,25(OH)2D3

for two days, respectively. MART-10 at 10−9, 10−8, and
10−7 M upregulated p27 expression 3.3 ± 0.6, 5 ± 0.9,

and 5.3 ± 0.97 fold over the controls (Figure 3(b)). Taken
together, we conclude that 1α,25(OH)2D3 and MART-10 are
both able to upregulate p21 and p27 expression in a dose-
dependent manner, and MART-10 is much more potent than
1α,25(OH)2D3.

3.4. Effects of 1α,25(OH)2D3 and MART-10 on MCF-7 Cell
Apoptosis and Apoptotic Protein Expression. To compare the
apoptotic response induced by 1α,25(OH)2D3 and MART-
10 in MCF-7 cells, flow cytometry analysis coupled with
staining cells with Annexin V (Annexin V-FITC) and PI
was utilized [29] (Figure 4(A)). The quantitative numerical
distribution of apoptotic cells from this analysis is presented
in Table 2. 1α,25(OH)2D3 at 10−6 M induced MCF-7 cell
apoptosis by increasing the late apoptotic cell population
from 7.19% to 10.04%, while MART-10 at 10−7 M was able
to increase the late apoptosis cell population from 7.19% to
13.66%. The results are in agreement with those obtained
by TUNEL assay (Figure 4(B), panels a, b, c, and d). The
figure shows that 8.2% and 8% apoptotic cells were generated
when MCF-7 cells were treated with 10−6 M 1α,25(OH)2D3

and 10−7 M MART-10, respectively. Our results, therefore,
indicate that MART-10 is about 10-fold more potent than
1α,25(OH)2D3 in the apoptotic induction of MCF-7 cells.

Bax protein is a well-known proapoptotic protein,
whereas Bcl-2 is a protein with antiapoptotic activity. There-
fore, the higher Bax/Bcl-2 ratio has been used as an indicator
for the expression and the subsequent release of cytochrome
C into cytosol to trigger apoptosis. As shown in Figure 5(a),
10−7 M MART-10 and 1α,25(OH)2D3 increased the Bax/Bcl-
2 ratio to 1.48 and 1.33 as compared to the controls, which
is in agreement with a greater upregulation of cytochrome
C expression over controls by MART-10 (2.35-fold) than by
1α,25(OH)2D3 (1.64-fold) (Figure 5(b)).

4. Discussion

The focus of this study was to investigate the antiproliferative
and proapoptotic activities of MART-10 in the ER+ MCF-7
breast cancer cells which express high level of VDR (Figure
1(a)). MART-10 is a new generation of 1α,25(OH)2D3

analogs with a skeleton of “2α-(3-hydroxy)propyl group”
and “19-nor” integrated into one molecule. Therefore,
MART-10 possesses the combined characteristics of the
noncalcemic nature of the 19-nor vitamin D compounds
[30] as exemplified by the FDA-approved drug Zemplar or
19-nor-1α, 25(OH)2D2 for the treatment of the secondary
hyperparathyroidism, and the enhanced VDR binding prop-
erty of 2α-(3-hydroxy)propyl compound [31, 32]. Similar to
Zemplar, MART-10 did not raise serum calcium in an in vivo
animal model [23] and was more potent than 1α,25(OH)2D3

in inducing VDR transactivation [22].
The effects of vitamin D are mainly mediated through

the VDR-dependent genomic actions. Our results confirm
the high level of VDR expression in MCF-7 cells and
accordingly highly sensitive growth inhibitory responses
to 1α,25(OH)2D3 and MART-10 in a dose- and time-
dependent manner (Figures 1(b) and 1(c)). The low or no
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Figure 2: Flow cytometry analysis of cell cycle distribution for MCF-7 cells treated by 1α25(OH)2D3 and MART-10. Effects of 1α25(OH)2D3

and MART-10 on the relative distribution of MCF-7 cells at G1/G0, S and G2/M phase. MCF-7 cells were treated with 1α25(OH)2D3 from
10−8 M to 10−6 and MART-10 from 10−9 M to 10−7 M for two days before cell cycle analysis was performed with a flow cytometer. A
representative DNA histogram for control, 1α25(OH)2D3-, or MART-10-treated MCF-7 cells was shown. The total DNA content of cells
(x-axis) was obtained by staining with propidium iodide. Cells were analyzed by flow cytometry. The percentage of cells in each cell cycle
phase was determined with the program ModFit. The first large peak represents population of cells (y-axis) in G0/G1 phase, the second small
peak shows population of cells in G2/M phase, and the gray area between both peaks represents cells in S phase.
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Figure 3: Western blot analysis for the expressions of p21 and p27 after treating MCF-7 cells with 1α25(OH)2D3 and MART-10. (a) A
western blot (30 μg protein was loaded for each individual lane) depicting a typical dose-dependent upregulation of p21 protein expression
in response to the treatment with 1α25(OH)2D3 or MART-10 for 2 days (upper panel). Actin was used as the loading control. The lower panel
shows the average radio of the dose-dependent p21 expression relative to actin expression from three independent experiments. Each value is
a mean± SD of three independent determinations. (b) A western blot (30 μg protein was loaded for each individual lane) depicting a typical
dose-dependent up-regulation of p27 protein expression in response to the treatment with 1α25(OH)2D3 or MART-10 for 2 days (upper
panel). Actin was used as the loading control. The lower panel depicts the average radio of the dose-dependent p27 expression relative to actin
expression from three independent experiments. Each value is a mean ± SD of three independent determinations. ∗P < 0.05, ∗∗P < 0.001
versus control.

Table 1: The distribution of different phases of MCF-7 cell cycle
under the influence of 1α,25(OH)2D3 or MART-10.

G1 S G2/M

Control 50.36% 33.51% 16.13%

1,25D∗, 10−8 M 56.17% 30.06% 13.77%

1,25D, 10−7 M 63.70% 23.85% 12.36%

1,25D, 10−6 M 64.14% 21.96% 13.90%

M-10#, 10−9 M 60.81% 23.65% 15.54%

M-10, 10−8 M 65.72% 21.32% 12.96%

M-10, 10−7 M 70.29% 12.98% 16.73%
∗1,25D: 1α,25(OH)2D3.
#M-10: MART-10.

expression of VDR in MDA-MB-231 cells (Figure 1(a)) is in
agreement with the low antiproliferative activity caused by
1α,25(OH)2D3 and MART-10 (Figure 1(d)) in these VDR-
null cells. Thus, the results clearly suggest that VDR plays a
crucial role in the response of MCF-7 breast cancer cells to
1α,25(OH)2D3. .Along this line, Lopes et al. recently reported
that VDR expression was high in benign breast lesions and
diminished gradually in invasive breast cancer as the tumor

progressed [33]. VDR expression has also been shown to be
inversely related to breast cancer incidence [34]. Collectively,
the findings suggest that dysregulation of VDR expression
may contribute to the incidence and progression of breast
cancer.

In addition, our data, showing a greater cell growth
inhibition induced by MART-10 than by 1α25(OH)2D3 on
day 5 and day 7 (Figure 1(c)), suggest that the effective dose
of MART-10 may be higher than that of 1α,25(OH)2D3,
possibly because MART-10 is more bioavailable than
1α,25(OH)2D3 due to the nature that MART-10 is more
resistant to CYP24A1 degradation [22, 23].

Our results show that although both 1α,25(OH)2D3 and
MART-10 are active in inhibiting the proliferation (Figures
1(b) and 1(c)), inducing the cell cycle arrest at G0/G1 phase
(Figure 2 and Table 1) and promoting the apoptosis of
MCF-7 cells (Figure 4), MART-10 is far more potent than
1α,25(OH)2D3. The greater antiproliferative activity with
MART-10 over 1α,25(OH)2D3 may be explained at least in
part by its greater stimulatory effects on the expression of
two tumor suppressor genes, p21 and p27, which act as CDK
inhibitors to inhibit the progression of cells into the S phase
of the cell cycle (Figure 3). This finding is consistent with
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Figure 5: Effects of 1α25(OH)2D3 and MART-10 on the protein expression of Bcl-2, Bax, and cytochrome C in MCF-7 cells. (a) Western blot
analysis of Bcl-2 and Bax expression in the untreated control, and cells treated with either 10−7 M of 1α25(OH)2D3 or MART-10 for 5 days
(upper panel). Thirty μg protein was loaded in each lane. The lower panel depicts the calculated BAX/Bcl-2 ratio obtained from scanning
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in cytosol after treatment with ethanol vehicle, 1α25(OH)2D3, or MART-10 (upper panel) and the expression ratio over the control (lower
panel). Each value represents the average of three determinations. ∗P < 0.05, ∗∗P < 0.001 versus control.

Table 2: The distribution of different phases of MCF-7 cell cycle
after 1α,25(OH)2D3 or MART-10 treatment determined by flow
cytometry with Annexin V-FITC and PI staining.

PI negative,
Annexin V

negative

PI negative,
Annexin V

positive

PI positive,
Annexin V

positive

Control 76.22% 1.59% 7.19%

1α,25(OH)2D3

(10−6 M)
65.79% 1.19% 10.04%

MART-10
(10−7 M)

57.87% 1.76% 13.66%

several previous reports that showed that p21 and p27 were
the genes targeted by 1α25(OH)2D3 and, therefore, leading
to the arrest of cell growth [11, 35, 36].

As demonstrated in Figure 4 and Table 2, MART-10 is
also more active than 1α,25(OH)2D3 in inducing apoptosis.
Bax, a proapoptotic protein, works toward the initiation
of apoptosis through promoting the release of cytochrome
C from mitochondria into cytosol. Whereas, Bcl-2, an
antiapoptotic protein, functions as a protector to stabilize the
mitochondrial membrane from releasing cytochrome C [37].
Studying MCF-7 breast cancer cells, James et al. [38] and

Simboki-Campbell et al. [39] reported that 1α,25(OH)2D3

induced apoptosis by downregulating Bcl-2 protein expres-
sion, increased TRPM-2 (clusterin) mRNA expression, and
increased DNA fragmentation after 1α,25(OH)2D3 treat-
ment. In our studies with MCF-7 cells, both 1α,25(OH)2D3

and MART-10 increased the ratio of Bax/Bcl-2 and the
subsequent release of cytochrome C (Figures 5(a) and 5(b)).
However, MART-10 is more potent than 1α,25(OH)2D3.

The release of cytochrome C from mitochondria to
cytoplasm is a trigger of apoptosis pathway, leading to
the activation of intrinsic initiator caspase 9, which in
turn activates executioner caspase 3 and caspase 7 [40].
To investigate whether caspases were involved in the
vitamin D-induced apoptosis in MCF-7 cells, we performed
western blotting to detect the expression of the active form
of caspases 3, 7, 8, and 9 in the presence of 10−7 M of
1α,25(OH)2D3 or MART-10 for 5 days. We found that none
of them was detected either with or without 1α,25(OH)2D3

or MART-10 treatment (unpublished data). Our results are
in agreement with the previously published observations by
Narvaez and Welsh [41] and Jänicke et al. [42]. Collectively,
we conclude that MART-10 and 1α,25(OH)2D3-mediated
apoptosis in MCF-7 cells may be cytochrome C-related but
caspases-independent, and MART-10 is more potent than
1α,25(OH)2D3 in inducing apoptosis in MCF-7 cells.
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5. Conclusion

For premenopausal women with ER+ breast cancer, the
choice for antihormone treatment is tamoxifen or ralox-
ifene which binds to ER, whereas aromatase inhibitors are
the major therapeutic antihormone agents for the post-
menopausal women with ER+ breast cancer. The drawback
of tamoxifen or raloxifene and aromatase inhibitors is that
they globally attenuate estrogen receptor transactivation or
estrogen synthesis. It may be undesirable for some tissues
where estrogen is essential to maintain normal functions,
such as bone which needs estrogen to stimulate bone forma-
tion. On the contrary, 1α,25(OH)2D3 can selectively down-
regulate aromatase and ER-α expression in breast cancer cells
[43, 44]. Along this line, we have performed preliminary
studies indicating that MART-10 is far more potent than
1α,25(OH)2D3 in inhibiting ER-α expression in MCF-7 cells
(unpublished observation). In conclusion, we show that
MART-10 is much more potent than 1α,25(OH)2D3 in
inhibiting cell growth through arresting cell cycle progres-
sion at G1 phase and inducing apoptosis. In addition, the
more bioavailable character of MART-10 as compared to
1α,25(OH)2D3 in MCF-7 cells and its noncalcemic nature
in an animal model suggest that MART-10 has potential as
a superior chemotherapeutic agent to replace or to be in
combination with traditional antihormone therapy for the
treatment of breast cancer, such as the ER+ breast cancer
patients, to decrease the tumor recurrence and eliminate the
side effect on bone caused by the antihormone treatments.
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