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Abstract: Effective screening provides efficient and quick diagnoses of COVID-19 and could alleviate
related problems in the health care system. A prediction model that combines multiple features to
assess contamination risks was established in the hope of supporting healthcare workers worldwide
in triaging patients, particularly in situations with limited health care resources. Furthermore, a
lack of diagnosis kits and asymptomatic cases can lead to missed or delayed diagnoses, exposing
visitors, medical staff, and patients to 2019-nCoV contamination. Non-clinical techniques including
data mining, expert systems, machine learning, and other artificial intelligence technologies have a
crucial role to play in containment and diagnosis in the COVID-19 outbreak. This study developed
Enhanced Gravitational Search Optimization with a Hybrid Deep Learning Model (EGSO-HDLM) for
COVID-19 diagnoses using epidemiology data. The major aim of designing the EGSO-HDLM model
was the identification and classification of COVID-19 using epidemiology data. In order to examine
the epidemiology data, the EGSO-HDLM model employed a hybrid convolutional neural network
with a gated recurrent unit based fusion (HCNN-GRUF) model. In addition, the hyperparameter
optimization of the HCNN-GRUF model was improved by the use of the EGSO algorithm, which
was derived by including the concepts of cat map and the traditional GSO algorithm. The design of
the EGSO algorithm helps in reducing the ergodic problem, avoiding premature convergence, and
enhancing algorithm efficiency. To demonstrate the better performance of the EGSO-HDLM model,
experimental validation on a benchmark dataset was performed. The simulation results ensured the
enhanced performance of the EGSO-HDLM model over recent approaches.

Keywords: COVID-19; disease detection; health promotion; fusion model; hybrid deep learning;
epidemiology data; parameter optimization

1. Introduction

COVID-19 or Coronavirus is a recent disease caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) [1]. In February 2021, over 106 billion SARS-
CoV-2 infections and a mortality rate of above 2.3 billion were recorded globally, in the
worst epidemic to have troubled humans since the Spanish flu occurred in 1918, and
has consequently overwhelmed global healthcare systems resulting in serious economic
disturbance [2]. In order to combat this infectious disease, doctors and researchers have
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tirelessly attempted to gain further knowledge and develop technical devices for the
diagnosis of this disease. Attempts include the advancement of drugs and vaccines [3],
the formation of epidemiologic methods for forecasting the spread of the disease among
people [4], the advancement of mobile device apps to track patients who are infected, the
enhancement of policies, and the implementation of novel technologies for managing the
capacities and resources in clinics [5]. Owing to the increasing prevalence of coronavirus
infection worldwide, many studies analyzed various prospects of this infection. Research
includes recognizing the methods of virus detection, the origin of coronavirus along with
examining its gene series, early cases in the countries infected, forecasting COVID-19 cases
in the epidemiologic pandemic, and patient information [6].

Machine learning (ML) procedures first accumulate data individually, i.e., from various
sources [7], followed by fixing the preprocessed data to solve data-oriented problems and
minimize space size by erasing incorrect data and selecting relevant data. However, in some
cases, the dataset value may differ for the system in making decisions, thus, ML methods
were devised with the help of other ideas such as probability statistics and theory control
for examining data and deriving useful and original information, concealed information,
or patterns from past knowledge [8]. Lastly, the performance assessments of the methods
is conducted and model optimization concludes the process, which enhances the method
with the help of novel rules and a dataset. ML approaches are utilized in various sectors
such as traffic management, medicine, education, manufacturing and production, robotics,
engineering, and so on [9–11]. Currently, ML methods are utilized in the examination of
high dimensional bio-medical structured and unstructured datasets. Malaria Diagnosis,
diabetes risk assessment, typhoid, and vascular diseases classification, and genomic and
genetic data studies are a few instances of the bio-medical use of ML approaches.

The authors in [12] developed a novel image processing-based approach for the health
care system called “C19D-Net”, for the detection of “COVID-19” in CXR images to assist ra-
diologist in enhancing COVID-19 classification performance. It uses the InceptionV4 model
with a multi-SVM classifier for COVID-19 diagnosis in distinct class labels. In [13], the
researchers present a solution to analyze the COVID-19 pandemic dataset. Specifically, the
solution focuses on analyzing useful knowledge and valuable information (for example, fre-
quency, distribution, and pattern) of healthcare statuses and characteristics in populations.
The availability of knowledge and information assists users (for example, civilians, and
researchers) in better understanding the disease, and playing an active role in combating,
fighting, or controlling the disease. Li et al. [14] performed a qualitative and quantitative
assessment of Chinese social networking media posts originating in Wuhan City on the
Chinese microblogging platform Weibo during the earlier stage of the COVID-19 epidemic.

The researchers in [15] reviewed the available approaches while anticipating the
challenges and difficulties in the improvement of a data-driven strategy to combat the
COVID-19 outbreak. A 3M-analysis was presented, which included making, monitoring,
and exhibiting decisions. The emphasis was placed on the potential of a familiar data-
driven scheme to tackle various problems which increased following the outbreak; firstly,
by forecasting and monitoring the spread of the epidemic; secondly, by assessing the
efficiency of government decisions; and lastly, by making appropriate decisions. Every
step of the roadmap may be exhaustive for an analysis of consolidated theoretic outcomes
and the potential applications in the COVID-19 context. Supervised ML methods for
COVID-19 infection were designed in [16] with learning algorithms including DT, LR, NB,
ANN, and SVM using epidemiology labeled data for negative and positive COVID-19
cases. A correlation coefficient (CC) analysis between independent features and dependent
features was performed to determine stronger relationships among every dependent and
independent feature of the prior dataset to develop the model.

The researchers in [17] processed available information on US states to create an
incorporated dataset on potential factors which cause the epidemic to spread. Then, the
researchers made use of the supervised ML approach to reach a consensus and rank
the crucial factor. The author performed a regression analysis to identify the crucial
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pre-lockdown factors that affected post-lockdown contamination and death to inform
lockdown-related policy making. Kim et al. [18] aimed to examine the relationship between
obesity, as determined by the body mass index (BMI), with mortality and morbidity owing
to COVID-19. Information from 5628 approved COVID-19 patients were gathered by the
Center for Disease Control and Prevention of Korea. The odds ratio (OR) of diabetes and
morbidity in the BMI groups was examined using LR models attuned for similar covariates.
Hawkins et al. [19] designed a nationwide COVID-19 dataset at the county level that was
coupled with the Distressed Communities Index (DCI) and their constituent metrics of
socio-economic status.

This study developed an Enhanced Gravitational Search Optimization with Hybrid
Deep Learning Model (EGSO-HDLM) for COVID-19 diagnosis using epidemiology data.
The proposed EGSO-HDLM model employs a hybrid convolutional neural network with
gated recurrent unit based fusion (HCNN-GRUF) model. In addition, the hyperparameter
optimization of the HCNN-GRUF model was improved by the use of the EGSO algorithm,
which was derived by including the concepts of cat map and the traditional GSO algorithm.
To assure the enhanced performance of the EGSO-HDLM model, an extensive set of
experimental validation processes on a benchmark dataset was performed. In short, the
paper’s contribution is summarized as follows.

• An intelligent EGSO-HDLM model which includes pre-processing, HCNN-GRUF
classification, and EGSO-based parameter optimization is presented. To the best
of our knowledge, the EGSO-HDLM model has not previously been presented in
the literature.

• Hyperparameter optimization of the HCNN-GRU model with the EGSO algorithm
using cross-validation helps to boost the predictive outcome of the EGSO-HDLM
model for unseen data.

• Validating the performance of the proposed EGSO-HDLM model on a benchmark
dataset from the Kaggle repository.

2. The Proposed Model

In this study, a new EGSO-HDLM model was designed for the identification and
classification of COVID-19 using epidemiology data. Primarily, the presented EGSO-
HDLM model applied data normalization to pre-process the actual data. Then, the HCNN-
GRUF model was applied for the classification process. Moreover, the hyperparameter
optimization of the HCNN-GRUF model was improved by the use of the EGSO algorithm.
Figure 1 depicts the overall process of the EGSO-HDLM algorithm.

Figure 1. Overall process of EGSO-HDLM technique.
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2.1. Data Pre-processing

When the numerical processing was executed, a huge variance in magnitude amongst
the values became apparent. This condition can cause problems such as minimal conver-
gence of networks and saturation of neuron outcomes [20]; therefore, normalized original
data were required. The following Min-Max normalized approach (Equation (1)) can be
used for normalizing the data to intervals of zero and one:

x∗ =
x− x min

x max − x min
. (1)

where x∗ signifies the normalized data, x represents the original data, xmin implies the
minimal data values from the present element, and xmax denotes the maximal data value
from the present elements.

2.2. Design of HCNN-GRUF Based Classification

CNN [21] is a hierarchical FFNN approach that is dependent upon convolutional as
well as pooling functions. Convolution was utilized to extract local features for further
processing with subsequent layers. Primarily, the resultant input layers are convoluted
with several n× h filters (convolutional kernel). Next, the resultant convolutional layer was
created by linking the outcomes of the convolutional function that differs with filter size h.

mi = f (w · xi+h−1 + b) (2)

M = [m1, m2, m3, . . . , ml−h+1] (3)

In Equation (2), mi refers the ith feature extracted with convolutional function, f
denotes the non-linear function, w signifies the weighting of filters, h denotes the filtering
window size, and b implies the bias. A combination of GRU and LSTM was applied for
a gated recurrent neural network (RNN) which remembers a long order of data and thus
decreases data loss. Related to LSTM, GRU decreases the amount of gated units that
reduces the processing time but preserves the accuracy. GRU has two gated sub-units,
namely reset as well as update gates. In every moment, the GRU receives the existing as
well as hidden states in the preceding moment with their update gate, and defines the
activation state of their individual neurons. Additionally, the reset gate receives both states
and defines if any input data are forgotten. Figure 2 depicts the framework of the GRU
technique. Input at the present moment is then integrated with the weighted and resultant
reset gate to obtain the memory contents at the present moment with activation functions.
Next, the upgrade gate obtains the memory content at the present moment and hidden
state in the preceding moment for determining the output and hidden state at the present
moment. The function of GRU is summarized in the following formulas.

zt = σ
(

W(z) · xt + U(z) · ht−1

)
(4)

rt = σ
(

W(z) · xt + U(r) · ht−1

)
(5)

h′t = tanh(W · xt + rt ·U · ht−1) (6)

ht = zt · ht−1 + (1− zt) · h′t (7)

In Equation (4), zt signifies the upgrade gate, W(z) and U(z) imply the weighting
of zt, σ stands for the activation function, xt indicates the input at present moment, and
ht−1 represents the hidden output in the preceding moment. rt stands for the reset gate,
and W(r) and U(r) refer the weighting of rt. h′t defines the memory satisfied at the present
moment, tanh implies the activation functions, and W and U represent the weighting at the
present moment. ht defines the outcome at the present moment. Pooling is the procedure
of extracting data for the purpose of reducing the size of the resultant GRU layer. The
maximal pooling approach was utilized for extracting the maximal vector value of all the
inputs as the result of pooling layers.

m̂ = max {M} (8)
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z = [m̂1, m̂2, m̂3, . . . . . . , m̂k] (9)
where M denotes the typical vector in the GRU to pooling layers, m̂. implies the maximal
of M, z signifies the output resultant in the pooling layer, and k denotes the amount of
features input to pooling layers. The fusion layer was planned to merge more than 2 layers
of tensors; during this case, it integrates several tensors in the polling layer as opposed to
one tensor. It can be executed by the “Concatenate” approach that receives the final bit as
axis, and splices all the resultant polling layers for creating the result of this layer.

b = [a1, a2] (10)

In Equation (10), b refers the output of this layer, aa denotes the resultant in the polling
layers. The softmax classification is usually employed for several classifier problems. The
fully connected (FC) layer was utilized to connect an input in the fusion layer and the value
of all the neurons was computed utilizing the softmax function. Additionally, the maximal
value of every neuron output was obtained as the classifier outcome.

p̂ = so f tmax (W · x + b) (11)

y = argmax
(

p̂y
)

(12)

In Equation (11), p̂y signifies the probability of y, forecast labels. W and b denote the
weights as well as biases. In Equation (12), y denotes the last forecast label.

Figure 2. Structure of GRU Model.

2.3. Hyperparameter Tuning

At this stage, the hyperparameter tuning of the HCNN-GRUF model can be tuned
by the design of the EGSO algorithm. Rashedi [22] developed a GSO algorithm, which
is an optimization algorithm that gained popularity in the past few decades. It depends
on the second law of motion, as illustrated in Equation (15), and the law of gravity, as
demonstrated in Equation (13). Additionally, it depends on the physical concepts of passive
gravitational mass, inertial mass, and active gravitational mass. The second law of motion
states that once a force (F) is applied to all the particles, the (a) acceleration is defined by
the mass (M) and force. The law of gravity says that all the particles attract all the other
particles with a gravitational force (F). The gravitational force (F) between these particles is
directly proportionate to the product of (M1 and M2) masses and inversely proportionate
to the square of

(
R2) distance.

F = G
M1M2

R2 (13)
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G indicates the gravitational constant that reduces with increasing time, and it is
evaluated by the following expression:

G(t) = G(t0)× (
t0

t
)

β

, β < 1 (14)

a =
F
M

(15)

The GSA algorithm is briefly described in the following steps:

• Step one: Initialization

An isolated scheme with N number of particles is assumed, where the location of i-th
particles is represented as follows:

Pi =
(

p1
i , p2

i , . . . , pd
i , . . . , pN

i

)
f or i = 1, 2, 3, . . . , N (16)

In Equation (16), pd
i indicates the location of i-th particles in dimension d.

• Step two: Fitness assessment of particle

Here, the best and worst fitness values are evaluated using Equations (17) and (18) corre-
spondingly. Minimization and maximization problems are evaluated by Equations (19) and (20).

worst(t) = max
j,{1,...,N}

f itnessj(t) (17)

best (t) = min
j,{1,...,N}

f itnessj(t) (18)

worst(t) = min
j,{1,...,N}

f itnessj(t) (19)

best (t) = max
j,{1,...,N}

f itnessj(t) (20)

In the equation, f itnessj(t) refers to the fitness of j-th particles at t time.

• Step three: Evaluate the G(t) gravitational constant

Here, the G(t) gravitational constant at t time can be evaluated using Equation (21):

G(t) = G0 ×
(

1− t
t max

)
(21)

where G0 is the primary value of the gravitational constant initialized at a random fashion,
t indicates the present time, and tmax denotes the overall time.

• Step four: Upgrade the inertial and gravitational mass

Here, the gravitational and inertia mass are upgraded with the help of the fitness
function. Equality of gravitational and inertia masses is assumed, and the masses value is
evaluated using the following expression:

Mii = Mpi = Mai = Mi f or i = 1, 2, 3, . . . N (22)

mi(t) =
f itnessi(t)− worst(t)

best(t)− worst(t)
(23)

Mi(t) =
mi(t)

∑N
j=1 mj(t)

(24)

In the expression, f itnessi(t) represent the fitness of i-th particles at time and t, Mi(t)
denotes the mass of i-th particles at t time.

• Step five: Calculate the overall force

Here, the complete force Fd
i (t) that is exerted on the i-th particles in a d-th dimension

at t time is evaluated by the following equation:

Fd
i (t) =

kbest

∑
j=1,j 6=i

randjFd
ij(t) (25)
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In Equation (25), randj represent a random integer ∈ [0, 1], and kbest is the set of initial
particles with the biggest masses and the best fitness value. The force applied from mass ‘j’
on mass ‘i’ at ‘t’ time can be expressed as Fd

ij(t) and is evaluated using Equation (26):

Fd
ij(t) = G(t)

Mpi(t)×Maj(t)
Rij(t) + τ

(
pd

j (t)− pd
i (t)

)
(26)

Consider that Mpi refers to the passive gravitational mass correlated to i-th particles,
Maj denotes the active gravitational mass interrelated to j-th particles. τ indicates a smaller
positive constant to avoid division by 0, and R(t) indicates the Euclidian distance between
i-th and j-th particles:

Rij(t) = ‖pi(t), pj(t)‖2 (27)

• Step six: Calculate the acceleration and velocity

Here, Fd
i (t), the acceleration of i-th particles; ad

i (t) at t time in the d direction; and the
velocity of i-th particles in the d-th direction, ud

i (t + 1), are evaluated by:

ad
i (t) =

Fd
i (t)

Mii(t)
(28)

ud
i (t + 1) = randi × ud

i (t) + ad
i (t) (29)

From the expression, Mii(t) refers to the inertial mass of i-th particles, and randi
indicates an arbitrary integer ∈ [0, 1].

• Step seven: Upgrade particle location

Here, the location of i-th particles in the d-th direction, pd
i (t + 1), is evaluated by the

following expression:
pd

i (t + 1) = pd
i (t) + ud

i (t + 1) (30)

• Step eight: Repeat steps two to seven until the end condition is met

In the EGSO algorithm, the GSO algorithm is integrated into the cat map concept to
reduce the ergodic problem, avoid premature convergence and enhance the algorithm’s
efficiency. In optimization algorithms, the grouping of SI optimization algorithms and
chaotic mapping improves the outcomes of SI optimization. This concept was confirmed
by several instances and depends on Chaos features including sensitivity, randomness,
and ergodicity to the initial condition. Hence, an attempt was made to integrate the Chaos
concept with GSO to attain good accuracy and efficiency [23]. Until now, the SI optimization
approach was generally integrated into tent or logistic mapping models to accomplish a
certain amount of progress. However, the chaotic sequence produced from the logistic
mapping is of a non-uniform distribution. This follows Chebyshev’s Distribution, where
density is lower at the center and is higher at both ends. These features have some level of
impact on the ergodicity of optimization solution space. The chaotic sequence made from
tent mapping models follows uniform distribution; however, the values rapidly fall into
the smaller cycle due to the impact of word length. It therefore lacks better randomness.
This method could generate a uniformly distributed chaotic sequence, to enhance GSO
single distribution and might improve the model searching efficacy. A chaotic algorithm,
Cat Map, is generally utilized in image encryption.

xn+1 = (xn + yn)
yn+1 = (xn + 2yn)

mod1 (31)

Here, the chaotic sequence produced by the higher dimensional Cat Map at the range
of [0, 1] is fixed as an arbitrary value rather than the rand function to determine individual
distribution. The mapping value lies within the range of [0, 1] when building the multi-
dimension chaotic sequence Cat(i,j). The sequential dataset in the dimension is independent
of others and has stronger ergodicity. These features decrease the ergodic problem carried
by random distribution and assures the ergodicity of individuals flying in the solution
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space. This technique might improve the algorithm performance and prevent premature
convergence.

3. Results and Discussion

This section describes the experimental validation of the EGSO-HDLM technique,
which was carried out with the help of the benchmark epidemiology dataset from Kaggle
repository [24]. In this article, a set of 5000 samples in positive class and 5000 samples in
negative classes were considered. The proposed model was simulated using the Python
3.6.5 tool on PC i5-8600k, GeForce 1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD.
The parameter settings were as follows: dropout: 0.5, batch size: 5, epoch count: 50, and
activation: ReLU.

The confusion matrices generated by the EGSO-HDLM model on the test data are
demonstrated in Figure 3. For 70% of the training (TR) data, the EGSO-HDLM model identi-
fied 3330 samples in the positive class and 3465 samples in the negative class. Additionally,
for 30% of the testing (TS) data, the EGSO-HDLM system identified 1425 samples in the
positive class and 1496 samples in the negative class. In addition, for 80% of the TR data,
the EGSO-HDLM method identified 3885 samples as positive class and 3896 samples as
negative class. Finally, on 20% of TS data, the EGSO-HDLM system identified 977 samples
in the positive class and 974 samples in the negative class.

Figure 3. Confusion matrices of EGSO-HDLM algorithm (a) 70% of TR; (b) 30% of TS; (c) 80% of TR;
(d) 20% of TS data.
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Table 1 offers detailed COVID-19 recognition outcomes of the EGSO-HDLM model for
70% of the TR and 30% of the TS data. A brief result analysis of the EGSO-HDLM model in
the identification of COVID-19 for 70% of the TR data is depicted in Figure 4. The results
implied that the EGSO-HDLM model classified all the samples into corresponding positive
and negative classes. For instance, the EGSO-HDLM model identified positive samples
with accuy of 97.07%, precn of 99.23%, recal of 94.90%, specy of 99.26%, and Fscore of 97.01%.
Additionally, the EGSO-HDLM technique identified negative samples with accuy of 97.07%,
precn of 95.09%, recal of 99.26%, specy of 94.90%, and Fscore of 97.13%.

Table 1. Result analysis of EGSO-HDLM technique with various measures for 70% of TR and 30% of
TS data.

Class Labels Accuracy Precision Recall Specificity F-Score

Training Phase (70%)

Positive 97.07 99.23 94.90 99.26 97.01

Negative 97.07 95.09 99.26 94.90 97.13

Average 97.07 97.16 97.08 97.08 97.07

Testing Phase (30%)

Positive 97.37 99.10 95.57 99.14 97.30

Negative 97.37 95.77 99.14 95.57 97.43

Average 97.37 97.44 97.36 97.36 97.37

Figure 4. Result analysis of EGSO-HDLM approach under 70% of TR data.

A brief overview of the EGSO-HDLM technique in the identification of COVID-19
under 30% the TS data is shown in Figure 5. The results implied that the EGSO-HDLM
methodology recognized all the samples as corresponding positive and negative classes.
For example, the EGSO-HDLM system identified positive samples with accuy of 97.37%,
precn of 99.10%, recal of 95.57%, specy of 99.14%, and Fscore of 97.30%. Moreover, the EGSO-
HDLM approach identified negative samples with accuy of 97.37%, precn of 95.77%, recal
of 99.14%, specy of 95.57%, and Fscore of 97.43%.
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Figure 5. Result analysis of EGSO-HDLM approach under 30% of TS data.

Table 2 presents detailed COVID-19 identification outcomes of the EGSO-HDLM
system for 80% of the TR and 20% of the TS data. A brief analysis of the EGSO-HDLM
approach in the identification of COVID-19 for 80% of the TR data is portrayed in Figure 6.
The results implied that the EGSO-HDLM model identified all the samples into correspond-
ing positive and negative classes. For example, the EGSO-HDLM methodology identified
positive samples with accuy of 97.26%, precn of 97.34%, recal of 97.17%, specy of 97.35%,
and Fscore of 97.26%. Additionally, the EGSO-HDLM model identified negative samples
with accuy of 97.26%, precn of 97.18%, recal of 97.35%, specy of 97.17%, and Fscore of 97.27%.

A brief overview of the EGSO-HDLM approach in the identification of COVID-19
for 20% of the TS data is depicted in Figure 7. The results implied that the EGSO-HDLM
technique identified all the samples as corresponding positive and negative classes. For
example, the EGSO-HDLM method identified positive samples with accuy of 97.55%, precn
of 97.60%, recal of 97.50%, specy of 97.60%, and Fscore of 97.55%. Additionally, the EGSO-
HDLM system identified negative samples with accuy of 97.55%, precn of 97.50%, recal of
97.60%, specy of 97.50%, and Fscore of 97.55%.

Table 2. Result analysis of EGSO-HDLM technique with various measures for 80% of TR and 20% of
TS data.

Class Labels Accuracy Precision Recall Specificity F-Score

Training Phase (80%)

Positive 97.26 97.34 97.17 97.35 97.26

Negative 97.26 97.18 97.35 97.17 97.27

Average 97.26 97.26 97.26 97.26 97.26

Testing Phase (20%)

Positive 97.55 97.60 97.50 97.60 97.55

Negative 97.55 97.50 97.60 97.50 97.55

Average 97.55 97.55 97.55 97.55 97.55



Healthcare 2022, 10, 1339 11 of 16

Figure 6. Result analysis of EGSO-HDLM approach under 80% of TR data.

Figure 7. Result analysis of EGSO-HDLM approach under 20% of TS data.

The training accuracy (TA) and validation accuracy (VA) attained by the EGSO-HDLM
method on test dataset are illustrated in Figure 8. The experimental outcome implied that
the EGSO-HDLM system gained maximum values of TA and VA. Particularly, the VA
seemed to be higher than TA.

The training loss (TL) and validation loss (VL) achieved by the EGSO-HDLM system
on test dataset are established in Figure 9. The experimental outcome implied that the
EGSO-HDLM methodology had the lowest values of TL and VL. In particular, the VL was
lower than TL.
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Figure 8. TA and VA analysis of EGSO-HDLM methodology.

Figure 9. TL and VL analysis of EGSO-HDLM methodology.

A brief precision-recall analysis of the EGSO-HDLM methodology on test dataset
is portrayed in Figure 10. By observing the figure, it can be seen that the EGSO-HDLM
technique accomplished maximum precision-recall performance under all classes.

A detailed ROC inquiry of the EGSO-HDLM algorithm on the test dataset is portrayed
in Figure 11. The results implied that the EGSO-HDLM technique exhibited its ability in
categorizing two distinct classes on the test dataset.
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Figure 10. Precision-recall curve analysis of EGSO-HDLM methodology.

Figure 11. ROC curve analysis of EGSO-HDLM methodology.

Table 3 portrays a detailed comparison study of the EGSO-HDLM model with recent
models under several measures [16]. Figure 12 illustrates an extensive accuy in the com-
parison of the EGSO-HDLM model with existing models. The figure indicates that the
SGD and ACO models displayed poor performance with minimal accuy values of 90.01%
and 90.67%, respectively. Additionally, the ELM model obtained a slightly enhanced accuy
value of 91.46%. Next, the MLP and LSTM models demonstrated a reasonably closer accuy
of 94.27% and 94.64%, respectively. However, the EGSO-HDLM model offered a maximum
accuy of 97.55%.

Figure 13 demonstrates an extensive precn analysis of the EGSO-HDLM technique
with existing models. The figure indicates that the SGD and ACO algorithms demonstrated
poor performance with minimal precn values of 90.08% and 94.40%, respectively. The ELM
approach obtained a slightly enhanced accuy value of 91.18%. Next, the MLP and LSTM
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models demonstrated a reasonably closer precn of 94.58% and 93.18% correspondingly.
However, the EGSO-HDLM method provided the maximum precn of 97.55%.

Table 3. Comparative analysis of EGSO-HDLM technique with existing approaches [14].

Methods Accuracy Precision Recall

EGSO-HDLM 97.55 97.55 97.55

Extreme Learning Machine 91.46 91.18 92.59

Multilayer Perceptron 94.27 94.58 93.66

SGD Model 90.01 90.08 92.37

LSTM Model 94.64 93.18 94.96

ACO Model 90.67 94.40 93.36

Figure 12. Accuy analysis of EGSO-HDLM algorithm with existing methodologies.

Figure 13. Precn analysis of EGSO-HDLM algorithm with existing methodologies.

Figure 14 illustrates an extensive recal inspection of the EGSO-HDLM algorithm in
comparison with existing models. The figure indicates that the SGD and ACO systems
demonstrated poor performance with minimal recal values of 92.37% and 93.36%, respec-
tively. Additionally, the ELM approach gained a slightly enhanced accuy value of 92.59%.
Next, the MLP and LSTM models displayed a reasonably closer recal of 93.66% and 94.96%,
respectively. However, the EGSO-HDLM system offered the maximum recal of 97.55%.
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Figure 14. Recal analysis of EGSO-HDLM algorithm with existing methodologies.

Therefore, the experimental results indicated that the EGSO-HDLM model has the
ability to classify COVID-19 in an epidemiology dataset. The enhanced performance
of the proposed model is due to the fusion process and EGSO-based hyperparameter
tuning process.

4. Conclusions

In this study, a new EGSO-HDLM model was designed for the identification and clas-
sification of COVID-19 using epidemiology data. Primarily, the presented EGSO-HDLM
model applied data normalization to pre-process the actual data. Then, the HCNN-GRUF
model was applied for the classification process. Moreover, the hyperparameter optimiza-
tion of the HCNN-GRUF model was improved by the use of the EGSO algorithm, which
was derived by including the concepts of cat map and the traditional GSO algorithm. The
design of the EGSO algorithm helps in reducing the ergodic problem, avoiding premature
convergence, and enhancing algorithm efficiency. To assure the better performance of
the EGSO-HDLM model, an extensive set of experimental validations on a benchmark
dataset was performed. The simulation results ensured the enhanced performance of the
EGSO-HDLM model over recent approaches. In future, the classification performance
of the EGSO-HDLM model can be improved by the use of feature selection and outlier
removal approaches. Moreover, the proposed model can be extended to the detection of
other diseases.
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