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Many different types of cancer show a high incidence of TP53mutations, leading to the expression of mutant
p53 proteins. There is growing evidence that thesemutant p53s have both lost wild-type p53 tumor suppres-
sor activity and gained functions that help to contribute to malignant progression. Understanding the func-
tions of mutant p53 will help in the development of new therapeutic approaches that may be useful in a broad
range of cancer types.
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p53 is one of the most intensively studied tumor suppressor pro-

teins, with mutations that lead to loss of wild-type p53 activity

frequently detected in many different tumor types. Perturbations

in p53 signaling pathways are believed to be required for the

development of most cancers, and there is evidence to suggest

that restoration or reactivation of p53 function will have signifi-

cant therapeutic benefit. For the first 10 years of investigation,

p53 was considered to be the product of an oncogene, with

many studies describing proliferative and transforming activities

for p53. This mistake in the initial classification of p53 was the

result of a simple error; the TP53 gene that had been cloned

and used in the initial experiments encoded a mutant version

of the wild-type gene. The tumor suppressor credentials of

wild-type p53 are no longer in doubt, but the early studies pro-

vided a tantalizing hint of what has become an extremely active

area of study—the suggestion that mutations in p53 can result in

both loss of wild-type activity and gain of a novel transforming

function. Moving in a circle in the past 30 years, we have come

back around to considering that p53, albeit mutant versions of

p53, can function as oncoproteins. In this review, we highlight

recent progress in our understanding of how mutant p53 func-

tions, discuss the avenues that are being explored to target

mutant p53 tumors, and explore future directions for mutant

p53 research.

TP53 is the most commonly mutated gene in human cancer

(Kandoth et al., 2013). Alterations have been found in virtually

every region of the protein (Leroy et al., 2013), but only a handful

of the most frequently occurring mutations have been studied in

depth for their contribution to cancer progression. In some

cases, frameshift or nonsense mutations result in the loss of

p53 protein expression, as seen with other tumor suppressors.

However, more frequently, the tumor-associated alterations in

p53 result in missense mutations, leading to the substitution of

a single amino acid in the p53 protein that can be stably ex-

pressed in the tumor cell. These substitutions occur throughout

the p53 protein, butmost commonly cluster within the DNA bind-

ing region of p53, with six ‘‘hotspot’’ amino acids that are most

frequently substituted. These mutations generally lead to a loss
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or diminution of the wild-type activity of p53, and because p53

normally acts as a tetramer, these mutant proteins may also

function as dominant negative inhibitors over any remaining

wild-type p53. Indeed, in a mouse model, the expression of

mutant p53 has been shown to dampen (but not prevent) the

therapeutic response to restoration of wild-type p53 (Wang

et al., 2011). However, it is becoming clear that at least some

of these mutant p53 proteins give rise to a more aggressive tu-

mor profile, indicating that they have acquired novel functions

in promoting tumorigenesis.

Gain of Function of Mutant p53
The concept that mutant p53 may show a neomorphic gain of

function (GOF) was first suggested 20 years ago (Dittmer et al.,

1993), when the introduction of mutant p53 into p53 null cells

was shown to give rise to a new phenotype. Since then, a large

number of publications have demonstrated many GOFs in

numerous cell lines with a variety of p53 mutations, summarized

in Table 1. The GOF acquired by mutant p53 is further supported

by the finding that patients carrying a TP53 missense mutation

(leading to expression of a mutant p53 protein) in the germline

have a significantly earlier cancer onset than patients with muta-

tions in TP53 that result in loss of p53 protein expression (Bou-

geard et al., 2008; Zerdoumi et al., 2013). Consistently, in vivo

experiments showed that mice expressing mutant p53 display

a tumor profile that is more aggressive and metastatic than

p53 null or p53 wild-type mice (Doyle et al., 2010; Lang et al.,

2004; Morton et al., 2010; Olive et al., 2004), although some tis-

sue specificity of this effect has been suggested by further

studies showing that introduction of similar p53 mutations in

the lung did not reveal any detectable GOF activity over p53

loss (Jackson et al., 2005). Nevertheless, numerous in vitro and

xenograft models have confirmed the ability of mutant p53s to

drive enhanced invasion and motility, with evidence that mutant

p53 can enhance signaling through receptors such as transform-

ing growth factor b (TGF-b) receptor, epidermal growth factor re-

ceptor, and MET (Adorno et al., 2009; Grugan et al., 2013; Muller

et al., 2009, 2012; Sauer et al., 2010; Wang et al., 2013a). In part,
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Table 1. The Different GOF Roles of Mutant p53 in Cells

Mutation Cell Line Mutant p53 Expression Reference

Invasion

R172H (human R175H),

175H

PDAC endogenous (also stable/

transient)

Muller et al., 2012

R175H KLE endogenous (also stable/

transient)

Dong et al., 2009

R175H, R273H, R248Q,

R280K,

H1299 stable/transient Adorno et al., 2009; Coffill et al., 2012; Muller et al.,

2009; Noll et al., 2012; Yoshikawa et al., 2010

G266E MDA MB435 endogenous Yeudall et al., 2012

R273H A431 endogenous Muller et al., 2009

R280K MDA MB231 endogenous Coffill et al., 2012; Girardini et al., 2011; Muller

et al., 2009

Increased (Altered) Migrationa

R172H MEF endogenous Adorno et al., 2009

R175H, H179L, R248Q,

R273H, D281G

H1299 stable/transient Adorno et al., 2009; Muller et al., 2009, 2012;

Noll et al., 2012; Yeudall et al., 2012

R175H, R248Q HEC-50 stable/transient Dong et al., 2012

R248Q HEC-1 endogenous Dong et al., 2012

R248W HCT116�/� endogenous Muller et al., 2012

R249S KNS-62 endogenous Vaughan et al., 2012b

R267P H1437 endogenous Vaughan et al., 2012b

R273H HT29, A431, U373,

SNB19

endogenous Huang et al., 2013; Muller et al., 2012

R280K MDA MB231 endogenous Adorno et al., 2009; Girardini et al., 2011;

Li et al., 2011a

Proliferation, Propagation of Cell Cycle

P278S ABC1 endogenous Vaughan et al., 2012a

R172H (human R175H) MEF endogenous Lang et al., 2004

R175H SK-BR3, VMRC endogenous Bossi et al., 2006; Vaughan et al., 2012a

R175H, R248H BE-13 stable/transient Hsiao et al., 1994

R175H, R273H, D281G H1299 stable/transient Liu et al., 2011; Scian et al., 2004b)

C176F, P223L, R273H,

R282Q

PC-3 stable/transient Shi et al., 2002

M246I H23 endogenous Vaughan et al., 2012b

R248W, D281G 10(3) stable/transient Loging and Reisman, 1999; Scian et al., 2004a

R249S KNS-62 endogenous Vaughan et al., 2012a

R267P H1437 endogenous Vaughan et al., 2012a; Vaughan et al., 2012b

R273C H1048 endogenous Vaughan et al., 2012b

R273H HT-29, MDA MB468,

H2405

endogenous Bossi et al., 2006; Gurtner et al., 2010; Vaughan

et al., 2012a; Wang et al., 2013a

R273H/ P309S SW480 endogenous Bossi et al., 2006; Yan et al., 2008

R273H/ R248W Mia-Paca-2 endogenous Yan et al., 2008

R280T SWO-38 endogenous Lin et al., 2012

Drug Resistance/Avoidance of Cell Death

A135V, R248W, R273H M1/2 cells, LN-308 stable/transient Li et al., 1998; Matas et al., 2001; Pohl et al.,

1999; Trepel et al., 1998

R175H MEC, 10(3), HEC-50 stable/transient Dong et al., 2012; Murphy et al., 2000; Pugacheva

et al., 2002

R175H SK-BR3 endogenous Bossi et al., 2006; Di Agostino et al., 2006;

Vaughan et al., 2012b

R175H, P223L + V274F Pc-3 stable/transient Gurova et al., 2003; Zalcenstein et al., 2003

(Continued on next page)
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Table 1. Continued

Mutation Cell Line Mutant p53 Expression Reference

R175H, R245S, R273H,

D281G

Saos-2 stable/transient Atema and Chène, 2002; El-Hizawi et al., 2002;

Kawamata et al., 2007; Tsang et al., 2005; Wong

et al., 2007

R175H, R248W, R273H SKOV-3 stable/transient Buganim et al., 2006; Liu et al., 2011; Pugacheva

et al., 2002

R175H, R248W, R273H H1299 stable/ transient Blandino et al., 1999; Di Como et al., 1999;

Pugacheva et al., 2002; Zalcenstein et al., 2006

Y220S fibroblasts stable/transient Capponcelli et al., 2005

M237? T98G endogenous Wang et al., 2013b

R248Q HEC-1 endogenous Dong et al., 2012

G266E MDA MB435 endogenous Vaughan et al., 2012b

R273? U138 endogenous Wang et al., 2013b

R273C C33A, H1048 endogenous Liu et al., 2011; Vaughan et al., 2012b

R273H C33A endogenous Liu et al., 2011

R273H HT-29, MDA MB468 endogenous Bossi et al., 2006; Vaughan et al., 2012b

R273H/ P309S SW480 endogenous Bossi et al., 2006; Di Agostino et al., 2006

R273H/ R248W Mia-Paca-2 endogenous Do et al., 2012

V143A, R175H, R248W,

R273H

Hep3B stable/transient Schilling et al., 2010

Anchorage-Independent Growth/Anoikis

Y126C, R175H, H214R,

G245S, R273C, R273H,

V273F, R280T, R282Q

SAOS-2 stable/transient Dittmer et al., 1993; Shi et al., 2002; Sun et al., 1993

P151S TU-138 endogenous Xie et al., 2013

Increased Colony Formation

V143A BEAS-2B stable/transient Gerwin et al., 1992

V143A, R175H, R248W,

R273H

H1299 stable/transient Kalo et al., 2012; Liu et al., 2011; Weisz et al., 2004

V143A, Y163C, R175H,

L194R, R273H, D281G,

R282W

10(3) stable/transient Scian et al., 2004a

G144P, R158H, Y163N,

H168Y, V173L, Y234C,

R248W

REFb stable/transient Smith et al., 1999

C174Y Saos-2 stable/transient Preuss et al., 2000

R172H (human R175H) MEF endogenous Lang et al., 2004

R175H SK-BR3 endogenous Bossi et al., 2006

C194T T47D endogenous Nguyen et al., 2013; Vikhanskaya et al., 2007

A220G Huh-7 endogenous Vikhanskaya et al., 2007

R270C IP3 stable/transient Halevy et al., 1990

R273H HT-29, MDA MB 468,

U373, SNB19

endogenous Bossi et al., 2006, 2008; Huang et al., 2013; Wang

et al., 2013a

R273H MCF10Ab stable/transient Nguyen et al., 2013

R273H/ P309S SW480 endogenous Bossi et al., 2006; Yan and Chen, 2009, 2010;

Yan et al., 2008

R273H/ R248W Mia-Paca-2 endogenous Yan and Chen, 2009; Yan et al., 2008

Genomic Instability

R172H (human R175H) primary mouse oral

tumor

endogenous Acin et al., 2011

R175H MEC stable/transient Murphy et al., 2000

R175H, R248W, R273H MEF stable/transient Agapova et al., 1996

N236S (human N239S) MEF endogenous Jia et al., 2012

(Continued on next page)

306 Cancer Cell 25, March 17, 2014 ª2014 The Authors

Cancer Cell

Perspective



Table 1. Continued

Mutation Cell Line Mutant p53 Expression Reference

R248W primary mouse cells endogenous Song et al., 2007

R248W, R273H K562 KMV stable/transient Restle et al., 2008

Spheroid Disorganization/Mammary Architecture Disruption

R273H, R280K MDA MB 468, MDA

MB231

endogenous Freed-Pastor et al., 2012

R175H, G245S, R248W,

R273H

MCF10Ab stable/transient Zhang et al., 2011

Stem Cell Dedifferentiation/Propagation

V143A, R175H, R273H 10(3) stable/transient Yi et al., 2012

R172H (human R175H) MEF endogenous Sarig et al., 2010

Xenograft Growth (Cell Line Injected Subcutaneously or in the Mammary Fat Pad)

V143A, R175H, R248W,

R273H, R281D, D281G

(10) 3 stable/transient Dittmer et al., 1993; Lányi et al., 1998

R172H (human R175H) primary mouse oral

tumor

endogenous Acin et al., 2011

R175H, R273H, H1299 stable/transient Liu et al., 2011

N236S (human N239S) MEF endogenous Jia et al., 2012

R267P H1437 endogenous Vaughan et al., 2012a

R273C H1048 endogenous Vaughan et al., 2012b

R273H HT29, MDA MB 468 endogenous Bossi et al., 2008; Wang et al., 2013a

P278S ABC1 endogenous Vaughan et al., 2012a

R280K MDA MB 231 endogenous Adorno et al., 2009

R280T SAOS-2 stable/transient Sun et al., 1993

Intravenous Injection (Formation of Lung Metastasis)

R175H, R248G, R213G BE-13c stable/transient Hsiao et al., 1994

C236F D3S2 endogenous Adorno et al., 2009

R280K MDA MB231 endogenous Adorno et al., 2009

Elongated Cell Morphology/EMT

C135Y, R175H, R273H HEC-50 stable/transient Dong et al., 2012

V143A HCT116�/� stable/transient Roger et al., 2010

R175H H1299 stable/transient Adorno et al., 2009

R175H, R273H 10(3) stable/transient Gloushankova et al., 1997

R248Q HEC-1 endogenous Dong et al., 2012

R273H SW620 endogenous Roger et al., 2010

R175H, G245S, R248W,

R273H

MCF10Ab stable/transient Zhang et al., 2011

Polyploidy

V143A NHF3 cellsb stable/transient Gualberto et al., 1998

R248W, R249S, R175H H1299 stable/transient Noll et al., 2012

Angiogenesis

D126 T24 endogenous Zhu et al., 2013

R175Hd H1299 stable/transient Fontemaggi et al., 2009

Y220S fibroblasts stable/transient Capponcelli et al., 2005

Cell Survival

V157F Hs578T endogenous Braicu et al., 2013

C194T T47D endogenous Lim et al., 2009

P223L/V274F DU-145 endogenous Zhu et al., 2011

R273H MDA MB468, U373,

SNB19

endogenous Huang et al., 2013; Lim et al., 2009

R273H H1299 stable/transient Kalo et al., 2012

(Continued on next page)
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Table 1. Continued

Mutation Cell Line Mutant p53 Expression Reference

R280K MDA MB231 endogenous Ali et al., 2013; Hui et al., 2006

R280T 5637 endogenous Zhu et al., 2013

Mammosphere Formation

R175H MESC, HEC-50 endogenous Lu et al., 2013; Dong et al., 2012

R248Q HEC-1 endogenous Dong et al., 2012

The different cellular processes in whichmutant p53 has been shown to play a role are indicated. Literature was selected based on the following search

criteria in Pubmed: ‘‘Mutant p53’’ and ‘‘Gain of Function’’ or ‘‘Mutant p53’’ and ‘‘acquired functions.’’ Only studies in which a clear gain of function effect

was shown are included (i.e., mutant p53 compared to a p53 null in the same cell line). These comprise studies in whichmutant p53was overexpressed

in a p53 null cell line and compared to a vector control, or studies in which endogenous mutant p53 was knocked down or knocked out compared to

control cells. Studies describing the activity of mutant p53 in cells that express wild-type p53 are not included to avoid complications from possible

dominant negative effects. Indicated are the different mutations, cell lines, endogenous expression, or stable/transient transfection, and the refer-

ences. The studies in this table weremanually selected from >400 publications andwe apologize to those authors whose papers we have inadvertently

missed.
aIncreased (altered) migration comprises wound scratch assays, scattering, migration in three-dimensional culture conditions, and Boyden chamber

migration (frequently referred to as transwell invasion without addition of a matrix such as Matrigel).
bCells were depleted for endogenous wild-type p53 expression.
cThese are T cell acute lymphoblastic leukemia cells and therefore increased hematological disease rather than promoted lung metastases.
dH1299 cells expressing p53 R175H promoted the angiogenesis of HUVEC cells.
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these responses reflect an ability of mutant p53 to promote in-

tegrin/RCP driven recycling (Muller et al., 2009, 2012) or increase

the expression of growth factor receptors (Sauer et al., 2010;

Wang et al., 2013a). Although mutant p53s have generally lost

the ability to bind consensus p53 DNA binding regions in target

gene promoters, their activity appears to reflect an ability to

regulate gene expression directly (Weisz et al., 2007), although

cytoplasmic and mitochondrial activities of mutant p53 in regu-

lating apoptosis and autophagy have also been described

(Chee et al., 2013; Frank et al., 2011; Morselli et al., 2008).

Whereas various different mutant p53s can bind directly to

DNAwith some degree of selectivity (Brázdová et al., 2013; Göh-

ler et al., 2005; Quante et al., 2012) andmay thereby directly con-

trol the transcription of some genes (Weisz et al., 2007), there is

increasing evidence that an indirect effect on gene expression

through binding to other transcription factors underlies the novel

activities of mutant p53s. For example, several studies have re-

vealed a role for TAp63, a p53 family protein and transcription

factor, which interacts with mutant but not wild-type p53 (Gaid-

don et al., 2001; Strano et al., 2002). By inhibiting TAp63, mutant

p53 can regulate a pro-invasive transcription program that in-

cludes regulation of the expression of Dicer, DEPDC1, Cyclin

G2, and Sharp1 (Adorno et al., 2009; Girardini et al., 2011). The

Dicer regulation by mutant p53 may be of particular importance,

because several miRNAs that can in turn regulate genes involved

in invasion have been described to be regulated by mutant p53,

although this may not always involve TAp63 or Dicer inhibition

(Dong et al., 2012; Neilsen et al., 2012; Tucci et al., 2012;

Wang et al., 2013a).

Mutant p53 inhibition of TAp63 can be modeled by deletion of

TAp63, which results in an aggressive tumor profile and metas-

tases similar to that seen in mice expressing mutant p53 (Su

et al., 2010). However, a direct comparison of mutant p53

expression with loss of TAp63 in a mouse model of pancreatic

ductal adenocarcinoma (PDAC) showed that loss of TAp63 is

less potent in inducing metastases, suggesting that mutant

p53 does more than inhibiting TAp63 (Tan et al., 2013). This is
308 Cancer Cell 25, March 17, 2014 ª2014 The Authors
not surprising, because mutant p53 interacts with a wide variety

of other proteins, resulting in interference in a multitude of

cellular pathways, some of which are likely to contribute to

metastasis (Freed-Pastor and Prives, 2012; Muller and Vousden,

2013; Walerych et al., 2012). Besides inhibiting p63, mutant p53

inhibits and interacts with other proteins including the MRE11-

Rad51-NSB complex, p73, and SP-1 to induce genomic insta-

bility, chemoresistance, or proliferation (Chicas et al., 2000;

Gaiddon et al., 2001; Song et al., 2007). Furthermore, mutant

p53 can also promote the function of proteins including SREBP,

NF-Y, VDR, ETS2, or NRF2, resulting in increased proliferation,

cholesterol synthesis, accumulation of reactive oxygen species,

and enhanced cell survival (Do et al., 2012; Freed-Pastor et al.,

2012; Kalo et al., 2012; Liu et al., 2011; Stambolsky et al.,

2010). All of these proteins and pathways affected by mutant

p53 are thoroughly described in three recent reviews (Freed-

Pastor and Prives, 2012; Muller and Vousden, 2013; Walerych

et al., 2012).

More recent studies are identifying further GOF activities of

mutant p53, such as a role in cell reprogramming and expansion

or in the maintenance and interaction with tumor stroma. Wild-

type p53 was characterized as a suppressor of somatic stem

cell reprogramming, the process in which differentiated somatic

cells can be reprogrammed into a pluripotent stem cell to allow

for unlimited expansion (Kawamura et al., 2009; Marión et al.,

2009). Loss of p53 promoted the dedifferentiation of somatic

cells and some, but not all, mutant p53s could potentiate the re-

programming (Sarig et al., 2010; Yi et al., 2012). An expansion of

hematopoietic and mesenchymal stem cell progenitors is also

seen in mutant p53 R248Q transgenic mice (Hanel et al., 2013).

Consistently, in breast tissue with a Wnt transgene, loss of

wild-type p53 generally promoted the formation of one distinct

tumor, whereas mutant p53 R175H expression promoted the

initiation of multiple different tumors that could be expanded in

mammosphere assays (Lu et al., 2013). Together, these data

suggest that mutant p53 can initiate tumor formation by promot-

ing the generation and expansion of pluripotent stem cells.
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The role of stroma tissue, including extracellular matrix, prote-

ases, cytokines, immune cells, epithelial cells, and cancer-asso-

ciated fibroblasts (CAFs), in tumorigenesis has become very

evident (Pietras and Ostman, 2010). CAFs, the most abundant

cell type in the stroma, secrete cytokines, hormones, and growth

factors including hepatocyte growth factor and TGF-b (Bhow-

mick et al., 2004; Ostman and Augsten, 2009), both of which

have been shown to mediate mutant p53-dependent invasion

and metastasis (Adorno et al., 2009; Muller et al., 2012). In addi-

tion, a recent report highlights an important function for mutant

p53 in promoting the inflammatory environment of colorectal tu-

mors by prolonging NF-kB activation and cell survival (Cooks

et al., 2013). It seems clear, therefore, that the presence of a

mutant p53 in tumor cells will have an influence on how the tumor

and stromal cells interact. In co-culture experiments, H1299 cells

(regardless of p53 status) upregulated interferon-b (IFN-b) secre-

tion in CAFs. This would normally cause inhibition of cell migra-

tion, but mutant p53-expressing tumor cells counteracted this

response by enhancing STAT phosphorylation to promote inva-

sion (Madar et al., 2013). Although interesting, these experi-

ments are difficult to interpret, because the IFN-b secreted by

the fibroblasts also reduced mutant p53 expression (Madar

et al., 2013). Alternatively, it is possible that TP53 mutations

occur in the stroma surrounding tumors to promote tumor

growth (Narendran et al., 2003; Patocs et al., 2007). Mutant

p53-expressing fibroblasts were shown to promote tumor

growth better than p53 null fibroblasts, suggesting that mutant

p53 has a pro-oncogenic GOF role not only in tumor cells, but

also in stromal cells (Addadi et al., 2010). However, whether stro-

mal cells that have sustained mutations in p53 are prevalent, and

how they are affected by (or affect) tumor cells remains unclear.

Are All Mutant p53s the Same?
Althoughmost experimental studies have focused on the activity

of a few most commonly detected p53 mutations that are clus-

tered at codons 175, 245, 248, 249, 273, and 282, almost every

codon within the DNA binding domain of p53 has been found to

be mutated in cancer. Mutations have also been found in other

domains, but their contribution to carcinogenesis is largely un-

known (Leroy et al., 2013). Different tumor types show different

spectra of TP53mutations—in some cases, reflecting the muta-

genic event was thought to contribute to that type of cancer (e.g.,

aflatoxin and liver, UV light, and skin) or geographic variation in

other cases. The frequency of missense mutations also differs

in different subclasses of tumors of the same organ. For

example, luminal breast cancers almost all carry point mutations

in TP53, while alterations resulting in p53 truncations were more

frequently detected in basal breast tumors (Dumay et al., 2013).

Whereas p53 mutants are often considered to be equivalent,

evidence is accumulating to indicate that different mutants

show a distinct profile with respect to loss of wild-type p53 activ-

ity, the ability to inhibit wild-type p53, and the acquisition of gain

of function (Table 1; Halevy et al., 1990; Petitjean et al., 2007).

The large number of p53 mutations complicates such analyses,

as does the realization that different mutants may function differ-

ently in different tissues, potentially reflecting differences in the

expression of targets of mutant p53 such as TAp63. To date,

mutant p53s have been considered in two different categories:

the first affecting amino acids that contact DNA and so pre-
venting wild-type transcriptional activity without dramatically

affecting the conformation of the p53 protein (known as contact

mutants), and the second comprising mutations that clearly

disrupt the three-dimensional structure of the protein (termed

conformational mutants). Data from cell lines suggest that

conformational and contact mutants can cooperate via different

mechanismswith theH-Ras signaling pathway, leading to similar

gene expression profiles and tumorigenesis (Solomon et al.,

2012). However, this classification of mutants is clearly an over-

simplification, because different mutations can lead to subtly

different alterations in the structure and conformational stability

of the p53 protein (Joerger and Fersht, 2007). Various mouse

models have shown that both conformational and contact mu-

tants can promote metastasis compared to p53 null mice. These

differences appear to be dependent on the nature of the substi-

tution, but caution should be taken when interpreting data from

mouse models using different strain backgrounds that are being

studied in different laboratories, and in some cases mutate the

mouse gene and in others examine humanized TP53 sequences

in the mouse. Models of R172H or R270H (prototype examples

of a conformation and a contact hotspot mutation, equivalent

to R175H and R273H in humans) both showed GOF activity

(Lang et al., 2004; Olive et al., 2004), whereas no GOF was

seen in R246S (the mouse equivalent of human R249S) and the

humanized G245S mutant p53 mouse models, although the

R246S could dominant-negatively inhibit wild-type p53 to pro-

mote cell survival after radiation exposure (Hanel et al., 2013;

Lee et al., 2012). R248Q (humanized) p53 knock-in mice showed

an earlier onset of tumor formation with a significantly reduced

lifespan compared to p53 null mice (Hanel et al., 2013), although

this reduction in overall survival was not evident in any of the

other mutant p53 models. Consistently, Li-Fraumeni patients

carrying an R248Q mutation display an earlier onset of cancer

compared to inherited null mutations or the G245Smutation (Ha-

nel et al., 2013). These findings suggest that the R248Q p53

functions in a different manner than other p53 mutants that

have been studied so far. Remarkably, not only the position of

the mutation, but also the nature of the substitution may influ-

ence the activity of the resulting mutant protein. For example,

both R248Q and R248W are structural mutants, but the

humanized R248W p53 knock-in mouse does not display

reduced lifespan or earlier disease onset (Song et al., 2007). Un-

derstanding the consequences of each p53 mutation in relation-

ship to disease progression and response to therapy therefore

promises to be an extremely complex undertaking.

Consequences of Mutant p53 Expression to Tumor
Therapy
The realization that loss of p53 and expression of mutant p53

may not be analogous has also raised the question of whether

the presence of a mutant p53 protein may affect the response

to therapy. Whereas there is evidence that the presence of

mutant p53 may dampen the response to restoration of wild-

type p53 (Wang et al., 2011), reflecting a dominant negative

activity of mutant p53, more recent studies have indicated that

the retention of wild-type p53 can be detrimental to the thera-

peutic response in breast cancer. This effect is seen in tumors

that express both mutant and wild-type p53 alleles (Jackson

et al., 2012). Such studies highlight the possibility that in some
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Figure 1. Strategies that Are Currently Being Explored to Target Mutant p53
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tumor types wild-type p53 can be dominant over mutant, and

that studies of patient response based on p53 status must

take into account heterozygosity at the TP53 locus, as well as

the presence of mutant or wild-type p53 (Jackson and Lozano,

2013).

Therapeutic Strategies to Restore Wild-Type Activity to
Mutant p53
With so many different mutations and phenotypes it is not sur-

prising that a variety of strategies are being explored to target

tumors expressing mutant p53s (summarized in Figure 1).

Wild-type p53 is a potent inducer of apoptosis and senescence

when expressed in tumor cells, making the reactivation of some

level of wild-type function in mutant p53 (which is generally ex-

pressed at high levels in cancer cells) an attractive therapeutic

avenue. Interestingly, loss of wild-type function introduced by

some destabilizing tumor-derived mutations can be rescued by

additional point mutations that serve to stabilize the conforma-

tion of p53 protein, showing that the loss of structure is intrinsi-

cally reversible (Joerger and Fersht, 2008). In addition, a variety

of compounds that might restore wild-type p53 function have

been characterized and are reviewed in several recent publica-

tions (Lehmann and Pietenpol, 2012; Maslon and Hupp, 2010;

Wiman, 2010). Small molecules that bind to a site in p53 formed

in the Y220C mutant (PhiKan083 and PK7088) function by stabi-

lizing the structure of this mutant p53, and so increasing the level

of p53 with a wild-type conformation and activity (Boeckler et al.,
310 Cancer Cell 25, March 17, 2014 ª2014 The Authors
2008; Liu et al., 2013). Other compounds bind to multiple mutant

p53 proteins (e.g., PRIMA-1, or the soluble derivative PRIMA-

met/APR-246, CP-31398, and SCH29074; Bykov et al., 2002;

Demma et al., 2010; Foster et al., 1999), interacting with the

DNA binding domain, thereby promoting proper folding of

the mutant protein and restoration of p53 function. However,

the precise mechanistic function of these compounds and

others, such as maleimide analogs and STIMA-1, remain to be

elucidated (Bykov et al., 2005; Zache et al., 2008).

Whereas wild-type p53 requires binding to the metal ion

Zn(2+) to fold correctly (Loh, 2010; Verhaegh et al., 1998), the

R175H p53 mutant was found to be impaired in zinc binding

(Butler and Loh, 2003). Loss of metallothioneins that chelate

and store intracellular zinc promotes a wild-type conformation

of misfolded p53 (Puca et al., 2009) and addition of zinc to the

conformational mutants G245C and G245D p53 partially

restored the wild-type conformation (Pintus et al., 2013). The

potential use of zinc to recover wild-type folding has therefore

been explored and this approach has been shown to restore

chemosensitivity to anticancer drugs in cells expressing endog-

enous mutant p53 (Puca et al., 2011). In addition, the thiosemi-

carbazone metal ion chelator NSC31926 was found to restore

wild-type function in a variety of different mutant p53-expressing

cell lines, possibly through increasing the bioavailability of zinc to

(mutant) p53 (Yu et al., 2012).

Of all the compounds that restore wild-type activity, the

most progress has been made with PRIMA-1 analogs, with the
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demonstration of safety in a phase I clinical study (Lehmann

et al., 2012). PRIMA-1 is rapidly converted to other compounds,

including MQ, which can bind to both mutant p53 and wild-type

p53 (Lambert et al., 2009), although the precise mechanisms

underlying the p53 reactivation are currently unknown. Under

some circumstances, p53 can adopt an unfolded conformation

and behave like a mutant p53 protein to promote invasion (Trini-

dad et al., 2013). Unfolded wild-type p53 seen in tumor cells

grown under hypoxia (Gogna et al., 2012) could be restored by

PRIMA-1 treatment (Rieber and Strasberg-Rieber, 2012). It will

therefore be interesting to explore whether both wild-type and

mutant p53 tumors might benefit from PRIMA-1 treatment.

Therapeutic Strategies to Promote Mutant p53
Degradation
An alternative approach to targeting mutant p53 is to remove the

proteins by enhancing turnover (Figure 1). Both wild-type and

mutant p53 can be targeted for proteasomal degradation in

otherwise normal cells by the ubiquitin ligase MDM2. Inhibition

of MDM2 in response to stress underlies the activation of wild-

type p53, but is also thought to lead to the overexpression of

mutant p53 seen in cancer cells. Indeed, stress induced stabili-

zation of mutant p53 seems to be a prerequisite for its GOF (Suh

et al., 2011). In addition to MDM2, another chaperone-associ-

ated E3 ubiquitin ligase, CHIP, was shown to be important for

mutant p53 degradation (Esser et al., 2005; Lukashchuk and

Vousden, 2007). To be stabilized, mutant p53 interacts with the

Hsp70 and Hsp90 chaperone complex that requires an interac-

tion with HDAC6 for proper functioning (Li et al., 2011b). Abroga-

tion of HDAC6 binding results in the dissociation of the heat

shock proteins from mutant p53 and allows for mutant p53

degradation by MDM2 and CHIP (Li et al., 2011b). HDAC inhibi-

tors such as SAHA show promise in destabilizing mutant p53 by

preventing HDAC6 from interacting with Hsp90 (Li et al., 2011a).

However, SAHA and the pan-HDAC inhibitor NaB were recently

shown to not only regulate mutant p53 stability, but also its tran-

scription via the p53 activator HoxA5 (Yan et al., 2013). This

activity was not confined to mutant p53 and also extended to

decreasing wild-type p53 expression (Yan et al., 2013), indi-

cating that care should be taken to determine the p53 status of

tumors when HDAC inhibitors are used as therapeutic agents.

Small molecule activators of SIRT1 have also been shown to

lead to the deacetylation of p53 and reduction of overall mutant

p53 levels (Yi et al., 2013). In other studies, Stathmin—a tran-

scriptional target of wild-type p53 and mutant p53 (through the

regulation of miR-223)—promoted mutant p53 activity by regu-

lating phosphorylation and stability in ovarian cancers (Sonego

et al., 2013).

Autophagy also plays a role in mutant p53 degradation.

Macro-autophagy is the process by which intracellular contents

such as proteins or organelles are engulfed and degraded

through lysosomes. This can provide a means to recycling intra-

cellular content, providing an alternative energy source to allow

cells to survive transient starvation, and also functioning to re-

move damaged or excess organelles (Mizushima et al., 2008).

The role of autophagy in cancer is complex and can both pro-

mote and inhibit tumor development, depending on the targets

of the autophagic process and the timing during tumor evolution

(Liu and Ryan, 2012). Macro-autophagy induced by glucose re-
striction selectively promoted mutant p53 degradation, whereas

wild-type p53 was stabilized under similar conditions (Rodriguez

et al., 2012). The degradation of mutant p53 was promoted by

proteasomal inhibition and depended on functional autophagy

machinery (Choudhury et al., 2013; Rodriguez et al., 2012).

Glucose starvation combined with confluent growth conditions

could promote mutant p53 degradation by a specialized form

of autophagy known as chaperone-mediated autophagy (Vaki-

fahmetoglu-Norberg et al., 2013). In contrast to the findings of

Rodriguez et al. (2012), degradation of mutant p53 via this

specialized autophagy pathway was enhanced by inhibition of

macro-autophagy (Vakifahmetoglu-Norberg et al., 2013), sug-

gesting conditional aspects to glucose deprived mutant p53

degradation. Furthermore, both mutant and wild-type p53 can

inhibit autophagy when localized in the cytoplasm (Morselli

et al., 2008; Tasdemir et al., 2008), indicating that the relationship

between autophagy and mutant p53 is complex.

Therefore, while targeting mutant p53 for degradation seems

feasible, there remains a concern as to how effective simple

removal of mutant p53 (without replacement by degradation-

resistant wild-type p53) might be in driving a therapeutic

response. Some comfort has been provided by many studies

showing reduction of mutant p53 levels (either by siRNA or

spautin treatment) results in increased apoptosis, indicating

that these cells may have become dependent on mutant p53

for their survival (Table 1; Ali et al., 2013; Braicu et al., 2013;

Huang et al., 2013; Hui et al., 2006; Lim et al., 2009; Vakifahme-

toglu-Norberg et al., 2013; Xie et al., 2013; Zhu et al., 2011,

2013). However, whether decreasing mutant p53 levels is suffi-

cient as a means of therapy in vivo and in the long term requires

confirmation.

Targeting Mutant p53 Regulated Pathways
Instead of targeting mutant p53 directly, another approach is to

identify commonalities in the mechanisms through which mutant

p53 proteins function and to target and exploit these down-

stream pathways (Figure 1). Despite the clear differences be-

tween mutant p53s, a large number of them interact and inhibit

p63 and p73. A small molecule named RETRA, identified by

serendipity in a screen to identify drugs to stabilize wild-type

p53, has been suggested to destabilize the p73mutant p53 inter-

action (Kravchenko et al., 2008). RETRA-induced release of p73

resulted in the activation of p73 target genes and a concomitant

decreased tumor cell survival and suppression of xenograft

tumor growth (Kravchenko et al., 2008). Whether RETRA impairs

the interaction of mutant p53s with other target proteins has not

been reported, but this could be a more general approach to

block the oncogenic effect of mutant p53s that share binding

partners.

Downstream pathways activated by mutant p53 may also be

targets for therapeutic intervention. An attractive possibility

here is the cholesterol synthesis pathway through which mutant

p53 disrupts the morphology of mammary tumors (Freed-Pastor

et al., 2012). Inhibition of cholesterol synthesis restored the mor-

phology and decreased survival of mutant p53 cells (Freed-

Pastor et al., 2012). This is of particular interest because statins

(cholesterol inhibitors) are among the most commonly pre-

scribed drugs worldwide to prevent cardiovascular diseases

and have shown promise as preventive anticancer agents (Singh
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and Singh, 2013). It will therefore be interesting and relatively

straightforward to determine the utility of statins as a therapeutic

strategy for mutant p53 tumors.

Finally, several studies have described a role for mutant p53 in

enhancing receptor tyrosine kinase (RTK) signaling (Adorno

et al., 2009; Muller et al., 2009; Sauer et al., 2010; Wang et al.,

2013a). A multitude of inhibitors of the kinase activity of RTKs

or their downstream mediators have been described, including

EGFR inhibitors, MET inhibitors and MAPK inhibitors. Selective

efficacy of these compounds in the treatment of mutant p53 ex-

pressing cancers remains to be explored. The specific role of

RTK and integrin recycling may also provide an additional attrac-

tive target, since various integrin antibodies and drugs that

inhibit integrin recycling are currently on the market and have

shown some promise as anticancer agents (Desgrosellier and

Cheresh, 2010).

Future Directions
A number of hurdles still need to be overcome before the studies

of mutant p53 can be translated into clinical practice. While there

is clear evidence that mutant p53 promotes various oncogenic

responses, the relative importance of survival, motility, invasion,

and metabolic changes, or the critical pathways through which

these responses are mediated remain unclear. How different

mutations affect p53 function also remains underexplored, as

does the comparative importance of loss of wild-type, domi-

nant-negative, and GOF phenotypes. The fact that most mutant

p53s are expressed at very high levels in cancer cells (leading to

the immunohistochemical detection of p53 being used as a

proxy for the presence of mutant p53) makes these proteins

tremendously attractive therapeutic targets, and the efficacy of

inhibiting the activity of these mutant p53s or even re-establish-

ing some wild-type function, as described above, holds great

promise. Such approaches depend, however, on designing

efficient mechanisms through which to target mutant p53, an

understanding of the activities and function of the many different

mutants, and the capacity to identify which mutation a tumor

carries (the latter likely to be the most easily attainable goal).

Maybe a more effective approach will be to explore the possi-

bility of synthetic lethality as a therapeutic strategy. Recently, a

computational approach using gene expression from the NCI-

60 panel, the GBM (glioblastoma multiforme) project and the

TCGA (the cancer genome) project revealed a number of genes

and pathways that may result in synthetic lethality when targeted

in mutant p53-expressing tumors (Wang and Simon, 2013). The

majority of these genes were involved in the cell cycle, perhaps

reflecting the loss of wild-type p53 function, and an interesting

candidate identified in several of the data sets is polo-like kinase

1 (PLK1), which is involved in the regulation of mitosis. PLK1 was

found to be upregulated in breast cancers with mutant p53

expression; the presence of both coincided with a worse prog-

nosis than cancers with either PLK1 upregulation or mutant

p53 expression alone (King et al., 2012). Because PLK1 can be

inhibited by a variety of compounds (Strebhardt, 2010), it will

be interesting to follow up this lead.

Conclusions
Recent data reveal that mutant p53 is not just one protein, but a

multitude of proteins that can contribute to awide range of onco-
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genic processes. Designing drug strategies to target mutant p53

tumors is therefore highly challenging and will require a deeper

understanding of the degradation pathways, interaction part-

ners, and downstream signaling pathways in mutant p53 cells.

However, we are optimistic that our ever-expanding knowledge

of mutant p53 function will translate into some useful therapeutic

strategies in the future.
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