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Inducing specific immunity and maintaining 
tolerance requires cells of the mononuclear 
phagocyte lineage. This lineage is comprised of 
three closely related cell types: DCs, monocytes, 
and macrophages (Shortman and Naik, 2007; 
Geissmann et al., 2010a,b; Liu and Nussenzweig, 
2010; Yona and Jung, 2010; Chow et al., 2011). 
DCs are essential to both immunity and tol-
erance (Steinman et al., 2003); however, the 
role monocytes and macrophages play in these 
processes is not as well defined (Geissmann  
et al., 2008).

In mice, DCs and monocytes arise from  
the same hematopoietic progenitor, known as 
the macrophage–DC progenitor (MDP; Fogg 
et al., 2006). Their development diverges when 
MDPs become either common DC progeni-
tors (CDPs) that are Flt3L-dependent, or mono-
cytes, which are dependent on CSF1 (M-CSF; 
Witmer-Pack et al., 1993; McKenna et al., 2000; 
Fogg et al., 2006; Waskow et al., 2008). CDPs 

develop into either plasmacytoid DCs or preDCs 
that leave the bone marrow to seed lymphoid 
and nonlymphoid tissues, where they further 
differentiate into conventional DCs (cDCs; Liu 
et al., 2009). In contrast, monocytes circulate  
in the blood and through tissues, where they 
can become activated and develop into several  
different cell types, including some but not all 
tissue macrophages (Schulz et al., 2012; Serbina 
et al., 2008; Yona et al., 2013).

Despite their common origin from the 
MDP, steady-state lymphoid tissue cDCs can be 
distinguished from monocytes or macrophages 
by expression of cell surface markers. For ex-
ample, cDCs in lymphoid tissues express high 
levels of CD11c and MHCII, but lack the expres-
sion of CD115 and F4/80 found in monocytes 
and macrophages, respectively. However, this 
distinction is far more difficult in peripheral 
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Dendritic cells (DCs), monocytes, and macrophages are closely related phagocytes that share 
many phenotypic features and, in some cases, a common developmental origin. Although the 
requirement for DCs in initiating adaptive immune responses is well appreciated, the role of 
monocytes and macrophages remains largely undefined, in part because of the lack of genetic 
tools enabling their specific depletion. Here, we describe a two-gene approach that requires 
overlapping expression of LysM and Csf1r to define and deplete monocytes and macrophages. 
The role of monocytes and macrophages in immunity to pathogens was tested by their selec-
tive depletion during infection with Citrobacter rodentium. Although neither cell type was 
required to initiate immunity, monocytes and macrophages contributed to the adaptive im-
mune response by secreting IL-12, which induced Th1 polarization and IFN- secretion. Thus, 
whereas DCs are indispensable for priming naive CD4+ T cells, monocytes and macrophages 
participate in intestinal immunity by producing mediators that direct T cell polarization.
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(Ly6Chigh and Ly6Clow; Fig. 1 C). Peripheral blood Ly6Chigh 
monocytes returned to normal levels after 3 d and were pres-
ent at super-physiological levels in blood on days 4 and 5 be-
fore returning to baseline after 6 d (Fig. 1 D). Consistent with 
their proposed precursor product relationship (Yona et al., 
2013), Ly6Clow monocyte reconstitution lags behind that of 
the Ly6Chigh population (Fig. 1 D). The increase in peripheral 
blood monocytes was associated with an 18-fold increase in 
the serum concentration of M-CSF 24 h after DT injection 
(Fig. 1 E). In contrast, serum concentrations of GM-CSF and 
Flt3L remained unchanged (unpublished data). We conclude 
that DT injection into MMDTR mice results in efficient abla-
tion of peripheral blood monocytes.

Macrophages and inflammatory monocytes
To examine the specificity of ablation in MMDTR mice, we 
compared these mice with zDCDTR (Meredith et al., 2012) and 
CD11cDTR mice (Jung et al., 2002). Because DT injection is 
fatal for zDCDTR and CD11cDTR mice, we produced bone 
marrow chimeras for all three strains, as well as B6 controls. As 
expected, DT injection did not affect cDCs (CD11c+MHCIIhigh) 
in MMDTR or B6 controls, but ablated these cells in both zDCDTR 
and CD11cDTR chimeras (Fig. 2 A). In contrast, all spleen 
monocytes (CD115+Ly6Chigh) were ablated in MMDTR mice 
(Fig. 2 A), but not in zDCDTR mice. Finally, steady-state T and B 
lymphocytes were unaffected by DT injection in MMDTR mice 
(Fig. 2 B). We conclude that DT injection depletes monocytes, 
but not cDCs or lymphoid cells, in MMDTR mice.

Monocytes can develop many of the features of cDCs 
under inflammatory conditions (Serbina et al., 2003; León  
et al., 2007; Hohl et al., 2009). For example, during infection 
with Listeria monocytogenes, monocytes develop into Tip DCs 
that express high levels of CD11c and MHCII and produce 
both TNF and iNOS (Serbina et al., 2003). However, despite 
their phenotypic resemblance to cDCs, these activated mono-
cytes are depleted by DT injection in MMDTR but not in 
zDCDTR mice (Fig. 2 C; Meredith et al., 2012).

In addition to monocytes, tissue macrophages also express 
both LysM and Csf1r. To determine if splenic macrophages 
are deleted by DT injection in MMDTR mice, we examined 
spleen sections by immunofluorescence (Hashimoto et al., 2011) 
using antibodies to identify red pulp (F4/80high), marginal 
zone (SIGNR1+), and marginal zone metallophilic (CD169+) 
macrophages. All three macrophage populations were entirely 
ablated by 24 h after DT injection (Fig. 2 D). Red pulp, peri-
toneal, lung alveolar and interstitial macrophages, and Kupffer 
cells were also depleted 24 h after DT injection in MMDTR 
mice (Fig. 2 E).

We conclude that a two-gene approach that relies on both 
LysM and Csf1r gene expression results in specific ablation of 
monocytes, macrophages, and inflammatory monocytes, and 
does not affect conventional splenic DCs or lymphocytes.

DCs, monocytes, and macrophages in the intestine
The phenotype of immune cells in the intestine is altered in 
part by their exposure to commensal bacteria. As a result, 

tissues, like the intestine or lung, or during inflammation when 
monocytes begin to express many features of DC including 
high levels of MHCII and CD11c (Serbina et al., 2003; León 
et al., 2007; Hashimoto et al., 2011).

The function of cDCs in immunity and tolerance has 
been explored extensively using a series of different mutant 
mice to ablate all or only some subsets of cDCs (Jung et al., 
2002; Liu and Nussenzweig, 2010; Chow et al., 2011). In con-
trast, the methods that are currently available to study the 
function of monocytes and macrophages in vivo are far more 
restricted and less specific (Wiktor-Jedrzejczak et al., 1990; 
Dai et al., 2002; MacDonald et al., 2010; Chow et al., 2011). 
For example, Ccr2/ and Ccr2DTR mice (Boring et al., 1997; 
Kuziel et al., 1997; Serbina and Pamer, 2006; Tsou et al., 2007) 
have been used to study monocytes (Boring et al., 1997; Peters 
et al., 2004; Hohl et al., 2009; Nakano et al., 2009). However, 
CCR2 is also expressed on some subsets of cDCs, activated 
CD4+ T cells, and NK cells (Kim et al., 2001; Hohl et al., 2009; 
Egan et al., 2009; Zhang et al., 2010). Thus, it is challenging 
to dissect the precise role of monocytes as opposed to other 
cell types in immune responses in Ccr2/ or Ccr2DTR mice. 
Inducible DTR expression in CD11cCre x CX3CR1LsL-DTR 
mice is far more specific (Diehl et al., 2013), but restricted to 
a small subset of mononuclear phagocytes.

Here, we describe a genetic approach to targeting mono-
cytes and macrophages that spares cDCs and lymphocytes, 
and we compare the effects of monocyte and macrophage 
ablation to cDC depletion on the adaptive immune response 
to intestinal infection with Citrobacter rodentium.

RESULTS
LysmCre X Csf1rLsL-DTR mice
To target monocytes and macrophages in vivo, we combined 
two genes, the macrophage colony-stimulating factor receptor 
(M-CSF-R; Csf1r; CD115) and lysozyme (Lyz2; LysM), nei-
ther of which alone is entirely specific for these cells. Trans-
genic mice that carry a BAC encoding a human diphtheria 
toxin receptor–mCherry fusion protein (DTR-mCherry) 
preceded by a loxP-flanked transcriptional Stop element under 
the control of the Csf1r promoter (Csf1rLsL-DTR mice; Fig. 1 A) 
were crossed with mice that express Cre recombinase under 
the control of LysM (LysmCre; Clausen et al., 1999). LysM-
expressing cells in LysmCre x Csf1rLsL-DTR mice (hereafter MMDTR 
mice, for monocyte and macrophage), delete the Stop element, 
which permits transcription of DTR-mCherry specifically in 
LysM/Csf1r double-positive cells. To verify DTR-mCherry 
expression in monocytes but not cDCs in MMDTR mice, we 
examined spleen cells by flow cytometry (Fig. 1 B). We found 
that Ly6ChighCD115+ spleen monocytes uniformly expressed 
mCherry, whereas MHCIIhighCD11chigh cDCs did not (Fig. 1 B). 
Thus, DTR-mCherry is expressed in monocytes but not cDCs 
in the spleen of MMDTR mice.

To test for deletion, we injected MMDTR mice with 4 ng 
of diphtheria toxin (DT) per gram of body weight (100 ng 
per mouse). A single DT injection resulted in the complete 
loss of peripheral blood and bone marrow monocytes after 24 h 
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Figure 1. MMDTR mice. (A) Diagrammatic representation of Lysmcre (top) Csf1rLsL-DTR (middle) and MMDTR (bottom) mice. Expression of Cre recombinase 
is under the control of LysM. Expression of a DTR-mCherry protein in BAC transgenic mice is under the control of CSF1R, but is inhibited by a loxp site-
flanked Stop element. In MMDTR mice, CSF1R-expressing cells that had expressed LysM express the DTR-mCherry fusion protein and can be deleted by DT. 
(B) Flow cytometric analysis of mCherry expression on splenic monocytes (LinnegCD11bhighLy6ChighCD115+) and cDCs (LinnegCD11chighMHCIIhigh). Lineage 
gating includes NK1.1, B220, CD19, Ly6G, and TCR. (C) Flow cytometry plots of bone marrow (top) and peripheral blood (bottom) without (left) and 24 h 
after (right) DT injection. Cells gated on LinnegCD11bhighLy6Gneg. (D) Monocyte abundance in peripheral blood at multiple time points after DT injection in 
B6 and MMDTR mice. Percentage of the two major monocyte populations, LinnegCD11bhighCD115+Ly6Chigh (left) and LinnegCD11bhighCD115+Ly6Clow (right) in 
the blood. (E) M-CSF concentrations in sera of DT-treated MMDTR mice determined by ELISA at multiple time points after DT injection. Results represent 
two to three experiments with two to five mice per group and experiment. Error bars indicate SEM. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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Figure 2. Depletion of monocytes, mac-
rophages, and cDCs in CD11cDTR, zDCDTR, 
and MMDTR mice. (A) Flow cytometry plots  
of spleen cDCs (Gate 1, CD11chighMHCIIhigh, 
gated on Linneg) and monocytes (Gate 2,  
Ly6ChighCD115+, gated on LinnegMCHIIlow 
CD11clowCD11b+). Bar graphs show percent-
age of cDCs and monocytes among total 
spleen cells 24 h after DT injection. Each data 
point corresponds to an individual mouse.  
(B) Bar graphs show percentage of CD4+ and 
CD8+ T and B lymphocytes among total spleen 
cells 24 h after DT injection. Results represent 
three mice per group. (C) Intracellular staining 
for TNF and iNOS in splenic monocytes from 
DT-injected B6 and MMDTR mice infected with 
L. monocytogenes. Gated on LinnegCD11bhigh 
MHCIIlow-intCD11clow-int cells. Cells were stimu-
lated ex vivo with heat-killed L. monocytogenes. 
Results represent two to three experiments 
with two to five mice per group and experi-
ment. (D) Spleens from B6 and MMDTR mice  
24 h after DT injection. Sections were stained 
with B220 (green) to visualize B cell zones and 
macrophage markers (red) to reveal metallo-
philic (CD169), marginal zone (SIGNR1), and 
red pulp (F4/80) macrophages. Bars, 100 µm. 
(E) Tissue macrophage depletion in B6 and 
MMDTR mice 24 h after DT injection. Results 
from one representative experiment with  
four mice per group. Error bars indicate SEM. 
*, P < 0.05; **, P < 0.01; ***, P < 0.001.
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enteropathogenic and enterohemorrhagic E. coli (Mundy et al., 
2005). Again, both CD103+CD11b and CD103+CD11b+ 
migratory DCs in the mesenteric LN (mLN) were entirely 
depleted in zDCDTR, but not altered in MMDTR mice depleted 
of monocytes and macrophages (Fig. 4, D and E). Furthermore, 
when the number of living bacteria in the draining mLN was 
determined, a strong, albeit not statistically significant decrease 
in CFU was observed, indicating that the transport of C. roden-
tium from the intestinal lumen to the mLN is not as efficient 
in zDCDTR mice as it is in control animals. This trend was, how-
ever, not observed in MMDTR mice (Fig. 4 F).

To test whether the impaired antigen transport observed 
in zDCDTR mice had an effect on T cell priming, we mea-
sured OT-II CD4+ T cell proliferation and CD62L down-
regulation after infection with OVA-expressing C. rodentium. 
We observed significantly less T cell proliferation and CD62L 
down-regulation in zDCDTR mice compared with B6 mice 
(Fig. 4, G–I). Furthermore, the observation that T cell prim-
ing (proliferation and down-regulation of CD62L) still oc-
curred in MMDTR mice correlates with CFU data suggesting 
that monocytes and macrophages are not involved in anti-
gen transport and their absence has no influence on priming 
naive T cells in the draining LN.

We conclude that in the steady state and during infection, 
only preDC-derived CD103+CD11b and CD103+CD11b+ 
cells migrate from the lamina propria to the mesenteric lymph 
node. Furthermore, priming of T cells is only impaired in the 
absence of preDC-derived migratory DCs, and therefore, 
monocyte-derived cells are not involved in antigen transport 
or priming of naive T cells.

Monocytes and macrophages in intestinal infection
To examine the role of monocytes and macrophages in adaptive 
immune responses in the intestine, we repeatedly injected DT 
starting 1 d before C. rodentium infection and every other day 
thereafter. Monocyte- and macrophage-depleted MMDTR and 
cDC-depleted zDCDTR mice experienced significant weight 
loss when compared with B6 controls (Fig. 5 A). Consistent 
with the weight loss, all zDCDTR mice succumbed to infection, 
with a mean survival of 11 d (Fig. 5 B). In contrast, although 
monocyte- and macrophage-depleted mice were more suscep-
tible than controls, the difference was not statistically significant 
(Fig. 5 B). Thus, whereas loss of cDCs led to weight loss and a 
fatal infection, monocyte- and macrophage-depleted mice lost 
weight initially, but infection was only fatal in 50% of all MMDTR 
mice infected with C. rodentium. The number of fecal and inva-
sive liver colony-forming units of C. rodentium in DT-treated 
mice at day 9 mirrored survival in that zDCDTR mice showed 
the highest levels, followed by MMDTR mice (Fig. 5, C and D). 
We conclude that cDCs are essential to the immune response 
against C. rodentium and for controlling bacterial dissemination.

Monocytes and macrophages in adaptive  
immunity to an intestinal pathogen
Infection with C. rodentium is associated with both an IL-22–
driven innate response (Satoh-Takayama et al., 2008; Zheng 

monocytes and macrophages acquire some of the features of 
cDCs including high levels of MHCII and CD11c expression, 
making it difficult to distinguish the two cell types (Bogunovic 
et al., 2012; Varol et al., 2010). To examine the origin of DC-
like cells in the small intestine lamina propria and serosa, we 
compared bone marrow chimeras of B6 control, MMDTR, 
zDCDTR, and CD11cDTR mice injected with DT. 18–24 h 
after injection, single-cell suspensions from the small intestine 
lamina propria or serosa/muscularis were analyzed by flow 
cytometry (Fig. 3 A). Cells that resembled DCs, due to their 
high-level expression of CD11c and MHCII, were further 
fractionated by CD103 (integrin E) and CD11b expression 
(Bogunovic et al., 2009; Varol et al., 2010).

CD103+CD11b lamina propria cells, which originate from 
preDCs (Bogunovic et al., 2009; Varol et al., 2009), were de-
pleted in zDCDTR and CD11cDTR, but not in MMDTR mice 
(Fig. 3, A and B). Conversely, CD103CD11b+ cells, which are 
largely derived from peripheral blood Ly6Chigh monocytes in 
the steady-state and during inflammation (Varol et al., 2007, 
2009; Bogunovic et al., 2009; Yona et al., 2013), were signifi-
cantly depleted in MMDTR and CD11cDTR, but minimally 
depleted in zDCDTR mice. This F4/80+ population remains 
partially depleted for 4 d after DT injection in MMDTR mice, 
but returns to a steady-state frequency by 1 wk (Fig. 3 C). Thus, 
CD103+CD11b and CD103CD11b+ cells in the lamina pro-
pria are preDC and monocyte-derived, respectively. In contrast, 
the CD103+CD11b+ population was partially depleted in both 
zDCDTR and MMDTR mice (Fig. 3, A and B). We conclude that 
CD103+CD11b+ lamina propria cells are a heterogeneous pop-
ulation containing cDCs as well as monocyte/macrophages.

In the serosa/muscularis, a layer of the gut distant from the 
lumen, MHCII+CD11cint cells were homogeneously CD103 
CD11b+, and these cells were depleted in MMDTR and CD11cDTR 
but not zDCDTR mice (Fig. 3, D and E).

Cells migrating from the lamina propria are preDC derived
Lamina propria CD103+CD11b+ cells migrate to LNs in a 
CCR7-dependent fashion and facilitate antigen transport dur-
ing infection (Bogunovic et al., 2009). To determine the ori-
gin of the migrating CD103+CD11b+ cells, we examined 
steady-state migratory populations of mesenteric lymph node 
DCs after DT injection (Fig. 4, A and B). In contrast to the 
lamina propria, all CD103+CD11b and CD103+CD11b+ 
cells were depleted in the mesenteric lymph node after DT 
injection in zDCDTR and CD11cDTR mice, but these cells 
were not altered in MMDTR mice. In accordance with this 
finding, CD103+CD11b+ cells remaining in the lamina pro-
pria of MMDTR mice after DT injection expressed high levels 
of CCR7 mRNA, whereas those in zDCDTR mice showed 
reduced low levels of CCR7 mRNA (Fig. 4 C). We conclude 
that in steady state, only preDC-derived CD103+CD11b+ cells 
migrate from the lamina propria to the mesenteric lymph node.

To determine whether infection-induced inflammation 
altered the composition of these migratory populations, we 
examined mesenteric lymph node DCs 3 d after oral infec-
tion with C. rodentium, an enteric pathogen that resembles 
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Figure 3. Depletion of monuclear phagocytes in the intestine of MMDTR, zDCDTR, and CD11cDTR mice. (A) Flow cytometry plots of small intestine lam-
ina propria mononuclear phagocyte populations 24 h after DT injection in chimeric B6, MMDTR, zDCDTR, and CD11cDTR mice. Gating on LinnegCD45+MHCIIhigh 
(left) and CD103 versus CD11b plots on gated population for each genotype (right). (B) Bar graphs show absolute numbers of CD103+CD11b, CD103+CD11b+, 
and CD103CD11b+ cells in the small intestine lamina propria. Data pooled from >3 experiments with 3–17 mice per group. (C) Reconstitution of macrophage 
after single DT injection. Frequency of CD103CD11b+ cells among total MHCIIhighCD11chigh cells at several time points after DT injection. Each time point con-
sists of three mice per group. (D) Flow cytometry plots of isolated serosa/muscularis cells 24 h after DT injection in chimeric B6, MMDTR, zDCDTR, and CD11cDTR. 
Gating on CD11clow-intCD11b+ (left) and CD103 versus CD11b on gated population (right). (E) Bar graphs show absolute numbers of CD103CD11b+ cells in the 
serosa/muscularis. Results represent two experiments with 2–5 mice per group and experiment. Error bars indicate SEM. *, P < 0.05; **, P < 0.01.

et al., 2008; Ota et al., 2011; Sonnenberg et al., 2011; Tumanov  
et al., 2011; Basu et al., 2012) and the induction of Th17 and 
Th1 CD4+ adaptive immune responses (Higgins et al., 1999; 

Bry and Brenner, 2004; Bry et al., 2006; Simmons et al., 2002; 
Mundy et al., 2005; Mangan et al., 2006). To measure the 
CD4+ T cell response during infection, lamina propria cells 
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The frequency of IFN and IL-17–producing CD4+ cells 
observed in depleted zDCDTR mice was similar to that in 
naive mice (unpublished data). This reflects our finding, 
that there is little or no CD4+ T cell priming in the absence 

were restimulated ex vivo and stained for IFN- and IL-17. 
Compared with B6 controls, cDC-depleted zDCDTR mice 
displayed an overall decrease in activated T cells and a lower 
frequency of IFN-– or IL-17–producing cells (Fig. 5, E and F). 

Figure 4. Migratory cells in mesenteric lymph nodes after DT injection in CD11cDTR, zDCDTR, and MMDTR mice. (A) Flow cytometry plots of mes-
enteric LN DCs 24 h after DT injection in B6, MMDTR, zDCDTR, and CD11cDTR mice. Gating on LinnegCD11c+MHCIIhigh cells (left) and CD103 versus CD11b 
staining on the gated population (right). (B) Bar graphs show absolute number of CD11c+MHCIIhigh total migratory cells, and CD103CD11b+ and CD103+CD11b+ 
subsets. Data pooled from >3 experiments, 8–10 mice per group. (C) CCR7 transcript levels determined by quantitative real-time PCR from FACS-sorted 
lamina propria CD103+CD11b+ cells 24 h after DT injection in B6 (blue), MMDTR (red), and zDCDTR (yellow) mice. (D) Flow cytometry plots of mesenteric  
LN DCs 3 d after C. rodentium infection in DT-injected B6, MMDTR, and zDCDTR mice. (E) Bar graphs show absolute number of CD11c+MHCIIhigh total migra-
tory cells, and CD103CD11b+ and CD103+CD11b+ subsets. Results represent two experiments with three mice per group and experiment. Error bars indi-
cate SEM. (F) CFU per gram of homogenized mesenteric lymph node tissue 3 d after C. rodentium infection. Each data point corresponds to an individual 
mouse from two independent experiments. Error bars indicate SEM. (G–I) 5 × 106 OT-II cells labeled with violet trace were transferred to DT-treated B6, zDCDTR, 
and MMDTR mice. Mice were infected with an OVA-expressing strain of C. rodentium the next day. 5 d after the infection, T cell proliferation (dilution of 
violet trace) and activation (down-regulation of CD62L) were determined in the mLN. (G) Dilution of violet trace cell division dye and down-regulation of 
CD62L. Shown are representative plots from two independent experiments with 4–5 mice per group and experiment. Bar graphs show absolute numbers 
of (H) total OT-II cells and (I) CD62L low OT-II cells. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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Figure 5. Response to C. rodentium infection in MMDTR and zDCDTR mice. (A) Weight loss after infection with C. rodentium. B6, MMDTR, and zDCDTR 
mice received DT 1 d before infection and then every other day for 9 d. Each group contains 24–32 mice. (B) Percent of mice surviving C. rodentium infec-
tion. As in A, but mice were observed for survival for 23 d. Mean survival (ms) for each group is indicated. Each group contains 6–10 mice. (C) CFU per 
gram of homogenized feces at day 9 after infection. (D) CFU per gram of homogenized liver at day 9 after infection. (E) Frequency of TCR+CD4+CD44+ 
cells (obtained from LinCD45+ gate) among total colonic lamina propria cells. (F) Flow cytometry plots from colonic lamina propria cells isolated 9 d 
after C. rodentium infection. Cells were stimulated ex vivo with PMA/Ionomycin and stained for IFN- and IL-17. Representative plots show 
LinnegCD45+TCR+CD4+CD44high cells. Bar graphs show frequency of IFN-+IL-17, IFN-+IL-17+, and IFN-IL-17+ subsets among CD4+CD44high colonic 
lamina propria cells. Data pooled from >3 experiments, 10–18 mice per group. *, P < 0.05; **, P < 0.01; ***, P < 0.001. Error bars indicate SEM.
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level in C. rodentium infected mice depleted of monocytes and 
macrophages (Fig. 7 B). IL-12–induced differentiation of 
Th1 cells requires activation and phosphorylation of the tran-
scription factor Stat4 (Hsieh et al., 1993; Murphy et al., 2000; 
Athie-Morales et al., 2004). To determine whether the mono-
cyte and macrophage-induced reduction in local IL-12 was 
responsible for the observed decrease in IFN- production, we 
measured phosphorylation of Stat4 on tyrosine 693 in activated 
CD4+ T cells within the lamina propria at day 9 of infection 
(Fig. 7 C). Compared with controls, DT injection in C. roden-
tium–infected, MMDTR-treated mice resulted in significantly 
less Stat4 phosphorylation. We conclude that intestinal mono-
cytes and macrophages contribute to the production of the 
IL-12 that is required for Th1 cell polarization in the intestinal 
lamina propria during infection.

DISCUSSION
Although it is well established that cells of the mononuclear 
phagocyte lineage are essential for both innate and adaptive 
immunity (Steinman et al., 2003; Liu and Nussenzweig, 2010; 
Yona and Jung, 2010; Chow et al., 2011), understanding their 
individual contributions to immunity has been difficult be-
cause of overlapping phenotypic features and a lack of specific 
genetic tools (Lewis et al., 2011; Langlet et al., 2012; Miller 
et al., 2012; Tamoutounour et al., 2012). Here, we describe a 
two-gene approach to target monocytes and macrophages but 
not cDCs.

Genetic experiments, beginning with deletion of cDCs in 
CD11cDTR mice (Jung et al., 2002), established that cDCs are 
required for T cell priming in vivo (Bennett and Clausen, 

of cDCs in DT-treated, C. rodentium–infected zDCDTR mice 
(Fig. 4, G–I).

In contrast, MMDTR mice showed normal frequencies of 
activated T cells in the lamina propria, but fewer cells produc-
ing IFN- or the combination of IFN- and IL-17, whereas 
the frequency of cells producing IL-17 alone were not af-
fected (Fig. 5, E and F). Thus, intestinal monocytes and mac-
rophages contribute to the IFN--CD4 T cell response after 
infection with C. rodentium. Similarly, monocyte and macro-
phage depletion after Listeria monocytogenes infection led to 
decreased survival and less IFN- production in antigen- 
specific CD4+ T cells, despite equal T cell activation compared 
with B6 controls (Fig. 6, A–C). We conclude that monocytes 
and macrophages shape the adaptive immune response to  
C. rodentium and L. monocytogenes by supporting the develop-
ment of IFN-–producing Th1 cells.

Complete Th1 differentiation during intestinal bacterial 
infection requires high-level expression of IL-12 and IFN- 
(Higgins et al., 1999; Simmons et al., 2002). Because monocyte 
and macrophage depletion altered Th1 immunity, we tested 
whether their depletion plays a direct role in the induction of 
Th1 immunity by IL-12 production. On a per cell basis, cDCs 
produce far higher amounts of IL-12 during inflammation 
than monocytes and macrophages (Heufler et al., 1996; Gorak 
et al., 1998; Fig. 7 A); however, the latter are a more abundant 
population in the intestines (Lee et al., 1985; Fig. 3 A). IL12p70 
cytokine production in colonic tissue was measured 3 d after 
C. rodentium infection in DT-treated B6 control and MMDTR 
mice (Fig. 7 B). Consistent with their tissue distribution, we 
found a large decrease in the overall intestinal IL12p70 protein 

Figure 6. Monocytes and macrophage depletion during L. monocytogenes infection. (A–C) C57Bl/6 and MMDTR bone marrow chimeric mice re-
ceived one DT injection 1 d before i.v. injection with (A) 5 × 104 virulent Lm or (B and C) 108 ActA Lm and every other day thereafter. Mice were sacrificed 
at day 7 after infection. (A) Percent of DT-injected C57Bl/6 and MMDTR mice surviving virulent Lm infection. Mean survival (ms) for MMDTR group is 4.5 d. 
***, P < 0.000, as compared with B6 control receiving continuous DT. Each group contains eight individual mice. (B) Frequency of CD44+ cells among total 
spleen CD4+ T cells. No statistical significance among C57Bl/6 and MMDTR groups. (C) Flow cytometry plots from splenocytes isolated 7 d after Lm infec-
tion. Cells were stimulated ex vivo with LLO190-201 peptide in the presence of BFA, and stained for IFN-. Representative plots show LinnegTCR+CD4+CD44+ 
cells. Bar graph shows frequency of IFN-+–producing cells among CD4+CD44+ cells. Data pooled from >3 experiments, 7–11 mice per group. ***, P < 
0.001. Error bars indicate SEM.
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and macrophage populations examined, and does not alter 
cDC or lymphocytes, and therefore, these mice help to clar-
ify the role of monocytes and macrophages in inflammation 
and immunity.

Comparison of zDCDTR and MMDTR mice allows for 
analysis of the origins of complex mixtures of mononuclear 
phagocytes in tissues (Ginhoux et al., 2009; Hashimoto et al., 
2011). The intestinal lamina propria contains a particularly 
diverse group of these cells, all of which express relatively high 
levels of CD11c and MHCII (Varol et al., 2010; Bogunovic 
et al., 2012; Tamoutounour et al., 2012). As expected, the 
CD103+CD11b (cDCs) and CD103CD11b+ (majority 
monocytes/macrophages) in this mixture were significantly 
depleted in zDCDTR and MMDTR mice, respectively (Varol  
et al., 2007, 2009; Bogunovic et al., 2009; Yona et al., 2013). 
In contrast, the origin of CD103+CD11b+ DCs has been de-
bated. These cells express intermediate levels of F4/80 and 
Csf1r and show a gene expression signature that does not clus-
ter entirely with either cDCs or macrophages (Uematsu et al., 
2008; Bogunovic et al., 2009; Miller et al., 2012). They are 
deleted in CD11ccre x Notch2fl/fl mice, and they are in part 
Flt3-dependent for their development, suggesting a preDC 
origin (Bogunovic et al., 2009; Lewis et al., 2011). However, 
CD11c and Notch2 are also expressed in some monocytes 
(Jönsson et al., 2001), and this population is heterogeneous for 
CD64, further suggesting that a portion are derived from mono-
cytes (Gautier et al., 2012; Langlet et al., 2012; Tamoutounour  
et al., 2012). Our experiments comparing zDCDTR and MMDTR 
clarify these apparently contradictory results and reveal that 
CD103+CD11b+ DCs are a heterogeneous group of cells, some 
of which originate from preDCs and others from monocytes.

Although CD103+CD11b+ cDCs originating from preDCs 
cannot be distinguished from their monocytic counterparts 
by surface marker expression, our results show that the two 
cell types differ functionally in that only preDC-derived 
CD103+CD11b+ migrate to the local lymph nodes after  
C. rodentium infection. Antigenic transport, induction of oral 
tolerance and mucosal immunity require CCR7-dependent 
migration of CD103+ cells to the mesenteric lymph nodes 
(Johansson-Lindbom et al., 2005; Worbs et al., 2006; Jaensson 
et al., 2008; Bogunovic et al., 2009; Cerovic et al., 2013;  
Diehl et al., 2013; Farache et al., 2013; Schulz et al., 2009; 
Zigmond et al., 2012). We found that these CD103+ migra-
tory cells predominantly belong to the preDC-derived lineage. 
Other cells, such as monocyte-derived CD103+CD11b+ and 
CD103CD11b+ cells (depleted in lamina propria of DT-
treated MMDTR) do not appear to contribute to the trans-
port of C. rodentium to the MLNs or the priming of naive  
T cells. In contrast, Diehl et al. (2013) have described a small 
subset of CX3CR1high mononuclear phagocytes that appear 
to migrate after depletion of intestinal microbiota by qua-
druple antibiotic therapy before infection with a nonpatho-
genic strain of Salmonella enterica. Thus, signals provided by 
microbiota depletion and noninvasive S. enterica infection, 
but absent during C. rodentium or invasive S. enterica infection, 
might mobilize these cells for migration (Diehl et al., 2013; 

2007). Subsets of monocytes and macrophages can be de-
pleted using clodronate liposomes or antibodies to CSF1R, 
but neither is specific for these cells (MacDonald et al., 2010; 
Chow et al., 2011). Genetic deletion of Csf1r or Csf1 also re-
sults in loss of monocytes and tissue macrophages, but exper-
iments in these mice are difficult to interpret because of 
additional severe pleiotropic effects, including infertility, os-
teoporosis, neural development, low body weight, and severe 
skeletal abnormalities (Wiktor-Jedrzejczak et al., 1990; Dai 
et al., 2002). The most frequently used mouse model to study 
monocyte function is the Ccr2/ mouse (Boring et al., 1997; 
Kuziel et al., 1997), wherein monocytes accumulate in the 
bone marrow due to a defect in migration (Boring et al., 
1997; Peters et al., 2004; Serbina and Pamer, 2006; Tsou et al., 
2007; Hohl et al., 2009; Nakano et al., 2009). Most impor-
tantly, however, CCR2 is also expressed on CD103+ DCs, 
NK cells, mature T cells, and activated Th1 cells (Kim et al., 
2001; Egan et al., 2009; Hohl et al., 2009; Zhang et al., 2010), 
and therefore the precise role of monocytes in Ccr2/ and 
Ccr2DTR mice is difficult to discern with confidence. The Cx3cr1 
gene has also been used to study monocyte and macrophage 
function, but it is also expressed on NK cells and CD11b+ 
cells (Jung et al., 2000). Cx3cr1/ mice have been useful be-
cause they show impaired trafficking of monocytes and other 
CX3CR1–expressing cells, but they show normal monocyte 
development (Auffray et al., 2009). Finally, the combination 
of conditional expression of DTR under the control of CX3CR1 
(CX3CR1LsL-DTR) and CD11ccre leads to selective depletion 
of CX3CR1high macrophage-like cells in the gut, leaving CX3 
CR1int cells and monocytes unaffected (Diehl et al., 2013). In 
contrast, DT injection in MMDTR mice depletes all monocytes 

Figure 7. Localized IL-12 reduction after monocyte and macro-
phage depletion during C. rodentium infection. (A) IL12p35 transcript 
levels from FACS-sorted lamina propria CD103+CD11b, CD103+CD11b+, 
and CD103CD11b+ cells 3 d after C. rodentium infection in B6 mice. 
(B) IL12p70 protein levels in the supernatant of colonic tissue, taken 3 d 
after C. rodentium infection, and cultured for 24 h. (C) Median Fluorescent 
Intensity (MFI) of Stat4 (pY693) of LinnegCD45+TCR+CD4+CD44high cells. 
Results represent two experiments with three mice per group per experi-
ment. *, P < 0.05;  ***, P < 0.001. Error bars indicate SEM.
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zDCDTR mice (Meredith et al., 2012) were bred and housed at The 
Rockefeller University. C57BL/6, C57BL/6.SJL, and CD11c-DTR mice 
were purchased from The Jackson Laboratory. Bone marrow chimera recipi-
ents were irradiated with 2 doses of 525 rad 3 h apart, and injected with of 
5–10 × 106 bone marrow cells. Bone marrow chimeras were reconstituted for  
a minimum of 8 wk after irradiation. All mice were housed in The Rockefeller 
University Comparative Bioscience Center under specific pathogen–free 
conditions. All experiments were performed in accordance with the National 
Institutes of Health guidelines and approved by The Rockefeller University 
Animal Care and Use Committee.

Infections. For C. rodentium infection, mice were orally infected with 2 × 
109 CFU. Successful infection was confirmed by plating feces and determina-
tion of the pathogen burden on day 4 after infection. Weight loss and appear-
ance of infected mice was monitored daily. Mice that lost >20% of their 
initial body weight or that appeared moribund were sacrificed. Survival ex-
periments were monitored up to day 22 after infection. At this time point, 
mice had either succumbed to the infection or cleared the infection (as de-
termined by fecal CFU). For L. monocytogenes infection, mice were i.v. in-
fected with 5 × 104 or 108 CFU of virulent or ActA mutant Lm (S. Way, 
University of Minnesota, Minneapolis, MN), respectively.

DT injections. DT was purchased from Sigma-Aldrich, and was titrated 
and tested to determine the lowest effective dose. For transient DT ablation, 
zDCDTR bone marrow chimeras were injected i.p. with 20 ng DT per gram 
of body weight (500 ng per mouse) on the first day of DC depletion and 
with 4 ng DT per gram body weight (100 ng per mouse) on all subsequent 
days. B6, CD11cDTR, and MMDTR bone marrow chimeras received 4 ng DT 
per gram body weight (100 ng per mouse) at any time. To analyze cell de-
pletion, mice were euthanized 18–24 h after DT injection. For prolonged cell 
depletion, DT was injected every 48 h.

Flow cytometry and cell sorting. For FACS analysis, cells were stained using 
antibodies against F4/80-FITC (BM8), CD103-PE (2E7), CD11c-PerCp- 
Cy5.5 (M1/70), CD11c-PE-Cy7 (N418), CD115-APC (AFS98), MHCII-
eF780 (M5/114.15.2), CD45-eF605NC (30-F110), B220-eF450 (PK136), 
CD19-eF450 (RA3-6B2), NK1.1-eF450 (eBio1D3), CD11b-eF450 (M1/70), 
CD44-PE-Cy7 (1M7), and CD4-eF780 (RM4-5; eBioscience), and Ly6C-
FITC (AL-21), Ly6G-V450 (1A8), TCR-FITC (H57-597), IFN--PE 
(181157), IL-17A-647 (TC11-18H10), and STAT4-647 (pY693; and BD). 
DAPI was added to exclude dead cells from analysis. For intracellular cytokine 
staining, cells were stimulated for 4 h using Leukocyte Activation Cocktail with 
GolgiPlug (BD). Surface-stained cells were fixed with Cytofix/Cytoperm 
(BD) and washed with Perm/Wash buffer (BD). Cells were analyzed on a LSR 
Fortessa flow cytometer (BD). Analysis was performed using FlowJo software 
(Tree Star). Cell sorting was performed on a FACSAriaIII cell sorter (BD). 
Prism 4 (GraphPad Software) was used for statistical analyses.

Spleen and LN cell isolation. Spleen and lymph nodes were isolated, me-
chanically disrupted, and incubated with HBSS + 5% FBS + 0.5 mg/ml 
Collagenase (Roche) at 37°C for 30 min. Cells were filtered through 100-µM 
cell strainers and washed. For spleen cells, erythrocytes were lysed with ACK 
Lysing buffer (Gibco). Cells were counted, and up to 106 cells were stained 
for FACS analysis.

Intestinal cell isolation. Small bowel (jejunum and ileum) and large bowel 
(cecum and colon) were carefully excised, and mesentery and fat were re-
moved. Feces were removed, and Peyer’s patches were excised from the small 
intestine. Both small and large bowel were opened longitudinally and rinsed 
in HBSS (Gibco), followed by HBSS + 1 mM DTT (Sigma-Aldrich). Small 
and large bowel were cut into 1-cm pieces and incubated with 25 ml of 
HBSS + 5% FBS + 5 mM EDTA for 15 min at 37°C at 230 rpm. Tubes were 
briefly vortexed, and supernatant containing intraepithelial lymphocytes was 
decanted. Bowel was washed with 10 ml of HBSS + 5% FBS for 15 min at 
37°C at 230 rpm. The gut tissues were then finely chopped and digested in 

Farache et al., 2013). In conclusion, zDCDTR and MMDTR mice 
can be used to distinguish the origins and functions of complex 
mixtures of mononuclear cells in tissues, despite their pheno-
typic similarities.

Our experiments are consistent with the work of others 
showing that cDCs are essential to initiating adaptive T cell 
immunity in the gut after infection with C. rodentium (Hirata 
et al., 2010). Furthermore, purified lamina propria CD103+ 
CD11b+ cells promote Th17 T cell differentiation in vitro 
(Denning et al., 2007, 2011; Denning et al., 2007; Rivollier  
et al., 2012; Uematsu et al., 2008). Moreover, CD11ccre x 
Notch2fl/fl mice that lack CD103+CD11b+ cells showed re-
duced numbers of IL-17–producing Th17 cells (Lewis et al., 
2011). Whether this effect was caused by preDC- or monocyte-
derived cells could not be determined. Our finding that the 
IL-17 response is not altered by monocyte and macrophage 
depletion, but is significantly reduced in zDCDTR mice, sug-
gests that it is the migratory preDC-derived subset within 
the CD103+CD11b+ population that is necessary for Th17 
mucosal immunity.

The role of monocytes and macrophages in the adaptive 
immune response has been difficult to define, in part because 
of their ability to produce a variety of cytokines under differ-
ent physiological and pathological conditions (Gordon and 
Taylor, 2005). For example, CD103CD11b+F4/80+ macro-
phages located in the lamina propria and the serosa normally 
express IL10 and other antiinflammatory cytokines (Denning 
et al., 2007; Hadis et al., 2011; Rivollier et al., 2012), but can 
produce proinflammatory cytokines such as IL-12 in response 
to infection (Dunay et al., 2008; Kim et al., 2011; Goldszmid 
et al., 2012; Rivollier et al., 2012). In contrast, cDCs produce 
far greater amounts of IL-12 and have been shown to be re-
quired for Th1 polarization during immune response to Toxo-
plasma gondii, Listeria monocytogenes, and Leishmania donovani 
and after TLR ligation (Heufler et al., 1996; Reis e Sousa  
et al., 1997; Gorak et al., 1998; Maldonado-López et al., 1999; 
Reinhardt et al., 2006). How monocyte- and macrophage-
derived antiinflammatory or proinflammatory cytokines might 
contribute to adaptive responses in vivo can only be deter-
mined by their specific deletion. Our experiments show that 
despite lower levels of IL-12 production per cell by CD103 
CD11b+ compared with cDCs, the former are essential for 
intestinal IL-12 production, Stat4 phosphorylation, and an 
optimal Th1 response to C. rodentium.

In conclusion, monocytes and macrophages contribute to 
adaptive immune responses in the gut and do so by producing 
cytokines that are essential for optimal Th1 polarization dur-
ing infection.

MATERIALS AND METHODS
Mice. Csf1rLsL-DTR transgenic mice were generated by DNA microinjection 
into mouse oocytes. Founder lines were bred to C57BL/6 mice. Three differ-
ent founder strains were maintained and compared, but no differences were 
observed. Expression of a DTR-mCherry fusion protein is under the control 
of the Csf1r gene in Csf1rLsL-DTR mice, but is inhibited by a loxp-flanked Stop 
element. Expression of Cre recombinase excises the Stop element and allows 
transcription and translation of DTR-mCherry in cells expressing Csf1r.
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infected with 2 × 109 CFU of a C. rodentium strain that was transformed with 
a plasmid encoding Ovalbumin. 1 g/liter of Kanamycin was added to the 
drinking water to ensure the expression of Ovalbumin. Mice were again in-
jected with DT 1 and 3 d after the infection. T cell proliferation and activa-
tion in the mesenteric LN was determined 5 d after the infection.

Statistical Analysis. Results are given as a mean 6 SE or mean 6 SD. 
Comparisons between groups were done using two-tailed Student’s t test 
analysis. Survival curve comparison was performed using a log-ranked Mantel-
Cox test. Statistical significance was determined as p-values less than 0.05.
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