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Abstract

Voltage-gated proton current (IHv) has been characterized in several cell types, but the majority of the data was collected in
phagocytes, especially in human granulocytes. The prevailing view about the role of IHv in phagocytes is that it is an
essential supporter of the intense and sustained activity of Nox2 (the core enzyme of the phagocyte NADPH oxidase
complex) during respiratory burst. Recently Hv1, a voltage-gated proton channel, was cloned, and leukocytes from Hv1
knockout mice display impaired respiratory burst. On the other hand, hardly anything is known about Hv1 in human
granulocytes. Using qPCR and a self made antibody, we detected a significant amount of Hv1 in human eosinophil and
neutrophil granulocytes and in PLB-985 leukemia cells. Using different crosslinking agents and detergents in reducing and
non-reducing PAGE, significant expression of Hv1 homodimers, but not that of higher-order multimers, could be detected in
granulocytes. Results of subcellular fractionation and confocal imaging indicate that Hv1 is resident in both plasmalemmal
and granular membrane compartments of resting neutrophils. Furthermore, it is also demonstrated that Hv1 accumulates in
phagosome wall during zymosan engulfment together with, but independently of Nox2. During granulocytic differentiation
early and parallel upregulation of Hv1 and Nox2 expression was observed in PLB-985 cells. The upregulation of Hv1 or Nox2
expression did not require the normal expression of the other molecule. Using RNA interference, we obtained strong
correlation between Hv1 expression and IHv density in PLB-985 cells. It is also demonstrated that a massive reduction in Hv1
expression can limit the Nox2 mediated superoxide production of PLB-985 granulocytes. In summary, beside monomers
native Hv1 forms stable proton channel dimer in resting and activated human granulocytes. The expression pattern of Hv1 in
granulocytes is optimized to support intense NADPH oxidase activity.
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Introduction

Voltage-gated (depolarization-activated) proton current (IHv)

has been described in a set of mammalian and non-mammalian

cells. Most studies characterizing the biophysical and pharmaco-

logical properties of this current have been conducted on human

cells of hemopoietic origin, such as macrophages, lymphocytes,

leukemia cell lines and granulocytes (for a detailed review on IHvs

see: Ref. [1]). The identity of the IHv carrying molecule had been

obscure for many years, but in 2006 two groups have cloned a

novel ‘‘voltage sensor only protein’’ (VSOP) from mouse [2] and

human [3]. Heterologous expression of the two mammalian

VSOPs induced the emergence of characteristic voltage-gated

proton currents in a variety of cell lines [2–4]. Based on these

results the name Hydrogen Voltage-gated Channel 1 was coined,

and now is widely used to refer to the genes encoding these VSOPs

(HVCN1) and to their products (Hv1). Importantly, purified and

reconstituted human Hv1 induced depolarization-dependent

proton permeability in liposomes [5], ultimately proving that

Hv1 can function as a depolarization-activated proton pathway. A

series of publications have also demonstrated that mouse and

human Hv1, although functional in the monomeric form, tend to

form dimers in transfected cells [6–8].

Despite the extensive studies, little is known about the function

of the voltage-gated proton channel in leukocytes and in other cell

types [9]. In case of phagocytes the widely accepted view is that

this channel is essential to blunt the potentially deleterious

consequences of phagocyte NADPH oxidase (phox) activity. Upon

activation the core enzyme of the phox complex Nox2 (a.k.a.

gp91phox) transports electrons from NADPH to molecular oxygen

to produce superoxide. Superoxide anion is then converted into

other, more toxic reactive oxygen species (ROS) which are

involved in killing pathogens [10]. Without compensatory

mechanisms the intensity of the transmembrane electron transport

is high enough to generate intolerable membrane depolarization

and intracellular acidification, which would eventually also block

the oxidase itself [11]. Supporting the role of Hv1-mediated proton

flux in charge compensation, it was shown recently that leukocytes

from Hv1 knockout (Hv1
2/2) mice display 30 to 75% reduction in

phorbol ester-induced ROS production [12–14]. Importantly,

Hv1
2/2 cells were devoid of voltage-gated proton current [12–14],

and their ROS production could be normalized by incorporating a
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proton permeable, monovalent cation channel (gramicidin) into

their membrane [14]. Beside the compromised oxidase activity,

neutrophils from Hv1
2/2 mice also displayed abnormal migration

and intracellular Ca2+ turnover [14]. It has to be noted, however,

that Hv1
2/2 cells also produced massive amounts of ROS [12–

14], and an impact of Hv1
2/2 genotype on leukocyte development

is not yet ruled out.

Results obtained using heterologous expression systems or

knockout (KO) mice, although indispensable in many respects, can

provide only limited and indirect information on the expression

and function of Hv1 in human cells. Therefore, amongst others,

the following questions remain open concerning the proton

channel molecule of human granulocytes: A) Is HVCN1 the gene

that codes for proton channel in human granulocytes? B)

Assuming that Hv1 is in fact the proton channel of granulocytes,

is it expressed as a monomer or multimer, and does the activation

with phorbol-12-myristate-13-acetate (PMA) alter the tendency of

Hv1 to adopt these structures? C) To what cellular membranes

does HV1 localize in resting and in phagocytosing granulocytes?

D) Do Hv1 and Nox2 colocalize in granulocytes? Importantly,

data from patch-clamp studies indicated the codistribution of the

proton channel with Nox2 in human eosinophils [15]. Further-

more, it has been advocated by different work groups that the

proton channel is a built-in part of the phagocyte oxidase [16,17].

E) Is normal Hv1 expression required for normal expression and/

or activity of Nox2?

To clarify the above uncertainties, we set out to define the main

characteristics of Hv1 expression in human granulocytes on the

cellular, subcellular and molecular level and also its relationship to

Nox2. Our results indicate that Hv1 is expressed in intracellular

membranes and on the cell surface of granulocytes. Native Hv1

molecule is expressed in dimer and monomer form in different

leukocytes and its expression is required for normal voltage-gated

proton currents in different leukemia cell lines. Additionally, Hv1

and Nox2 colocalize in granulocytes, and both accumulate in the

same membrane compartment upon activation. Furthermore,

severely impaired Hv1 expression can reduce the maximum rate of

superoxide release in a human granulocyte cell line PLB-985.

Results

Expression of Hv1 in human leukocytes
We used two approaches to verify the expression of Hv1 in

human leukocytes. To assess the mRNA level, quantitative real

time PCR assays (qPCR) were performed. To detect the

expression of the Hv1 protein, total cell lysates were prepared

from different human blood cells. Because of their limited

availability, we did not attempt to perform the experiments on

basophil granulocytes and natural killer cells. We have raised an

affinity purified, polyclonal antibody (aHv1-N) that selectively

recognizes the intracellular N-terminal domain of the human Hv1

protein in Western blots (WB) and immunofluorescence experi-

ments (see Materiala and Methods and Fig. S1 for details). As it is

demonstrated on Figs. 1a and 1b, both qPCR and WB indicated

that all tested leukocyte subsets except T-cells express significant

amount of Hv1 mRNA and display significant aHv1-N labeling

around 30 kDa. This result is in agreement with reports on the

density of voltage-gated proton current in human leukocytes [1].

Similar to T-cells, membrane sample of erythrocytes lacked

significant aHv1-N labeling in WB (not shown).

Hv1 forms stable dimers in human granulocytes
An interesting outcome of the WB experiment was that each of

the phagocytic cell types displayed faint aHv1-N labeling at

Figure 1. Expression pattern of Hv1 mRNA and protein in major
classes of human peripheral blood leukocytes. (a) Real-time qPCR
analysis of Hv1 mRNA expression relative to cyclophilin mRNA level
(similar relative expressions were observed if genes other than
cyclophilin were used for normalization). Data represent the mean
result of a duplicate experiment. The experiment was repeated in an
independent set of leukocytes with similar results. (b) Western blot
analysis of Hv1 expression in the same cell types as detected with aHv1-
N. Total cell lysates of 106 cells were loaded each lane. The lane with
stained molecular weight marker is labeled with (L). Ponceau-stained
,43 kDa apparent Mw protein band (putative actin) demonstrates the
protein load and the quality of the samples. The absence of clear actin
band in the neutrophil and monocyte lanes indicates massive protein
degradation. Note that immunolabeling of proteins which are
considered ‘‘house keeping’’ (e.g. actin or PDI) is of very limited use
in case of cell types with very different proteolytic activity, motility and
metabolism. Importantly, aHv1-N also detects one or more faint band
between ,60 and ,80 kDa in myeloid cell types (white arrows). (c)
Detection of Hv1 and higher Mw bands is hampered in granulocytes by
serine proteases and sample heat treatment. Total cell lysates of 56105

Hv1 in Leukocytes
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molecular weights significantly higher than 30 kDa, typically

between 60 and 80 kDa. Furthermore, in neutrophils and

monocytes a lower Mw band was also present. We assumed that

the variability in the labeling pattern could arise from the presence

of Hv1 dimers (as described in heterologous expression systems [6–

8]) and from proteolytic degradation of Hv1. Granulocytes,

especially neutrophils, express high amounts of various proteases,

which may explain the discrepancy between the low Hv1 protein

signal and high mRNA expression level. Therefore, in follow-up

experiments we attempted to improve the detection of Hv1 and its

putative dimer in granulocytes. Fig. 1c demonstrates that heat

exposure and the action of DFP-sensitive serine proteases reduce

the amount of detectable monomeric and high Mw Hv1 forms.

The detrimental effect of serine proteases could be reasonably

evaded if the membrane permeable protease inhibitor DFP had

been added to granulocytes before cell lysis (see Material and

Methods for details). The remaining low Mw labeling (e.g. in the

eosinophil sample in this experiment) indicates that Hv1

degradation could not be completely prevented. Interestingly,

the dominant high Mw band migrated with different speeds in case

of eosinophils and neutrophils in this experiment. Upon repeated

testing, however, no correlation between granulocyte type and

migration velocity of the putative dimer could be established.

Additionally, a double band around 70 kDa was observed

sometimes. It is unlikely that one of the high Mw bands arises

from a Hv1 bound accessory protein, since Koch et al. observed

similar double band migration of the heterologously overexpressed

mouse Hv1 dimer in non-reducing PAGE [8]. Therefore, we

assume that the Hv1 dimer can migrate at least in two different

stable conformations.

To further explore the interactions between monomers,

granulocyte cell lysates were prepared using 2x Laemmli sample

buffers with modified detergent compositions, and with or without

the addition of the reducing agent b-mercaptoethanol (b-ME). To

minimize the re-oxidation of the sample due to b-ME decompo-

sition, it was added shortly (,15 min) before starting the PAGE.

Results in Fig. 2a indicate that the presence of b-ME and high

concentration of ionic detergent (SDS) favors the detection of the

Hv1 monomer. Using mainly non-ionic detergent (Tween20)

during sample preparation, the dimer form is prevailing, which

migrates in two major bands under non-reducing conditions. The

above data strongly indicate that Hv1 dimers are present natively

in human granulocytes and that both strong polar interactions and

disulfide formation are capable for stabilizing the dimer upon

solubilization.

The use of non-ionic detergent is advantageous for preserving

native protein-protein interactions, e.g. to confirm the natural

presence of such interactions between Hv1 monomers. On the

other hand, low SDS concentration may not denature proteases

and may not provide sufficient negative charge to proteins. These

drawbacks result in fainter and less clear bands in Western blot

experiments, due to protein degradation and less uniform

migration velocity. Therefore, in follow-up experiments we

attempted to stabilize native dimers using crosslinking agents to

detect them in standard SDS-PAGE. The amino group-specific

bifunctional crosslinker disuccinimidyl suberate (DSS) was earlier

used by two groups to improve the detection of Hv1 dimers in Hv1

Figure 2. Hv1 dimers are natively present in human granulo-
cytes. (a) Total cell lysates of 106 PMNs were loaded each lane. DFP-
treated cells were lysed in modified 2x Laemmli sample buffer
supplemented with 2 mM PMSF. Detergent composition and the
presence of 5% v/v b-mercaptoethanol in the sample buffer are
indicated below. (b) WB detection of Hv1 dimers in granulocyte samples
treated with amino- (DSS) or thiol-reactive (PDM) crosslinkers or with
thiol-reactive alkylating agent (NEM). The increase in labeling with aHv1-
N at ,70 kDa is at the expense of that at ,30 kDa in cross-linked
samples. The appearance of higher (above 75 kDa) Mw aHv1-N-labeled
bands is likely, at least in part, due to crosslinking of Hv1 with other
proteins. PMA pretreatement (200 nM for 15 min) exerted only minor
effect on the vicinal cysteines in the Hv1 dimer. The identity of the faint,
,40 kDa band is not clear, and it was not consistently detected.
Ponceau-stained ,43 kDa band (putative actin) and near stack region
demonstrates the protein load and sample crosslinking. The presence of
5% v/v b-mercaptoethanol in the sample buffer is indicated below. L*
denotes unstained Mw marker used for calibrating the routinely used,
stained Mw marker.
doi:10.1371/journal.pone.0014081.g002

cells were loaded each lane. Ponceau-stained ,43 kDa apparent Mw

protein band (putative actin) and aPDI labeling demonstrate the degree
of protein degradation. Note that anti-PDI signal and the intensity of
the actin band is well correlated, which justifies the use of the latter
signal to demonstrate protein load and sample quality. DFP incubation
for 30 min on ice before cell lysis and heating of the sample (at 100uC
for 10 min) were applied as indicated. This experiment was designed
based on results from pilot studies, and was performed for
demonstration purposes only, thus it was not repeated in this form.
In diverse experiments low Mw Hv1 labeling was occasionally observed
after DFP treatment, which was independent of the granulocyte type,
and likely reflects some remaining protease activity in the given sample.
doi:10.1371/journal.pone.0014081.g001

Hv1 in Leukocytes

PLoS ONE | www.plosone.org 3 November 2010 | Volume 5 | Issue 11 | e14081



transfected cell lines [7,8]. Treating granulocytes with DSS before

cell lysis, efficiently increased the detection of the dimeric Hv1

form in standard reducing PAGE (Fig. 2b). Additionally, the

presence of Hv1 homodimers in all major types of human

leukocytes and in differentiated PLB-985 granulocytes could be

confirmed using DSS (Fig. S2b). Because monomeric and dimeric

Hv1 forms support kinetically different voltage-gated proton

currents [8], it was suggested that the transition between the two

forms could lead to some of the proton current phenotype changes

observed in granulocytes during phox activation. [14]. Important-

ly, however, pretreating cells with a supramaximal phox activating

dose of PMA (200 nM for 15 min) before DSS addition did not

alter its crosslinking potential in granulocytes or in differentiated

PLB-985 cells (data not shown).

Although Hv1 dimers do not seem to decompose upon cell

activation, disulfide formation has been reported to participate in

redox regulation of different ion channels [18]. We used N-

ethylmaleimide (NEM) and N,N9-(1,3-phenylene)dimaleimide

(PDM) to explore the possible influence of redox changes during

the PMA-induced oxidative burst on disulfide formation. Both

NEM and PDM react covalently with reduced cysteine residues,

but while PDM is a homobifunctional crosslinker and mimics

disulfide formation, NEM prevents it. To get a snapshot on the

redox state of the cysteines possibly involved in Hv1 dimerization,

the thiol reactive compounds were added after the cells were

placed on ice. PDM could drive dimer formation near to

completion during the 40 min incubation. On the other hand,

NEM almost completely prevented the detection of the dimer

independently of PMA preactivation (Fig. 2b). These results

indicate that although certain cysteines in the apposed Hv1

monomers become vicinal, they are mainly in reduced state.

Massive oxidation of the apposed cysteines is unlikely even in

PMA-activated cells, as the action of PDM and NEM on dimer

formation was hardly affected by PMA treatment. Importantly,

PMA treatment did not alter the amount of Hv1 protein in

granulocytes. The detected Hv1 density in WBs from PMA-treated

samples was 96610% (n = 5) of that from resting cells.

It is theoretically possible that not monomer and dimer, but a

higher-order multimer is the dominant native confirmation of Hv1

in granulocytes. We reasoned that we should be able to detect such

multimers as clear and dominant band if we apply more intense

crosslinking (DSS + PDM for 1 h) or if we solubilize cells with non-

ionic detergent after DSS crosslinking. In all cases, however,

massive labeling was detected only around 70 kDa and in the

stacking region, even if monomers became completely undetect-

able (data not shown). Labeling in the stacking region may result

form non-specific interactions and/or network like crosslinking of

macromolecular complexes. Therefore, if higher-order multimers

are present in granulocytes their occurrence is much less likely

than that of dimers or interactions with other proteins.

Hv1 primarily localizes to intracellular membranes in
granulocytes

Data on the subcellular distribution of native Hv1 in human

granulocytes is lacking, but a recent study demonstrates that the

heterologously overexpressed Hv1 locates to intracellular mem-

brane compartments in HeLa cells [19]. The accumulation of Hv1

in phagosome membrane in mouse granulocytes [12] and in late

endosomes of human lymphocytes [20] was also demonstrated. To

explore the subcellular distribution of Hv1 in human granulocytes,

purified, adherent granulocytes, adherent PLB-985 granulocytes

and smears of whole blood were labeled with aHv1-N along with

the monoclonal anti-Nox2 antibody 7D5 [21]. Nox2 labeling was

routinely applied to see whether the strong functional coupling

between Nox2 and the voltage-gated proton channel [11] is

mirrored in their distribution. Another rationale of 7D5 colabeling

is that the localization of Nox2 in granulocytes is relatively well

explored [22,23]. Distribution of Hv1 and Nox2 was detected

using confocal laser scanning microscopy. Eosinophils displayed

strong labeling with aHv1-N, while neutrophils generally were

labeled weaker but with variable intensity (Fig. 3a). Differentiated

PLB-985 cells also displayed significant labeling for Hv1.

Subcellular colocalization of Hv1 and Nox2 was a general finding.

The lowest correlation in the two signal intensities was detected in

neutrophils. Pearson’s coefficients for neutrophils, eosinophils and

differentiated PLB-985 cells were 0.6860.03 (n = 5) 0.8460.03

(n = 5), and 0.9260.03 (n = 4), respectively. The moderate

correlation in the two signal intensities in neutrophils, as compared

to the other leukocyte types, was surprising. Therefore, the analysis

was repeated in DFP-pretreated neutrophils (Fig. 3a) to inhibit

serine proteases and apoptosis [24]. Under these conditions

Pearson’s coefficients increased to 0.7860.2 (n = 8, p,0.05,

Kolgomrov-Smirnov test). This result indicates that proteolytic

degradation can spoil the detection of Hv1 also in immunofluo-

rescence experiments, resulting in the underestimation of Hv1 and

Nox2 colocalization. Among granulocytes PLB-985 cells displayed

the most pronounced granular pattern, but in none of the tested

leukocyte types localized Hv1 dominantly to the cell surface. Weak

or no signal was present over the nucleus in mature cells (the

results obtained on mononuclear cells are available as Fig. S2a).

To verify the results obtained with confocal microscopy, WBs

were performed on subcellular fractions of resting neutrophils.

Confirming the results from confocal slices, significant Hv1 signal

could be detected in fractions of both granule (b1 and b2) and

plasma membrane origin (c, Fig. 3). The distribution of Hv1 and

Nox2 among the different fractions was similar, although not

strictly correlated. Azurophil (a) granules, that are practically

devoid of Nox2 [22], sometimes displayed marginal labeling for

Hv1 (not shown). In case of eosinophils, the strong colocalization

with Nox2 suggests that Hv1 localizes to the plasma membrane

and to the membrane of small granules [23].

Phagocytosis induces Hv1 clustering
The prevailing view about the role of proton channel in

phagocytes is that the channel is essential for the sustained activity

of the phox during respiratory burst, mainly to provide

compensatory charge for the depolarizing electron flow [9]. For

such a task, proton channels should locate to the membrane

compartment of intense electron transport, i.e. to the site of

oxidase assembly and activity. Phagocyte NADPH oxidase

promotes the antimicrobial activity of the phagosome during

pathogen elimination [25], and assembly of phox subunits at the

site of phagocytosis have been demonstrated [26,27]. To explore

whether Hv1 is present on phagosomes, phagocytosis was induced

by the addition of serum opsonized zymosan to purified, adherent

granulocytes (more than 90% neutrophils) and to PLB-985 cells

differentiated into granulcyte like cells. After 10 min the formation

of phagocytic cups and closed phagosomes could be detected.

Intense 7D5 labeling around engulfed zymosan particles indicated

the accumulation of Nox2 in the phagosomal membrane (Fig. 4).

Often overlapping with the 7D5 signal, the accumulation of aHv1-

N labeling in zymosan surrounding areas was also pronounced in

both cell types. The phagosomal accumulation of Hv1 does not

appear to require a functional oxidase, because strong clustering of

the aHv1-N signal could also be detected in differentiated PLB-985

X CGD cells, a PLB-985 clone in which Nox2 is absent (i.e. the

mutant, ,56 kDa Nox2 gene product is not functional and is

readily degraded) [28].

Hv1 in Leukocytes
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Figure 3. Partial colocalization of Hv1 and Nox2 in different types of human granulocytes. (a) Detection of Hv1 (left-most column) and
Nox2 (middle) in granulocytes. (Scale bars represent 5 mm). Pretreating neutrophils with DFP improved the detection of Hv1. Colocalization analysis

Hv1 in Leukocytes
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Hv1 expression and proton current density are correlated
in PLB-985 cells

Leukocytes from Hv1 knockout mice lack voltage-gated proton

currents, indicating that Hv1 is essential for these currents in the

mouse [12–14]. A similar genetical model is not available in

human, as no inherited Hv1 deficiency has been reported.

Therefore, an ultimate proof is lacking to qualify Hv1 as the

proton channel molecule of human leukocytes. To investigate the

was performed only in cells, in which above-threshold labeling (two times above background, see below) for both proteins could be detected.
Colocalizing pixels are displayed as white dots in the most right column. Negligible Alexa FluorH signals (considered as background) were detected
with control primary antibodies (not shown). (b) Western blot analysis of the distribution of Hv1 and Nox2 between granule fractions of resting
neutrophils after standard reducing PAGE. Ponceau stain confirmed that similar protein amount was loaded each lane (not shown). The different
fractions are: azurophil (a), specific (b1), gelatinase (b2) granules and secretory vesicle together with plasma membrane (c). Immunodetection of
lactoferrin, gelatinase, CD14 and the heavy chain of myeloperoxidase (MPOHC) demonstrates the purity of the membrane preparates [22].
doi:10.1371/journal.pone.0014081.g003

Figure 4. Partial intracellular colocalization of Hv1 and Nox2 in phagocytosing granulocytes. Hv1 (first raw) and Nox2 (second raw) tend
to cluster during Zymosan phagocytosis, as detected in immunofluorescence experiments using confocal laser microscopy. The locations of
zymosans are indicated by white asterisks. Forming (phagocytic cup, first column) and closed phagosomes (second and third column) are visible as
round, hollow structures. In further analyses only pixels with intensity at least two times the average intensity (threshold) observed in experiments
with control antibodies were included (activated phagocytes displayed significant, diffuse labeling in control experiments, not shown). Clusters of Hv1
and Nox2 are often colocalized (third row). Colocalizing pixels are superimposed as white dots on the dimmed picture of 7D5 labeling (scale bars
represent 5 mm). Hv1 clustering is independent of Nox2 in PLB-985 cells (fourth raw). Cell perimeter (as derived form background labeling with Hv1) is
outlined in gray, and above-threshold Hv1 labeling is presented as white dots. In the fifth raw above-threshold Hv1 signals are superimposed as white
dots over the (dimmed) visible light transmission image of phagocytosing cells. Pseudo color, 3D reconstructions of the cells in the 3rd and 4th
columns are provided as supplemental Videos S1 and S2, respectively.
doi:10.1371/journal.pone.0014081.g004

Hv1 in Leukocytes
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putative proton channel role of Hv1 in human leukocytes, three

small interfering RNAs (siRNAs) were designed corresponding to

sequences only present in the Hv1 mRNA. Of the three siRNAs

two (si-1 and si-2) efficiently knocked down Hv1 expression in

transfected COS-7 cells (not shown), as compared to their

minimally altered control sequences (si-1c and si-2c). Of the two

effective constructs only the si-2/-2c pair proved to be non-toxic

in long-term cell culture experiments. To establish the relation-

ship between Hv1 level and proton current density in a human

myeloid leukemia cell line, PLB-985 cells were stably transfected

with plasmids containing puromycin resistance gene and a short

hairpin RNA (shRNA) sequence encoding either si-2 or si-2c.

After the analysis of Hv1 protein expression in puromycin-

resistant PLB-985 clones, three control and two Hv1 knock-down

clones were tested in whole-cell patch-clamp experiments

(Fig. 5a). The results indicate that the density of characteristic

voltage-gated proton currents and the Hv1 expression level is well

correlated in non-differentiated PLB-985 clones (Fig. 5b). Fur-

thermore, the expression of the same shRNAs in a lymphoid

leukemia cell line (Jurkat) also resulted in the reduction of proton

current density (Fig. S3). These data support the view that Hv1 is

indispensable for voltage-gated proton currents in human

leukocytes.

Hv1 and Nox2 expression is upregulated in parallel
during granulocytic differentiation

During granulocytic differentiation of human HL-60 leukemia

cells the occurrence and development of proton conductance is

paralleled by the functional and biochemical appearance of the

phox [29]. We were interested whether the expression of the two

proteins is by any means correlated during granulocytic

differentiation. In PLB-985 cells, a subclone of HL-60 cells

[30], the level of phox components also increases upon

granulocytic differentiation [28]. We decided to use PLB-985

cells to study the relationship between Hv1 and Nox2 expression,

since a Nox2 gene-disrupted clone is also available (PLB-985 X

CGD [28]). The expression level of both Hv1 and Nox2

gradually increased after inducing differentiation with DMFA

(Fig. 6a). The change in the amount of both proteins was most

pronounced during the first two days. To test whether this

parallel change in protein level reflects an interdependence of

Hv1 and Nox2 expression, the experiment was repeated in Nox2

deficient (X CGD) PLB-985 cells. Each tested day after starting

the DMFA-induced differentiation the Hv1 expression appeared

reduced in Nox2 deficient cells (Fig. 6a). The difference in aHv1-

N labeling of the two cell lines after 6-day long DMFA induction

was also detected in immunofluorescence experiments (not

shown). Hv1 expression might be impaired in PLB-985 X

CGD cells for the following reasons: a) PLB-985 X CGD clone

has a general differentiation problem, b) PLB-985 X CGD is a

clone in which Hv1 expression is diminished in a Nox2

independent manner or c) normal Nox2 expression is required

for normal Hv1 expression. The latter does not seem to be a key

factor, because no major difference in the Hv1 level could be

observed on day 7, if the differentiation pressure was increased

by reducing the serum content of the culture medium (from 10 to

0.5% v/v [31], Fig. 6a).

The fact that the lack of functional phox does not have a

dramatic impact on Hv1 expression does not rule out that normal

expression of phox subunits requires normal Hv1 levels. To test the

latter possibility, PLB-985 cell clones that express normal or

diminished amounts of Hv1 were differentiated for 7 days in

DMFA containing, low-serum medium. As Fig. 6b demonstrates,

massive reduction in Hv1 level does not prevent high-level

expression of the phox subunits Nox2, p22phox and p47phox.

Reduced expression of Hv1 can limit superoxide
production

The rate of ROS production is significantly reduced in

leukocytes from Hv1 knockout mice [12–14]. Supposing that the

role of Hv1 is the same in mouse and human leukocytes, one

Figure 5. Correlation between Hv1 and voltage-gated proton
current. (a) The expression level of Hv1 (top) and the corresponding IHv

density (below) is presented in selected PLB-985 clones. The clones
were transfected with a plasmid producing siRNA capable of knocking
down Hv1 expression (si-2) or its control siRNA (si-2c). For WB total cell
lysates of 106 cells were loaded each lane. The IHv density in clone F2 is
significantly smaller than in E9 and G11 (p,0.05, Kruskal-Wallis test) (b)
Mean IHv density value is plotted against the corresponding Hv1 signal
normalized to p43 signal, as measured with densitometry. The values of
each clone are divided by the values of clone E9. Dotted line is the
result of linear fit constrained to path through the origin (R.0.97,
p,0.005).
doi:10.1371/journal.pone.0014081.g005
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should observe reduced ROS production in cells that display

decreased Hv1 expression. Surprisingly, however, in pilot

experiments the PMA-induced superoxide production of the Hv1

knock-down F2 and B7 PLB-985 clones exceeded that of G9 and

G11 control clones, and was only inferior to that of clone E9 (not

shown). We suspected that this result might be explained by the

large heterogeneity in the Nox2 expression level of PLB-985 clones

(Fig. 6b). The PMA-induced ROS production of Hv1
-/- mouse

granulocytes was reported to be normalized by incorporating

monovalent cation channels (gramicidin peptides [32]) into their

cell membrane [14]. Although the conductances for the monova-

lent cations through gramicidin channels are ranked in the same

order as their aqueous mobilities (i.e. proton moves fastest [32]), it

is unlikely that significant proton extrusion through gramicidin

was possible in the presence of normal intracellular K+

concentration. This indicates that charge compensation, rather

than proton removal, became the bottleneck for ROS production

in PMA-activated Hv1 deficient cells. If the superoxide production

of a differentiated PLB-985 clone in which Hv1 expression is

knocked-down is also limited by shortage of compensatory charge

Figure 6. The functionally coupled Hv1 and Nox2 are induced in parallel, but largely independently during granulocytic
differentiation in PLB-985 cells. (a) Normal Hv1 expression can be induced in the absence of normal Nox2 level. For WB total cell lysates of 106

cells were loaded each lane. Samples of PLB-985 cells were prepared before (0) and 2, 4, 6 days after inducing differentiation with 0.5% DMFA. In a
separate sample (7*) cells were differentiated for 7 days, and DMFA treatment was applied in low-serum culture medium (0.5% v/v) to increase the
differentiation pressure. Different anti-Nox2 labeled bands correspond to different glycozilation states of the 65 kDa Nox2 protein. (b) The normal
expression of different phox subunits (Nox2, p22phox and p47phox) is not disturbed by strongly reduced Hv1 expression in differentiated PLB-985 cells.
(c) Amongst differentiated PLB-985 clones amphotericin B amplifies superoxide production (2.9260.48 times at 15 min, p,0.05, Mann-Whitney U
test) only in clone F2, in which Hv1 expression is strongly diminished. No significant change in superoxide production was detected in E9, G9 and B7
clones in the presence of amphotericin B. Diogenes

TM

reagent was used to detect the extracellular release of superoxide. Cells were preincubated for
15 min in a 1:1 mixture of Diogenes

TM

and H-medium with or without 10 mg/ml amphotericin B. At time point 0 cells were activated by 200 nM PMA.
Negligible Diogenes

TM

luminescence could be detected in PMA-treated, non-differentiated PLB-985 clones and during the preincubation period (not
shown).
doi:10.1371/journal.pone.0014081.g006
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flow, we should be able to compensate for it using an artificial

conductance. Therefore, we measured the PMA-induced extra-

cellular superoxide release of two control (E9, G9) and two Hv1

knock-down (F2, B7) clones with or without preincubation with

the ion channel forming antibiotic amphotericin B. In the presence

of amphotericin B only F2 clone displayed significant increase in

PMA-induced superoxide production, and only in its early phase

(Fig. 6c). Superoxide production declined after ,20 min in the

presence of Amphotericin B, an effect which was not specific for

clone F2. As clone F2 express high level of Nox2 but very few Hv1,

the above results support the notion that charge movement

through Hv1 can become rate-limiting for very intense ROS

production in human cells.

Discussion

A decade-long debate about the identity of the voltage-gated

proton channel molecule came to an end when Hv1 (from human

[3] and mouse [2]) was cloned in 2006. Many publications since

have investigated the expression, structure and possible role of Hv1

in heterologous expression systems and in mouse leukocytes. On

the other hand, data on Hv1 in human leukocytes [20], especially

in granulocytes, are scarce. This study was aimed to define the

main characteristics of Hv1 in human granulocytes.

Hv1 supports voltage-gated proton current in human
leukocytes

It has been taken for granted that Hv1 is the proton channel

molecule in human leukocytes, but it has never been formally

demonstrated. Now we have found that the expression levels of

Hv1 in major types of human blood leukocytes (Fig. 1) correspond

well to proton current density data obtained in these cells. T-cells

display only tiny proton currents (0.9 pA/pF [1]) and the

expression of Hv1 mRNA and protein in these cells, if any, is

below the reliably detectable level. In B-cells and granulocytes the

abundant expression of Hv1 protein is in accordance with their

pronounced proton current amplitudes (,17–200 pA/pF [1]).

Peripheral blood monocytes also display remarkable Hv1 expres-

sion, but electrophysiological data is not available about voltage-

gated proton currents in this cell type. Nevertheless, the presence

of such currents in macrophages and in THP-1 monocyte like

leukemia cell line has been extensively demonstrated [1]. In line

with the above data, in our experiments knocking down Hv1

expression in leukemia cell lines PLB-985 and Jurkat, resulted in

reduced IHv density (Figs. 5 and S3, respectively). Taken together,

the available data strongly support the notion that Hv1 expression

is essential for voltage-gated proton currents in human leukocytes.

Hv1 is capable of forming stable dimers in human
granulocytes

The dimeric nature of Hv1 had been extensively investigated

and characterized in heterologous expression systems [6–8].

Available results indicate the role of the C- [7,8,19] and N-

terminal [6,8] intracellular domains and of the extracellular loop

between S1-S2 transmembrane helices [7] in dimerization.

Importantly, monomers and dimers of Hv1 give rise to kinetically

distinct IHvs. Monomeric Hv1 activates faster upon depolarization

[8], while subunits in the dimer display cooperative behavior [33].

Based on the above results, it was suggested that the differences in

IHv kinetics of different cell types and of resting and activated

phagocytes might be explained by differences in the dimer to

monomer ratio of Hv1. Now we have demonstrated for the first

time that in case of endogenously expressed Hv1, the dimer form is

also abundantly present in all major types of human leukocytes

and in differentiated PLB-985 cells (Figs. 2 and S2b). The

existence of distant dimerization sites (see above) could theoret-

ically allow the formation of higher-order Hv1 multimers (e.g. tri-

or tetramers) as well, supposing that Hv1 density is high enough in

the membrane. However, in spite of various attempts, we could

not prove significant formation of such multimers in human

granulocytes.

The Hv1 dimer is stabilized, at least in part, by strong polar

interactions in granulocytes, because high concentration of ionic

detergent (4% SDS) was required to efficiently disrupt them

(Fig. 2a). On the other hand, disulfide formation between

monomers appears to be a minor contributor of dimer

stabilization. The human Hv1 contains only two cysteines, of

which cys249 in the C-terminal intracellular domain is positioned

so that it is amenable to dimer stabilization [7,19]. Similar to the

data obtained with heterologously expressed Hv1 [7,19], our

results with SH-reagents indicate that this cysteine is in reduced

form also in resting granulocytes (Fig. 2b). Redox compounds, e.g.

cytoplasmic NADPH [15] or ROS [18], could theoretically affect

dimer stability through cys249, but further experiments are

required to prove that such changes actually occur and influence

the properties of IHv. Nevertheless, our results with SH-reagents

do not indicate a major change in the redox state of this cysteine

upon PMA-induced respiratory burst (Fig. 2b). The C-terminal

domain of Hv1 forms coiled-coil [19], a structure often involved in

interactions between ion channel subunits, and it seems to be

involved in Hv1 dimer stabilization [7,8,19]. The role of the

largely unstructured N-terminal intarcellular domain [7] in dimer

formation is less clear. The artificial removal of its intracellular C-

terminal domain led to diminished dimer formation by Hv1, a

phenomenon that was exacerbated by the concomitant removal of

the N-terminal intracellular domain [8]. In our experiments Hv1

appeared prone to cleavage by proteases (Figs. 1c and 3a). How

cleavage of intracellular domains could contribute to the changes

in IHv phenotype upon granulocyte activation is not clear, since

those changes are largely reversible [15,34]. Nevertheless, the

cleavage and/or degradation of the N-terminal domain may still

possess a more general regulatory potential in leukocytes, as its

overexpression inhibited the proliferation of a premature B-cell

lymphoma cell line [35]. In summary, our data do not support the

notion that granulocyte activation induces changes in dimer to

monomer ratio, as the efficiency of crosslinking was independent

of PMA addition (Fig. 2b). Furthermore, based on indirect

evidences, the idea that monomer-dimer interconversion occurs

during activation of phagocytes was recently challenged by others

as well [36].

Hv1 resides mainly in granular membranes in human
granulocytes

The heterologously expressed Hv1 was confined to intracellular

membranes in HeLa cells in a C-terminus dependent manner. On

the other hand, native Hv1 was mainly detected in the plasma

membrane and in endosomes of human B-cells [20] (see also Fig.

S2a). Our results obtained with subcellular fractionation and

confocal imaging concordantly demonstrate that in case of resting

human granulocytes Hv1 is mainly located to the membrane of

intracellular granules, but its presence at the plasma membrane is

also significant (Figs. 3b–c).

The functionally coupled Hv1 and Nox2 are expressed
largely independently

Voltage-gated proton channel is viewed as a well-suited tool to

support the intense transmembrane electron transport by the phox

Hv1 in Leukocytes
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during phagocyte respiratory burst [11]. In line with this view,

activation of the phox promotes proton channel activity by

speeding up its activation, delaying its deactivation and shifting its

threshold potential to more negative values [1,37]. Additionally,

recent reports demonstrated significant reduction in the ROS

producing capability of PMA-activated neutrophils [12,14], bone

marrow cells [13] and B-cells [20] from Hv1 KO mice. Notably,

these cells were devoid of IHv. This strong functional coupling

between H+ and e2 transport prompted us to investigate, how the

expression and distribution of Hv1 and Nox2 are related in human

leukocytes. The strong functional coupling of Hv1 and phox is

nicely reflected in their expression, because a) Nox2 and Hv1

display colocalization in different types of phagocytes (Figs. 3a and

S2a), b) their expression is induced in parallel during granulocytic

differentiation in PLB-985 cells (Fig. 6a) and c) both proteins tend

to accumulate in the phagosome membrane during zymosan

engulfment (Fig. 4). It has to be emphasized, however, that the

accumulation of Hv1 in phagosomes and the early and massive

induction of Hv1 expression during differentiation occur in PLB-

985 cells even if functional Nox2 is absent (Figs. 4 and 6a). In

analogy with the latter result, resting granulocytes from Nox2

deficient patients display normal IHv density [1]. Furthermore, we

could not detect Nox2 labeling in many of the lymphocytes, which

labeled strongly for Hv1 (Fig. S2a). The above data confirm that

high level Hv1 expression does not require the presence of Nox2.

Conversely, a massive reduction in Hv1 expression does not

interfere with the intense expression of phox subunits in PLB-985

cells (Fig. 6b). In this respect it is important that leukocytes from

Hv1 KO mice express the phox subunits rather normally [12], and

exhibit normal Nox2 mediated electron currents [14,38]. Al-

though Hv1 and phox are practically independently expressed, the

available data indicate that Hv1 deficiency leads to restricted phox

activity in mouse leukocytes [12–14]. Importantly, no naturally

occurring human Hv1 deficiency has been reported to date.

Chances, however, seem to be low for finding such a case, because,

unlike in the mouse, high level Hv1 expression is likely required for

normal fertility in human [39]. Our results obtained using RNA-

interference now demonstrate that severely reduced Hv1 expres-

sion can become a limiting factor for superoxide production also in

granulocytes differentiated from the human leukemia cell line

PLB-985 (Fig. 6c).

Is Hv1 the only proton channel in neutrophils?
Several lines of evidence indicate that Hv1 functions as a proton

channel in mouse and human leukocytes. The fact that Hv1 is a

proton channel does not rule out that another proton channel may

exist and might be involved in supporting ROS formation in

granulocytes. For many years Nox2 was viewed as a potential

candidate to mediate proton current in human granulocytes,

especially upon activation of ROS production [16,17]. In this

respect it is interesting to note that Hv1 deficient mouse leukocytes

display significant ROS production [12–14]. Similarly, our PLB-

985 clones are capable of intense ROS production even if Hv1

expression is severely damaged. These findings may give the

impression that Hv1 is not the only protein that can attenuate the

charge separation by Nox2. Therefore, one has to pose the

following questions. Is another proton channel present in

neutrophils? If no other proton channel is present, how can one

explain the above contradictions? The strongest evidence against

an ancillary proton channel was obtained in Hv1 deficient mouse

neutrophils. These cells display normal electron currents upon

activation, but do not show any trace of voltage-gated proton

current under resting and PMA-activated conditions [14,38]. This

indicates that these cells assemble functional oxidase at the plasma

membrane, but neither Nox2 nor another channel seem to

conduct protons, at least not in a depolarization-activated fashion.

Whether Nox2 or another molecule is capable of conducting

protons in a voltage independent manner remains to be tested.

How can one explain the significant ROS production in Hv1

deficient mouse leukocytes? It is very likely that in a KO system

other transporters can partially compensate for the absence of

voltage-gated proton channel activity. Furthermore, potassium

and chloride channels had been suggested to participate in charge

compensation even in normal granulocytes [25]. Whether such

mechanisms are upregulated in the absence of Hv1 remains to be

elucidated. Although some controversy exists [1,16,17], it is likely

that similar to the mouse ortholog human Nox2 does not mediate

voltage-gated proton current. In line with this assumption, the

density of voltage-gated proton current correlates well with Hv1

(see above), but not with Nox2 [1] expression among different

human leukocyte types and among PLB-985 clones (Fig. 5).

In summary, beside monomers endogenously expressed Hv1

forms stable proton channel dimers in resting and activated

human granulocytes. The characteristics and expression pattern of

Hv1 is optimized to support intense phox activity. As the role of

ROS production may not be the same in all leukocytes [20,40],

the largely independent expression of Hv1 and phox components

allows fine-tuning of their teamwork.

Materials and Methods

Solutions
For patch-clamp recordings the bath solutions contained (mM):

CsCl 1, tetraethylammonium chloride 1, MgCl2 2, EGTA 1, N-

methyl-D-glucamine base 101 and HEPES acid 200 (pH 7.55).

The pipette solution contained in (mM): CsCl 1, tetraethylammo-

nium chloride 1, MgCl2 2, EGTA 1, N-methyl-D-glucamine base

101 and MES acid 200 (pH 6.15). H-medium contained (mM):

NaCl 145, KCl 5, MgCl2 1, CaCl2 0.8, HEPES 10 and glucose 5

(pH adjusted to 7.4 with NaOH). Disuccinimidyl suberate (DSS),

N-ethylmaleimide (NEM), N,N9-(1,3-phenylene)dimaleimide

(PDM) were dissolved in DMSO at 250 mM, 400 mM and

10 mM, respectively. Amphotericin B and phorbol-12-myristate-

13-acetate (PMA) were first dissolved in DMSO at 80 mg/ml and

5 mM, respectively, then diluted in H-medium to yield stock

concentrations of 1 mg/ml and 20 mM, respectively. Phenyl-

methanesulfonyl fluoride (PMSF) was dissolved in ethanol at

100 mM.

Cell culture and transfection
All cell lines but PLB-985 X CGD (see below) were purchased

from ATCC-LGC (www.lgcstandards-atcc.org) and cultured

following the instructions provided by ATCC-LGC with minor

modifications, as follow. COS-7 cells were cultured in Dulbecco’s

modified Eagle’s medium (GibcoBRL, Csertex kft, Hungary)

supplemented with 10% heat inactivated fetal calf serum (FCS,

GIBCO, Invitrogen, www.invitrogen.com), 100 i.u./ml penicillin

and 100 mg/ml streptomycin. PLB-985 and Jurkat cells were

grown in suspension in complete RPMI 1640 medium supple-

mented with 10% FCS, 100 i.u./ml penicillin and 100 mg/ml

streptomycin. For transfection COS-7 cells were plated in 30 mm

plastic tissue culture dishes (Greiner Bio-One, www.greinerbioone.

com) and transfected (1 mg plasmid DNA) one day after plating

using Lipofectamine 2000 (Invitrogen, www.invitrogen.com).

Leukemic (PLB-985 and Jurkat) cells were transfected by

electroporation (Amaxa Nucleofector Device, Amaxa Biosystems,

www.amaxa.com), using the Cell Line Nucleofector Kit V from

(Amaxa Biosystems). For establishing clones from puromycin
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(1 mg/ml) resistant cell populations the limiting dilution method

was used. For differentiation of PLB-985 and PLB-985 X CGD

([28] generously provided by Mary C. Dinauer, Indianapolis) cells

into neutrophil granulocyte like cells, the culture medium was

supplemented with 0.5% v/v dimethylformamide (DMFA) with or

without reducing the medium’s FCS content to 0.5% v/v (to

promote differentiation [31]).

Isolation of blood cells and granule fractions
Blood cells were prepared from venous blood drawn from

healthy adults after obtaining their informed and written consent.

Red blood cells (RBCs) and leukocytes (WBCs) were separated by

dextrane sedimentation. To separate mononuclear cells (MCs)

from granulocytes (PMNs), WBCs after dextran sedimentation

were layered on Ficoll-Paque Plus (GE Healthcare, www.

gelifesciences.com) and centrifuged at 400 g for 20 minutes.

Remaining RBCs were hemolysed by 30 s exposure to distilled

water, followed by reconstitution of the osmolality with equal

volume of 1.8% w/v NaCl in distilled water and by centrifugation

(400 g, 5 minutes). Pellets containing PMNs or MCs were used to

further separate fractions of WBCs by postive or negative selection

utilizing fluorochrome or paramagnetically labeled antibodies

(MicroBeads) and magnetic separator (VarioMacs) purchased

from Miltenyi Biotec (www.miltenyibiotec.com). Eosinophil

(CD16-) and Neutrophil (CD16+) fractions of PMNs were

separated using CD16 MicroBeads. Monocytes were purified

from MCs through positives selection with CD14 MicroBeads.

After monocyte depletion of MCs, the remaining lymphocytes

could be further dissociated into T-cells and B-cells on a

FACSvantage DIVA cell sorter (Becton Dickinson, San Jose,

CA) using CD3- or CD19-specific antibodies, respectively (anti-

CD3-PE mAb, Beckman Coulter, Fullerton, CA; anti-CD19-

FITC mAb, BD Pharmingen, San Diego, CA).

Garnule fractions of human neutrophils were prepared and

tested for their identity and purity as described in Ref. [41]. Only

preparations that provided the expected antigenicity profile were

used. Membrane fractions were boiled for 5 min in reducing

Laemmli sample buffer and stored at -70 C until use. The

following fractions were separated: azurophil granule (a), specific

granule (b1), gelatinase granule (b2) and secretory vesicle along

with plasma membrane (c).

Western blotting
Sample buffers contained 5% v/v b-mercaptoethanol as

reducing agent unless otherwise specified. Samples were not heat

treated unless otherwise stated. Mononuclear leukocytes were

lysed on ice in 2x Laemmli sample buffer. Unless otherwise

specified, for lysing granulocytes and PLB cells, 4x Laemmli

sample buffer was mixed with equal volume of distilled water

(dH2O) supplemented with 5 mM EDTA (250 mM stock in

dH2O, pH 7.4 with NaOH) and protease inhibitor cocktail (1

Complete Mini tablet in 10 ml dH2O, Roche Applied Science,

www.roche-applied-science.com). When indicated, granulocytes

and PLB-985 cells were incubated in nominally calcium and

magnesium free media (RPMI 1640 with 5 mM EDTA or PBS)

supplemented with diisopropylfluorophosphate (DFP, 1:5000) for

30 min on ice before lysis. DSS crosslinking was performed for

20 min on room temperature. The reaction was quenched by

20 mM TRIS-HCl (pH 8.0). Reactions with NEM (20 mM),

PDM (50 mM) or PDM + DSS were carried out on ice for 40 min

on ice. PDM crosslinking was quenched with 20 mM NEM. These

reagents are lipophil, and were added directly to cells (106 cells in

1 ml sterile PBS) in the presence of DFP. After stopping the

reactions, cells were pelleted by centrifugation (at 200 g for 3 min)

and lysed in 30 ml 2x Laemmli sample buffer supplemented with

2 mM PMSF. Samples were run on 8 or 10% polyacrylamid gel

and blotted onto nitrocellulose membrane. To block non-specific

binding sites in Western blot experiments (WB), 5% w/v skimmed

milk powder was applied in phosphate buffered saline (PBS,

pH 7.4) for 1 hour. After incubating the membranes with the first

antibody (rabbit polyclonal or mouse monoclonal) for 1 hour,

membranes were washed 5 times in PBS 0.1% v/v Tween20.

Horseradish peroxidase labeled anti-rabbit or anti-mouse second-

ary antibody was added in 1:5000 dilution (in PBS, 0.1% v/v

Tween20, 1% w/v skimmed milk powder) for 40 min, followed by

washing five times in PBS 0.1% v/v Tween20. Signals were

detected on FUJI Super RX films (Fujifilm, www.fujifilm.com)

using the enhanced chemiluminescence method (GE Healthcare,

ECLTM Western Blotting Analysis System).

Immunofluorescent labeling
In immunofluorescence experiments (IF) cells attached to

coverslips were fixed in 4% w/v paraformaldehyde in phosphate

buffered saline (PBS, pH 7.4) then rinsed 5 times in PBS and

incubated for 10 minutes in PBS containing 100 mM glycine.

Coverslips were washed 2 times in PBS and cell permeabilization

was carried out in PBS containing 1% w/v bovine serum albumine

(BSA) and 0.1% v/v Triton X-100 for 20 min. To block non-

specific binding sites (e.g. Fc-receptors of WBCs) 10% v/v pooled

human serum (from at least 3 healthy donors, self made), 10% v/v

normal goat serum, 10% v/v human Fc-receptor blocking reagent

(Miltenyi Biotec) and 1% w/v bovine serum albumin were applied

in PBS for 1 h. Coverslips were then incubated with the primary

antibody, washed thoroughly 6 times in PBS and incubated with

the secondary antibody for 1 hour and finally washed 6 times in

PBS again. Coverslips were mounted using Mowiol 4–88 antifade

reagent (prepared from polyvinyl alcohol 4–88, glycerol, H2O and

TRIS pH 8.5). In IF 5% v/v pooled human serum, 5% v/v

normal goat serum, 5% v/v human Fc-receptor blocking reagent

and 1% w/v bovine serum albumin were present during the

application of antibodies.

Antibodies
To detect human voltage-gated proton channel, affinity purified

rabbit polyclonal antibody was used at 2 (WB) or 4–8 (IF) mg/ml.

To produce polyclonal anti Hv1- antibody (aHv1-N), female white

rabbits were immunized with the N-terminal 99 amino acids of

Hv1 tagged with glutathion-S-transferase. The same peptide

construct (covalently bound to Affi-Gel 15 media, Bio-Rad

Laboratories, www.bio-rad.com) was used for affinity purification

of aHv1-N, after the serum of the immunized rabbit was depleted

for anti-glutathion-S-transferase antibodies. As negative control for

aHv1-N normal rabbit Ig-G (Santa Cruz Biotechnology, www.

sbct.com) was applied at 8 mg/ml. To detect gp91phox with

immunofluorescence, supernatant of the mouse monoclonal

hybridoma 7D5 [21] was used at 20-time dilution, and purified

mouse IgG1 (BD Biosciences Pharmingen, www.bdbiosciences.

com) at 2.5 mg/ml served as isotype control. Monoclonal anti-

gp91phox antibody (m48ab [42]) was generously provided by Dr

Dirk Roos. To detect p47phox or myeloperxoidase, Cell Signaling

Technology #4312 or #4162 (www.cellsignal.com) antibody was

used, respectively. Anti-p22phox antibody (SC-20781) was pur-

chased from Santa Cruz Biotechnology Inc. (www.scbt.com).

Antibodies against gelatinase and CD14 were from Abcam

(ab76003 and ab45870, respectively, www.abcam.com). Anti-

lactoferrin antibody (L3262) was purchased from Sigma-Aldrich

(www.sigmaaldrich.com). For loading control in Western blots

anti-protein disulphide isomerase antibody (aPDI) was used
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(ab2792, Abcam). Horseradish peroxidase labeled secondary

antibodies were from GE Healthcare (for detection with GE

Healthcare, ECLTM Western Blotting Analysis System). Alexa

FluorH 488- and Alexa FluorH 568-labeled secondary antibodies

were from Molecular Probes (probes.invitrogen.com).

Confocal laser scanning microscopy and colocalization
analysis

Confocal images were collected on an LSM 510 laser scanning

confocal unit (Carl Zeiss, www.zeiss.com) with a 63X 1.4

numerical aperture plan Apochromat and a 40X 1.3 numerical

aperture plan Neofluar objective (Carl Zeiss). Excitation was with

25 mW argon laser emitting 488 nm, and a 1.0 mW helium/neon

laser emitting at 543 nm. Emissions were collected using a 500–

530 nm band pass filter to collect Alexa FluorH 488, and a 560 nm

long pass filter to collect Alexa FluorH 568 emission. Images from

optical slices of 1 mm thickness were acquired. LSM software (Carl

Zeiss) was used for image acquisition. For analyzing images the

ImgaeJ software was applied (Rasband, W. S., U.S. National

Institutes of Health, Bethesda, MD, http://rsb.info.nih.gov/ij/).

For image processing ImageJ and Pain.Net 3.5 free image editing

software (www.paint.net) were used. Analysis of Hv1 and Nox2

colocalization was performed only in cells in which at least

moderate labeling (two times above background) for both proteins

could be detected. For quantification of colocalization the

Pearson’s coefficient was used [43]. Its value (r) can range from

1 to 21 with r = 1 standing for complete positive correlation and

r = 21 for a negative correlation, with r = 0 standing for no

correlation in pixel intensities of the two channels. To demonstrate

the extent of colocalization in Figs., the colocalization highlighter

plugin of the ImageJ software was used. Before applying the

plugin, image pairs were corrected for differences in mean signal

intensities between the two emission wavelengths. Additionally,

pixels with below threshold intensity were excluded from analysis.

Unless otherwise stated, threshold was set to 20% of maximal

detectable signal intensity. Pixel pairs with intensity ratio between

0.6 and 0.621 are displayed as colocalizing.

Phagocytosis experiments
Zymosan was opsonized with pooled human serum (from at

least 3 healthy donors) by 30-min incubation at 37uC. PMNs (108/

ml) or 6-day long differentiated PLB-985 cells were allowed to

adhere on fibronectin coated glass coverslip for 10 minutes in H-

medium. To induce phagocytosis, zymosan was added to

phagocytes for 10 min at 37uC to a final concentration of

300 mg/ml.

Detection of superoxide release
To measure extracellular superoxide release, differentiated (for

6–7 days with DMFA) PLB-985 cells were suspended at ,106/ml

in a 1:1 mixture of DiogenesTM superoxide detection medium

(National Diagnostics, www.nationaldiagnostics.com) and H-

medium. Aliquots of the suspension (100 ml) were added into

wells of white, 96-well plate and prewarmed at 37uC for 15 min.

Superoxide induced chemiluminescence was detected at 37uC by a

shaking fluoro-luminometer (Ascent Fluoroscan FL, Thermo

Scientific, www.thermo.com).

Molecular biology
For cloning of Hv1 total RNA from mature dendritic cells was

isolated with Trizol reagent (Invitrogen, www.invitrogen.com).

cDNA was synthesized from 2.5 mg total RNA using oligo(dt)18

primers and RevertAid M-MuLV Reverse Transcriptase (Fer-

mentas, www.fermentas.com) in 20 ml reaction mix. The open

reading frame of Hv1 was TA cloned into pCDNA3. 1/V5-His-

TOPO vector (Invitrogen) with High Fidelity PCR Enzyme

(Fermentas) using 1 ml of the first strand as template. The sequence

was confirmed by sequencing reactions (Eurofins MWG Operon,

www.eurofinsdna.com). For real-time RT-PCR (qPCR) total RNA

was isolated as above then treated with DNaseI (Ambion, Austin,

TX). Reverse transcription was performed from 100 ng total RNA

using Superscript II reverse transcriptase (Invitrogen) and random

hexamers (Applied BioSystems, Warrington, United Kingdom)

using a standard RT reaction. Amplification reactions were

performed in an ABI PRISM 7900 sequence detector (Applied

Biosystems) using 40 cycles of 94uC for 12 seconds and 60uC for

1 min. All PCR reactions were done in duplicates with one control

reaction not containing RT enzyme. The comparative Ct method

was used to quantify the amount of HVCN1 relative to

cyclophilin. The following PCR primers and probes were used

(59–39): forward primer for cyclophilin (NM_021130) ACGGC-

GAGCCCTTGG, reverse primer TTTCTGCTGTCTTTGGG-

ACCT. Probe was FAM-CGCGTCTCCTTTGAGCTGTTT-

GCA-BHQ_1. Taqman gene expression assay for HVCN1 was

purchased from Applied Biosystems (Assay ID: Hs00260697_m1).

Sequences coding small hairpin RNAs designed to knock down

Hv1 (HVCN1, transcript variant 1) mRNA level and their

minimally changed control sequences were cloned into one of

STRIKETM U6 plasmid vectors (Promega, www.promega.com)

either containing green fluorescent protein (Cat.# C3550) or

puromycin resistance gene (Cat.# C7900) as selection marker.

The following target sequences were used (59–39): GAACGG-

CAACTCTTAAGGT (si-1), GAACCGGAACTCTTAAGGT

(si-1c), GGTGGCCCGGATCATCAAT (si-2), GGTGGCGCG-

CATCATCAAT (si-2c).

Patch-clamp measurements
Whole-cell voltage-clamp recordings were performed with an

Axoptach-1D patch-clamp amplifier (Axon Instruments, Foster

City, CA) equipped with a CV-4-1/100U headstage. Pipettes were

pulled from borosilicate glass tubing (type 1B120F-4, World

Precision Instruments, Inc., Sarasota, FL) using a P-87 puller

(Sutter Instrument Co., CA). After fire polishing, the pipette

resistance was 7–13 MV when filled with the recording solution.

The bath was grounded using an Ag/AgCl pellet. Current signal

was low-pass filtered at 100–200 Hz (23 dB, 8-pole Bessel filter)

and sampled at 250–500 Hz. Data acquisition and analysis were

performed using pClamp 6 and 8 software (Axon), respectively. To

ensure that voltage-gated proton currents were analyzed, reversal

potential of the depolarization-activated current was defined using

ramp-tail currents, as demonstrated in Fig. S3 and described

earlier in detail [15].

Data analysis
Data are presented as mean 6 S.E. unless otherwise stated.

Statistical analyses were performed using the Statistica software

(version 8, Statsoft, Inc., Tulsa, OK, USA). WB and IF

experiments were performed at least twice independently unless

otherwise stated in the figure legends.

When using transfection reagents, cell labeling kits or other

special material the instructions of the manufacturer were

rigorously followed. Chemicals were obtained from Sigma-Aldrich

unless otherwise specified. All manipulations were performed at

room temperature (23–28uC) unless otherwise stated. The studies

conformed to the standards set by the Declaration of Helsinki, and

the procedures were approved by the ethics committee of

Semmelweis University and University of Debrecen.
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Supporting Information

Figure S1 A polyclonal antibody selectively recognizes native

Hv1. To test the specificity and sensitivity of the antibody, COS-7

cells were transiently transfected with plasmid encoding V5-

epitope tagged full length Hv1 (Hv1-V5). (a) Detection of

colocalization of anti-V5 and aHv1-N labeling in Hv1-V5

transfected COS-7 cells in immunofluorescence experiments using

confocal laser scanning microscopy (Pearson’s coefficient is 0.87).

The two antibodies label the same cells and cellular structures.

Secondary antibodies were labeled with Alexa FluorH (AF, scale

bar, 50 mM). In mock transfected cells only very weak auto

fluorescence was detectable (not shown). (b) Result of colocaliza-

tion analysis performed on pixels with above threshold intensities

(see methods). Colocalizing pixels are displayed as white dots in the

most right column. (c) Anti-V5 and aHv1-N both detect Hv1-V5

in COS-7 cells transfected with the construct (C+), but not in mock

transfected (C-) cells. Only aHv1-N recognizes native Hv1 in

human eosinophils (Eo.). Labeling the house keeping enzyme PDI

with aPDI served as loading control. The estimated molecular

weights (m.w.) of the Hv1 monomer and our Hv1-V5 construct

are ,31.6 and ,36.5 kDa, respectively.

Found at: doi:10.1371/journal.pone.0014081.s001 (4.81 MB TIF)

Figure S2 Localization and structure of Hv1 in human

leukocytes. (a) Detection of Hv1 (most left column) and Nox2

(middle) in mononuclear cells. Colocalization analysis was

performed only in cells in that at least moderate labeling (two

times above background) for both proteins could be detected.

Above threshold colocalizing pixels are displayed as white dots in

the most right column. After correction for differences in mean

signal intensities between Hv1 and Nox2 labeling, threshold was

set to 20% of maximal detectable intensity. Monocytes displayed

strong labeling with aHv1-N, sometimes with strong, colocalizing

7D5 signal. Based on their staining pattern, lymphocytes could be

classified into two major groups. Cells in the first group were not

stained with either of the two antibodies (not shown), while those

in the other group showed strong aHv1-N labeling with strong

(lymphocyte 1) to background (lymphocyte 2) 7D5 signal. In

lymphocytes aHv1-N labeling often displayed a patchy pattern,

which likely arises from endocytotic vesicles (as demonstrated

earlier by others [Capasso M. et al., 2010, Nat Immunol 11: 265–

272]). Pearson’s coefficient for lymphocytes is 0.8060.02 (n = 4).

Scale bars represent 5 mm; Pearson’s coefficient for the displayed

monocyte is 0.92. (b) Demonstration of Hv1 dimers in human

mononuclear leukocytes after cross-liking with DSS in WB after a

standard reducing PAGE. Cells were preincubated with DFP

(1:5000), and DFP was present during crosslinking.

Found at: doi:10.1371/journal.pone.0014081.s002 (3.80 MB TIF)

Figure S3 Hv1 supports voltage-gated proton current in the

human lymphoid leukemia cell line Jurkat. (a) Representative

curves from whole cell patch-clamp recordings demonstrate

voltage-gated proton current in Jurkat cells transfected with control

siRNA, si-2c. Every 15 s, a long-lasting (3 s, A) or short-lasting

(0.2 s, B) activating pulse to 80 mV was applied, followed by a rapid

voltage ramp to the -90-mV holding potential (C, D). The reversal

potential of the voltage- and time-dependent current (inset) was

determined by subtracting the two ‘‘ramp tail’’ currents (C–D). (b)

Representative curves demonstrate voltage-gated proton current in

Jurkat cells transfected with a siRNA (si-2) effective in knocking

down Hv1 protein in Hv1-V5 transfected COS-7 cells (not shown).

Recordings of transiently transfected Jurkat cells were performed

48–96 h after transfection. Transiently transfected Jurkat cells were

identified based on their GFP fluorescence by illuminating the cells

at 488612 nm using a monochromator equipped 75 watt xenon

arc lamp of a monochromator equipped fluorimeter (PTI, South

Brunswick, NJ, USA). (c) Voltage protocols used in a and b. (d)

Cumulative data of proton current density (amplitude of the time

dependent current component normalized to whole cell capaci-

tance) in Jurkat cells transfected transiently with control (si-2c) or

effective (si-1 and si-2) siRNA constructs. Si-1-1-C1 is a puromycin

selected clone stably expressing si-1. (e) Western blot detection of

Hv1 in Jurkat cells. Expression level of the ,36 kDa apparent m.w.

protein is reduced in puromycin selected Jurkat cell clone stably

expressing si-1, as compared to non-transfected and to puromycin

selected, control siRNA (si-1c) transfected Jurkat cells. Labeling

with aPDI served as loading control.

Found at: doi:10.1371/journal.pone.0014081.s003 (1.13 MB TIF)

Video S1 Accumulation of Hv1 and Nox2 in the wall of

phagosomes in a neutrophil granulocyte. Pseudo color, 3D

projection established from a series of 1 mm thin confocal slices

taken along the Z axis (perpendicular to the plane of the fibronectin

coated coverslip to which the cells are attached). Green denotes

aHv1-N labeling (AF 488), while 7D5 (Nox2) labeling is presented

in red (AF 568). Only the lower of the two neutrophils in contact

displayed labeling with aHv1-N. The double labeled cell engulfed 3

zymosan particles (see also Fig. 4, third column in the manuscript).

Zymosan particles can be recognized as labeling-free spherical

structures inside the cell. Intense, overlapping clustering of the two

signals (yellow) provides better outline of one of the particles. In the

analysis only pixels with intensity at least the average intensity

observed in experiments performed with control antibodies were

included. Projection was performed to the brightest points and

pixels are interpolated.

Found at: doi:10.1371/journal.pone.0014081.s004 (0.18 MB

MPG)

Video S2 Accumulation of Hv1 and Nox2 in the wall of a

phagosome in a differentiated PLB-985 cell. Pseudo color, 3D

projection calculated from a series of 1 mm thin confocal slices

taken along the Z axis (perpendicular to the plane of the

fibronectin coated coverslip to which the cell is attached). Green

denotes aHv1-N labeling (AF 488), while 7D5 (Nox2) labeling is

presented in red (AF 568). Engulfed zymosan particle can be

recognized as labeling-free spherical structure on the cell periphery

(see also Fig. 4, fourth column in the manuscript). Intense,

overlapping clustering of the two signals can be observed in yellow.

In the analysis only pixels with intensity at least two times the

average intensity observed in experiments performed with control

antibodies were included. Projection was performed to the

brightest points, and pixels are interpolated.

Found at: doi:10.1371/journal.pone.0014081.s005 (0.25 MB

MPG)
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is highly appreciated. We sincerely thank Dr. Dirk Roos (Amsterdam) and
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membrane fractions and Dr. András Spät for his critical reading of the

manuscript.

Author Contributions

Conceived and designed the experiments: GLP AO MB IK BR ÁL AR ÉR
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