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The characterization, control, and reporting of environmental conditions in mammalian cell
cultures is fundamental to ensure physiological relevance and reproducibility in basic and
preclinical biomedical research. The potential issue of environment instability in routine cell
cultures in affecting biomedical experiments was identified many decades ago. Despite
existing evidence showing variable environmental conditions can affect a suite of cellular
responses and key experimental readouts, the underreporting of critical parameters
affecting cell culture environments in published experiments remains a serious
problem. Here, we outline the main sources of potential problems, improved guidelines
for reporting, and deliver recommendations to facilitate improved culture-system based
research. Addressing the lack of attention paid to culture environments is critical to improve
the reproducibility and translation of preclinical research, but constitutes only an initial step
towards enhancing the relevance of in vitro cell cultures towards in vivo physiology.
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INTRODUCTION

Mammalian cell cultures have been a foundational resource in almost every biomedical research
program since the 1990s (Petricciani, 1995; Hu and Aunins, 1997; Merten, 2006). The use of
mammalian cell cultures as preclinical models ranges from the characterization of in vivo
physiological mechanisms and manipulation of disease-related pathways to the maintenance of
stem cells for therapeutic purposes. Culture systems are used to maintain cells in a state that mimics
in vivo physiological conditions (Papkovsky, 2004; Michl et al., 2019), ensuring the clinical
compatibility of experimental findings. Physiological conditions in mammalian cell cultures
typically aim to mimic conditions in extracellular fluids, including temperature, typically
adjusted to 37°C, O2 to 18.6%–20.9%, CO2 to 5%, and pH adjusted to 7.4 units (Wenger et al.,
2015). Maintaining relevant physiological conditions in cell cultures is of paramount importance to
ensure the reproducibility of published findings and the translational relevance of experimental data
to clinical applications. Yet, inadequate reproducibility of experimental findings in biomedical
research is an increasingly well-recognized problem (Begley, 2013; Collins and Tabak, 2014),
contributing to delays in drug discovery and therapies (Freedman et al., 2015).

Best-practice guidelines are used to ensure standards in biomedical research, encompassing
multiple aspects of the research practice (Baust et al., 2017), but have not yet included comprehensive
standards for the reporting or control of environmental conditions in cell-culture systems. The most
common approach to in vitro cell culture is when cells are grown either in suspension or as adherent
monolayers in standard media within tissue culture flasks (defined here as “standard batch culture”).
This approach is most popular since it reliably induces the proliferation of cells, is affordable, and
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scalable in terms of the possible number of biological replicates
and treatments. Although the standard batch culture of cells
meets the critical need for continuous sources of biological
material, most biomedical researchers using standard culture
systems acknowledge that they are limited in their capacity to
maintain cell homeostasis within the physiological limits
experienced in vivo (Place et al., 2017; Al-Ani et al., 2018;
Hirsch and Schildknecht, 2019). Despite this awareness and
the scope for substantial environmental variability during the
standard batch culture of cells (Michl et al., 2019), recent
assessments show that the majority of research papers rely on
nominal set points and fail to directly verify and report
environmental parameters (Al-Ani et al., 2018; Michl et al.,
2019; Klein et al., 2021b). Standard batch culture systems
undergo substantial environmental changes owing to cell
metabolic activity (Balin et al., 1976; Naciri et al., 2008;
Vallejos et al., 2010; Pradhan et al., 2012; Al-Ani et al., 2018;
Michl et al., 2019), with pH declines reaching 0.9 units, O2 levels
declining down to 0.95%, and CO2 values reaching up to 10.45%
(Klein et al., 2021b). In light of these reported changes, the
apparent reliance on nominal set points to ensure
physiological relevance and reproducibility in biomedical
research requires urgent reconsideration. Although Eagle
(1971) first highlighted environmental drift in standard batch
cultures almost 50 years ago, we are aware of only three papers
that collectively measured and reported O2 or CO2 regimes in
in vitro cultures of mammalian cells (Balin et al., 1976; Naciri
et al., 2008; Vallejos et al., 2010). Inadequate control and
reporting of environmental conditions in cell cultures is,
therefore, a candidate contributor to irreproducibility in basic
and preclinical biomedical research.

Here, we provide guidelines for the reporting and control of
environmental conditions in cell culture systems, with a focus on
metabolic gases (O2 and CO2) and the associated acid-base
balance driving pH. We (i) raise awareness of the imperative
to control and monitor cell culture environments in biomedical
research, (ii) propose short- and long-term standards for control,
monitoring, and reporting with consideration of resource
availability, and (iii) highlight the steps needed for these
recommendations to be achieved. We outline the most
common problems resulting in uncontrolled environmental
conditions and associated confounding factors, and then
provide a range of solutions. We also supply a reporting
workflow that ensures improved standards for the reporting
and control of culture environments to enhance
reproducibility and progress in biomedical research.

THE PROBLEMS

Environmental Instability in Cell Culture
Media
Documented reports of deoxygenation and disruptions to acid-
base stability in culture media caused by cellular metabolism
equate to a median pH shift of 0.425 units and a median O2 shift
of 10.6% from target (nominal) values (see, Klein et al., 2021b).
Cells are capable of buffering against extracellular reductions in

pH to maintain alkaline pH of the cytoplasm (Johnson et al.,
1976; L’allemain et al., 1984; Lindström and Sehlin, 1984;
Pouyssegur et al., 1985; McBrian et al., 2013). However, such
mechanisms (e.g., Na+/H+ antiporters or histone deacetylation)
consume cellular energy and can alter gene transcription and
reduce cellular growth through changes in the acetylation state of
chromatin (Boron and Russell, 1983; Bowen and Levinson, 1984;
Boron, 2004). Changes in dissolved gases are also well known to
substantially affect cellular physiology. Besides the role of O2 in
affecting the most fundamental characteristics of in vitro cell
cultures (Packer and Fuehr, 1977), including the dependence of
cellular metabolism on O2 (Ast and Mootha, 2019),
deoxygenation can also activate the hypoxia-inducible factor
(HIF) transcription system, which triggers the expression of
most genes responsible for cellular adaptation to varying O2

levels (Semenza et al., 1991; Wang et al., 1995; Semenza,
2012). Minor deviations in dCO2 can also induce a wide range
of cellular responses (Bumke et al., 2003; Kikuchi et al., 2017;
Kikuchi et al., 2019), affecting the function of biomolecules and
the proteome (Duarte et al., 2020).

The impacts of compromised acid-base stability and O2

delivery on cellular responses during in vitro cell culture are
not confined to theory (see syntheses by; Ast and Mootha, 2019;
Keeley andMann, 2019; Klein et al., 2021b). Briefly, for instance,
Michl and others (2019) showed that cellular growth of three
colorectal cell-lines (NCI-H747, DLD1, Caco2) was optimal at
pH 7.4, but when medium pH deviated from 7.4 by > 0.3 units
all three cell lines exhibited reduced rates of proliferation.
Medium acidification during in vitro cell culture can also
initiate pro-inflammatory signaling responses in human
aortic smooth muscle cells (Tomura et al., 2005) and cells of
the human nucleus pulposus (Gilbert et al., 2016). A
transcriptomic study, focusing on human fibroblasts, revealed
that reductions in medium pH (to pH 6.7) modulated the
expression of 2,068 genes (out of 12,565) by more than two-
fold after only 24 h of culture (Bumke et al., 2003). Constraining
O2 availability during in vitro cell culture appears to be similarly
crucial. For example, HepG2 cultures at confluence rapidly
depleted O2 levels to <1% to self-inflict a switch from
oxidative phosphorylation to glycolysis, despite being
cultured in incubator conditions providing ambient
atmospheric O2 levels (18.6%–20.9%) (Wolff et al., 1993).
These findings are highly consistent with observations of
other cell types, including human hepatocytes (Ng et al.,
2014) and rat renal mesangial cells (Metzen et al., 1995),
where perturbed O2 levels correlated with anomalous cellular
responses (Keeley and Mann, 2019). Although limited, some
evidence suggests that variable culture environments can also
affect the reproducibility of cell culture experiments. Indeed,
barcoding experiments showed that cancer cell-line evolution
occurred from positive clonal selection that was highly sensitive
to culture conditions (Ben-David et al., 2018). Further
experiments testing the cell-line strains against anti-cancer
compounds uncovered disparate drug responses, although the
exact sources of instabilities in culture environments that
promoted cell-line heterogeneity were not resolved (Ben-
David et al., 2018).

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 7888082

Klein et al. Best Practices for Culturing Environments

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Factors Contributing to Environmental
Instability in Cell Culture Media
Most commercial media contain buffering systems that act only
to regulate pH, whereas levels of dissolved O2 and CO2 are
regulated by atmosphere re-equilibration. The initial stability
of medium pH is typically achieved by mimicking the
physiologically relevant CO2/HCO3

− buffering system (Michl
et al., 2019). Most media formulations contain a known
concentration of HCO3

−, which upon exposure to an
incubator that nominally maintains a CO2-rich atmosphere
(typically 5% CO2 in air), equilibrates to spontaneously
produce H+ ions and stabilize pH (Supplementary Box S1).
Although the CO2/HCO3

− buffer system is indeed the primary
physiological buffering system in mammalian fluids (Boron,
2004; Michl et al., 2019), standard cell cultures lack the
regulatory systems (e.g., changes in respiratory rate, vascular
remodeling, renal control of HCO3

− and H+) present in the
mammalian body. Such systems regulate for the changes in
dissolved gases, waste products (e.g., lactic acid), and H+ ions
involved in cellular metabolism, thereby achieving conditions
that maintain homeostasis (Supplementary Box S1). Although
consistent observations of pH instability in standard cell cultures
prompted the use of additional exogenous buffers in media
formulations to enhance medium buffering capacity (Eagle,
1971), such approaches can, in some cases, promote
unpredictable changes in pH and introduce confounding
artifacts (Michl et al., 2019, see below).

In the case of O2, medium deoxygenation is caused by the
disparity between rates of O2 consumption via cellular
metabolism and the replenishment of O2 at the air-medium
interface (Place et al., 2017; Al-Ani et al., 2018). Specifically,
O2 first dissolves at the air-medium interface and then diffuses
through the liquid (at least several millimeters) to reach and
oxygenate cell microenvironments (Place et al., 2017) even as cells
undergo exponential growth. This is contrary to in vivo
physiology, where most cells exist within 100 µm to the
nearest capillaries that replenish O2 and act to remove excess
CO2. Besides the role of CO2 in affecting medium acid-base
chemistry, levels of CO2/HCO3

− readily diffuse across cell
membranes to moderate intracellular pH (Gutknecht et al.,
1977), act as metabolic inhibitors, and may induce complex
transcriptional responses (Cottier et al., 2012; Follonier et al.,
2013), and signal other critical reactions (see, Blombach and
Takors, 2015). In concert, these processes interact to create a
changing environmental gradient from the surface of the medium
down to the microenvironment of the cells (Place et al., 2017).
The effect of unstirred medium layers also presumably
determines the delivery of nutrients/growth factors and the
removal of other metabolic waste products (e.g., lactic acid),
which can also act to directly and indirectly moderate
environmental variation (Michl et al., 2019).

Changes in the culture environment may also initiate complex
feedback mechanisms, where cellular responses to variations in
the culture environment could, in turn, inflict greater intrusions
of environmental stability and promote unpredictable outcomes.
For instance, perturbations to dissolved O2 levels in culture

medium can induce cells to switch away from oxidative
phosphorylation towards anaerobic glycolysis (Wolff et al.,
1993), leading to large accumulations of lactic acid that force
medium acidification (Michl et al., 2019). Another example lies in
the role of carbonic anhydrases (CA), which catalyze the
hydration of CO2. Švastová and others showed that medium
deoxygenation in cell cultures of human cancer cell lines induced
the expression and activity of carbonic anhydrases, which
resulted in enhanced acidification of the culture medium
(Švastová et al., 2004).

Lack of Detailed Methodological Reporting
The lack of monitoring and reporting of environmental
conditions in cell culture-systems is a pervasive, but under-
recognized problem (Hunter, 2017; Al-Ani et al., 2018; Michl
et al., 2019; Klein et al., 2021a; Klein et al., 2021b). A recent
synthesis examining this problem sub-sampled 688 papers
published between 2014 and 2019 and found that most papers
reported the medium manufacturer, but only one third reported
the type of culture system utilized and 42% reported temperature
and CO2 incubator settings (Klein et al., 2021b). Another post-
publication analysis reported that less than half of studies
published in Cancer Research and Nature in the third quarter
of 2017 described the brand of medium, and only one-tenth
declared the medium-buffering regime (Michl et al., 2019). Even
when protocols are declared, there is an unfortunate prevalence of
papers stating, “as previously described by ref. (x),” which often
leads to a chain of citations that generate confusion as to the
specific procedures, reagents, and materials involved (Freedman
et al., 2015). In cases where environmental parameters are
measured, these are often not reported. The apparent under
appreciation of reporting measured environmental parameters
is exemplified by published bioreactor experiments that report
only the target levels of environmental parameters (e.g., Karst
et al., 2016; Abecasis et al., 2017). Indeed, these systems, by
design, typically require consistent monitoring of the controlled
parameters via a feedback loop to achieve the desired control.

Failure to Monitor Mammalian Cell Culture
Environments
A recent synthesis revealed that despite differences in cell type,
medium formulation, and buffering components, all investigated
standard batch cultures exhibited environmental drift after only a
few days of culture (Klein et al., 2021b). Despite this, less than
0.05% of studies monitored pH, CO2, or O2 levels in cell cultures.
Klein et al. (2021a) reported median declines in dissolved O2

down to 7.3%, and increases in dissolved CO2 to values ranging
from 7.5% to 9.5%, compared to the nominal O2 and CO2 targets
of 21% and 5%, respectively. The reported median decline in pH
was 0.43 units, but in some particularly extreme cases, cell
metabolic activity promoted pH reductions that approached
one pH unit (Eagle, 1971) and dissolved O2 decreased down
to 0.95% (Vallejos et al., 2010). In such extreme cases, variations
in culture conditions may resemble levels consistent with
hypercapnia and hypoxia rather than conditions typical of in
vivo extracellular fluids, although in vivo environments vary
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considerably among selected tissues (Ast and Mootha, 2019). It is
implicitly assumed that culture temperature is controlled at 37°C
and thus, incubator temperatures were only reported in 42% of
papers between 2014 and 2019 (Klein et al., 2021b). However, a
number of studies used different culture temperatures (Brinkhof
et al., 2015; Xu et al., 2017), which highlights the need to declare
and monitor the incubation temperature.

Artefacts Introduced by Forcing of
Non-Physiological Controls
Numerous approaches are used to control culture conditions, either to
maintain physiological conditions or to test the effects of departures
from those conditions (e.g., hypoxia; Grayson et al., 2006; acidosis;
Kikuchi et al., 2017). However, some approaches misrepresent in vivo
physiology and in doing so, inadvertently introduce artefacts and
biases that could compromise reproducibility and relevance of the
study to cellular function in the living organism. For instance, NVBs
(e.g., HEPES, PIPES, or MES) are used to enhance acid-base stability
of medium because the physiological HCO3

−/CO2 buffering system
can exhibit high volatility and a weak buffering capacity
(Supplementary Box S1). However, it is vital to consider how
NVBs introduce active molecules and acid-base reactions absent
from mammalian fluids and existing evidence, although limited,
indicates that NVBs could induce toxicity and anomalous cellular
responses in particular cell types (Good et al., 1966; Lepe-Zuniga et al.,
1987; Hanrahan and Tabcharani, 1990; Stea and Nurse, 1991). In
particular, HEPES is commonly included in commercial media
formulations, yet emerging reports demonstrate a range of possible
side-effects. Briefly, HEPES activated lysosomal transcription factors
in macrophages (Tol et al., 2018), inhibited the prion protein
conversion in neural stem cells and affected their viability and
differentiation (Delmouly et al., 2011). Another study showed
cellular uptake of HEPES in human cell lines (MCF-7, U2OS,
HeLa) that persisted for 48 h after cells were returned to HEPES-
free media (Depping and Seeger, 2019).

Recent assessments also shows that NVB addition may not
fully prevent pH declines in standard batch cultures and may
lead to unexpected pH changes when interacting with the
HCO3

−/CO2 buffering system, although predictable pH levels
can be obtained when appropriate protocols are used (see, Michl
et al., 2019). Researchers often manipulate medium pH by
titrating acids and bases to achieve a desired level. The
titration of acids and bases (including HCl, NaOH, and
NVBs) introduces osmolytes (Na+, Cl−) to cell medium and
can result in substantial changes to medium osmolarity by >
10% (Michl et al., 2019). Supra-physiological osmolarity can
directly affect cell membrane tension and volume (Pedersen
et al., 2013), but can also moderate how cells respond to other
environmental parameters (Dezengotita et al., 1998). For
instance, hybridoma cells exposed to elevated CO2 conditions
exhibited reduced growth rates when osmolarity was held
constant at 361 mOsm kg−1, but cell growth rates further
declined by 30% when medium osmolality was 415 mOsm
kg−1 (Dezengotita et al., 1998).

THE SOLUTIONS

Measure Environmental Parameters
Key environmental parameters (temperature, O2, CO2, and pH)
should be accurately measured and reported. Researchers should
also consider measurements of osmolarity and hydrostatic pressure
(if experiments are not conducted at atmospheric pressure) because
these variables are required for unit conversions of dissolved gases
(Christmas and Bassingthwaighte, 2017), thereby facilitating accurate
replication and comparisons of conditions among studies. Ideally,
measurements of key parameters (O2, CO2, and pH) should be
conducted to capture the variability that cell cultures experience,
either continuously where logging systems can be used or via non-
autonomous, regular measurements. A basic understanding of the
expected variability for each of these parameters in specific
experimental setups can be used to help guide the frequency of
measurements required to capture the variability. As a minimum
requirement in routine cell cultures, initial and final values are
required for cases of linear drift characteristic of many batch
culture experiments (Michl et al., 2019), whereas frequent
recording (e.g., 1-min intervals) are likely required for advanced
bioreactor systems involving gas and/or acid and base additions.
Measuring these parameters at concurrent time points is critical to
understand the interdependencies among parameters, and guide the
explanation of their possible forcing on cellular responses (e.g.,
proliferation, metabolism, changes in gene transcription, epigenetic
regulation). For instance, the solubility of dissolved gases, and thus the
influence of CO2 on acid-base chemistry, is strongly dependent on
temperature, osmolarity, humidity, and pressure (Christmas and
Bassingthwaighte, 2017). Although thermal regimes of cell cultures
may be reliably inferred from calibrated incubators, levels of dissolved
O2 and CO2, as well as pH must be measured directly in the culture
medium because cellular metabolism directly affects these parameters
(Supplementary Table S1). Measuring systems capable of delivering
the required precision and accuracy are available for all key
environmental parameters. Such systems range in cost, from
moderately priced sensors for temperature, pH, O2, and salinity to
the more expensive sensing equipment required for monitoring
dissolved CO2, which often require complex calibration protocols
(Supplementary Table S1).

Levels of relative humidity and media evaporation are equally
important considerations for the control of cell culture
environments. Since variations in both factors result in
changes to osmolarity as well as solute and gas concentrations,
that in turn, affect diffusion. Unfortunately, variations in relative
humidity even in sophisticated incubators are common (Triaud
et al., 2003), but they should be recognized and remedied. Low-
cost sensors are available to monitor relative humidity levels
inside incubators (Supplementary Table S1, Rajan et al., 2017)
and should also be reported alongside key environmental
variables. For relative humidity and the minimization of
medium evaporation, water baths or pans placed inside
incubators provide a simple and cost-effect solution to
maintaining adequate levels, although this approach is limited
in its capacity for precise control and can elevate the risk of
condensation and contamination. Watertight joints in culture
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incubators may also require frequent maintenance and
replacement, where needed (Rajan et al., 2017). More
sophisticated and costly options are available for the control of
relative humidity (and minimization of medium desiccation),
including direct steam humidification systems and incubators
capable of two-sided controls (Supplementary Table S1).

Accordingly, we provide reporting guidelines (Figure 1,
Supplementary Extended Materials S1) along with sample
method descriptions (Supplementary Extended Materials S2), to
guide practitioners into conducting and reporting characterizations of
environmental regimes and promote a greater understanding of the
factors that may affect precision and accuracy of experiments. Indeed,
researchers could consider conducting pilot experiments to
understand if variability in environmental factors significantly
affects key experimental readouts.

Control Environmental Parameters
A reasonable degree of control over environmental conditions is
achievable in routine culture systems, but requires consideration of
workflow factors that can, directly and indirectly, promote
environmental drift (Figure 2). Interpretation and reproducibility
of biomedical experiments involving mammalian cell cultures
mandate that environmental parameters (temperature, O2, CO2,
and pH) be at least monitored and reported, and where possible
environmental variation minimized and controlled. Environmental
stability is most easily achieved in advanced bioreactor culture
systems, whereas achieving stability in routine batch culture
systems is most challenging, with perfusion systems (and
chemostats) providing intermediate solutions (Table 1). Batch
cultures are typically maintained in incubators that maintain
temperature (typically 37°C) and guarantee a CO2 level (typically

FIGURE 1 | An overview of the PRINCE (Preferred Reporting Items for describing the Nature of Culturing Environments) guidelines. The QR provides access to the
full PRINCE reporting checklist (also in Supplementary Extended Materials S1) containing an exhaustive list of reporting items.
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5%) in the atmosphere. In batch culture set-ups, researchers often
select culture medium that contains a pH indicator dye [e.g., Phenol
Red (PhR)] to guide the renewal of cell medium, but medium color
changes assessed “by eye” can lead to undetected pH declines (Michl
et al., 2019). Indeed, batch cell cultures are the most popular,
inexpensive and scalable culture system, in terms of the possible
number of replicates and treatments, with <1% of the published
literature utilizing cybernetic bioreactor or chemostat culture systems
(2014–2019, Klein et al., 2021b). Chemostat and perfusion systems
were first described in 1950 for use in bacterial cultures (Novick and
Szilard, 1950a; b) and later adopted for mammalian cells in 1961
(Cohen and Eagle, 1961). Such systems can maintain environmental
conditions and cell growth rates via a continuous dilution of the
culture with fresh medium (Cohen and Eagle, 1961). More

sophisticated bioreactor culture systems were first introduced in
the 1970s to culture mammalian cells (Knazek et al., 1972; Fouron,
1987) and typically involve the automated control of temperature, gas
addition (O2, CO2), and/or acids and bases to maintain set targets for
temperature, dissolved gases and pH. Bioreactors provide the best
capacity to control environmental conditions, but are most costly in
the context of capital investment, maintenance, and operations.
Importantly, many bioreactor systems lack flexibility in the
number of biological replicates and the volume of culture media
(often larger than that of batch culture) that can be manipulated,
which translates into greater time and monetary costs. While
traditional bioreactor systems are ideal for cells culture in
suspension, attached cell monolayers require different solutions.
For these cell types, advanced bench top culture systems providing

FIGURE 2 | Cause-and-effect diagram summarizing considerations that can directly and indirectly affect environmental conditions in in vitro cell cultures. This
diagram is non-exhaustive and should be further complemented/modified for specific cellular models and/or fields of research. Statements marked in green are technical
considerations affecting in vitro cell cultures and statements marked in Purple (italicized) are proposed solutions.

TABLE 1 | Constraints, advantages, and solutions for improved environmental control and reproducibility for three major types of culture systems.

Culture system Constraints Advantages Solutions

Monitored Batch Limited control of environmental conditions;
limited reproducibility

Effective temperature control; affordability; low
maintenance; high replication possible;
sterilization and autoclaving of vessels not
required

Monitor environmental conditions (optimize
protocol to reduce environmental drift; report
environmental conditions and detailed
protocols

Chemo stat/
Perfusion set-ups/
Micro-fluidics

Time investment in optimizing set-up; moderate
maintenance required; moderate cost for
equipment; high consumption of consumables

Affordability; effective control of conditions;
control of growth rates of suspended cells;
small - moderate scale replication possible

Monitor environmental conditions; optimize
flow/perfusion rates; report environmental
conditions and detailed protocols

Bioreactor High-cost; high consumption of consumables /
typically require larger volumes of media

Precise control of environmental conditions;
control growth rate of suspended cells; high-
frequency environmental monitoring. Scalable
in the number of culture vessels

Randomize and repeat experiments on small-
scale bioreactor set-ups; report environmental
regimes and detailed protocols
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convection of culture media (Supplementary Table S1), which are
also expandable in terms of replication, will likely provide the best
capacity for adherent cell types (see, Kreß et al., 2021). We provide
considerations as well as suggestions for improved environmental
control for culture systems ranging in complexity from batch cultures
to bioreactors (Table 1 and Supplementary Table S2).

Report Procedures to Monitor and Control
Environmental Data
Precise control and monitoring of environmental conditions for
mammalian cell cultures need be accompanied by reporting of the
procedures used—a requirement, that is, not yet sufficiently
emphasized nor enforced by the majority of scientific journals. A
survey assessing the reporting requirements of leading biomedical
journals for publications involving mammalian cells (Cell, Nature,
Science, etc.; cf. Supplementary ExtendedMaterials S3) revealed that
onlyNature Research, Science, Cell, and EMBOpress journals require a
standardized declaration of reporting practices to be published as a
form attached to the electronic version of the published papers (see
Nature Reporting Standards and MDAR Reporting Standards).
However, none of the information required in this form addresses
the monitoring and control of critical environmental conditions for
research conducted using mammalian cell cultures (hereafter referred
to as “cell-based experiments”). Strengthening reporting requirements
and standards will likely place greater emphasis on cell culturing
environments and, in turn, likely enhance the reproducibility of cell-
based experiments as well as their relevance to the in vivo
environment. We address this gap by offering the PRINCE
(Preferred Reporting Information on the Nature of Cell-culturing
Environments) guidelines (Supplementary Extended Materials S1)
as a checklist for the parsimonious reporting of the monitoring and
control of critical environmental conditions in the experiments
reported in the papers. The PRINCE reporting checklist is
designed to be adopted by journals publishing cell-based
experiments and be included as a required declaration at the time
of submission, thereby available to be assessed by peer reviewers, to
then become available as an appendix to the electronic version of the
published papers (Supplementary Extended Materials S1). This will
ensuremuch needed standardized reporting of cell culture conditions.

Report Resulting Environmental Data
Monitoring and controlling environmental conditions for cell-
based experiments must be accompanied by reporting the data
obtained as an essential step to identify possible environmental
artifacts affecting the reproducibility of the findings and their
comparisons among studies. The lack of detailed methodological
and data reporting prevalent in studies published to date has been
attributed to strict word and page limits enforced by publishers
(Freedman et al., 2015). However, while many journals, dictate
strict restrictions on the main body of the published text, most
journals encourage providing all relevant details in extended
materials, thereby extending the space available to accurately
describe the procedures used and report additional data helping
interpret the results presented. Online repositories are also
available for more detailed reporting of protocols (e.g.,
Nature’s Protocol Exchange, Dryad) and datasets (e.g., Dryad,

figshare and Zenodo). These data repositories were designed to
meet journal and funder requirements for data availability and
most of these offer data curation services that streamline the
uploading process and ensure sustained access to the data.

Minimum reporting requirements should include the mean and a
metric of dispersion (e.g., SD, SEMor range) for each of themonitored
environmental parameters. In cases where environmental parameters
display a monotonous trend over time, the slope, a metric of
dispersion, as well as the probability of the slope being equal to
zero may be reported to describe the change over time and can be
fitted using simple linear regression analysis. Ideally, researchers
would accompany such summary statistics with a supplementary
figure displaying environmental regimes over time (Michl et al., 2019),
so that the published findings can be interpreted alongside the nature
of cell-culture conditions.

Recommendations
The task of enhancing standards for environmental control,
monitoring, and reporting in biomedical research may initially
seem overwhelming provided the current absence of a culture to
this end (Collins and Tabak, 2014; Baker, 2016; Hunter, 2017).
Enhancing standards is also hindered by the limited availability of
affordable culture systems capable of advanced environmental
monitoring and conrtol for a broad range of cell types. The lack of
appropriate tools in turn contributes to the lack of awareness of
the true extent of environmental instability. However, reporting
only nominal set-points used in cell culture systems without
verification cannot be a sustainable solution.

Resolving the issuewithout a systematic approachmay risk putting
more burden on researchers’ time, resources, and expertise. As an
immediate requirement, initial and final values of key parameters
should be measured and reported in the batch cultures of cell lines
used in experiments. This requirement should capture existing
environmental variation affecting published findings, ensuring
accurate interpretation of the reported results and improved
reproducibility. The provided PRINCE reporting checklist is
designed to apply to a range of culture systems, from routine
batch cultures to advanced culture systems (e.g., prefusion set-ups
and bioreactors). Next, existing protocols must be optimized to
minimize environmental variation in routine cultures
(Supplementary Table S1). The third step is to build the capacity
and infrastructure, supported by a sufficient understanding of the
causes and consequences of variability in these conditions. Where
needed, postgraduate biomedical programs may be revised to
strengthen these competences. The next step, which requires
significant investment over longer time frames (years to decades),
involves the routine use of advanced cell culture technologies that
allow precise and accurate control and monitoring of environmental
conditions (Figure 3, Supplementary Table S1). Pending these
advancements, reporting requirements should then extend to
include proliferative, maintenance culture vessels, not only those
dedicated to experimental assessments. Researchers should then
consider the relevance in vitro culture environments to the levels
under which particular cell types exist in vivo. For instance, O2 levels
vary across human tissues and range from 13% O2 in the lung-
pulmonary vein to 1–3%O2 in the uterus (Ast andMootha, 2019). By
considering how niche in vivo environments affect experimental
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outcomes, researchers could further increase the robustness of their
experiments and increase the likelihood that findings have relevance
to focal in vivo compartments (Ast and Mootha, 2019). Particular
fields within biomedical science (e.g., 3D cultures and stem cell
research) are already making great strides in this arena (Ryall
et al., 2015; Shyh-Chang and Ng, 2017), although reliable reports
of environmental parameters within selected human tissues are
presently limited (Al-Ani et al., 2018; Ast and Mootha, 2019) and
this research area warrants further attention.

Ultimately, improved characterization and control over
environmental conditions in cell cultures will enhance the
reliability of experimental findings and the confidence in their
translation to clinical applications, which should provide sufficient
rationale for funding bodies and institutions to invest in the necessary
infrastructure. Indeed, funding agencies could consider supporting
research initiatives aiming to further investigate the effects on
environmental factors on commonly studies biological responses
(i.e., gene expression, histone modification, metabolic pathways) in
model cell lines (e.g., Bumke et al., 2003; Ben-David et al., 2018;
Muelas et al., 2018). This will provide a systematic understanding of
the impacts of environmental control on cell culture experiments.
Transitioning towards advanced culture systems capable of
mimicking in vivo conditions not only requires consideration of
environmental parameters, but also necessitates attention to other
chemical and physical factors known to program cell fate. Such factors
include, but are not limited to, the common usage non-physiological
concentrations of growth factors (Rubin, 2007; Holohan et al., 2013;
Langhans, 2018), and antibiotics (Ryu et al., 2017), as well as the
physical structure of cell microenvironments, which can alter cell
morphology and function (Darnell et al., 2018). For many of these
factors, existing recommendations that aim to increase the relevance

of in vitro cultures to in vivo physiology are available (Baker, 2016;
Muelas et al., 2018; Hirsch and Schildknecht, 2019).
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measuring environmental conditions in the medium (mean ± SE) leading to unknown physiological relevance and low reproducibility.
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