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Aim: To determine the role of claudin-3 in cancer stemness in nonsquamous non-small-cell lung carcinoma
(NSCLC). Materials & methods: In vitro/vivo extreme limiting dilution analysis and the side population as-
say were used to investigate the role of claudin-3 in regulating cancer stemness in nonsquamous NSCLC.
Results & conclusion: Claudin-3 depletion decreased the formation rates of spheres and tumors and in-
creased cisplatin sensitivity. Claudin-3 was also identified as one downstream target of estrogen receptor-
α in regulating cancer stemness. Moreover, targeting CLDN-3 transcription by small molecules including
withaferin A, estradiol and fulvestrant suppressed cancer stemness and reversed chemoresistance. These
results demonstrated claudin-3 is one positive regulator of cancer stemness in nonsuqamous NSCLC.
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Lung cancer represents one global health problem and still remains the first leading course of cancer-related deaths
worldwide [1]. Non-small-cell lung carcinoma (NSCLC), a heterogeneous class of tumors representing approximately
85% of all new lung cancer diagnoses, contains squamous cell lung carcinoma (SCC) and nonsquamous NSCLC
of the lung including large-cell lung carcinoma (LCLC) and adenocarcinoma (AC) [2]. Notably, nonsquamous
NSCLC is the most common malignant type both in male and female nonsmokers and usually insensitive to
chemotherapy and/or radiation. At present, surgery still remains the treatment of choice if patients are diagnosed
with nonsquamous NSCLC at an early stage and platinum-based chemotherapy remains the standard of care for
most patients affected by advanced nonsquamous NSCLC [3]. However, with the advent of metastasis and tumor
relapse, the effects of traditional therapies in more advanced nonsquamous NSCLC cases are frequently temporary,
and after months of treatment the disease progresses to its lethal stage with a short survival period [4].

Recent studies revealed that cancer stem-like cells (CSCs), which are enriched after chemotherapy, may account
for therapy failure. In typically heterogeneous tumors, CSCs represent a small group of cells which possess tumor-
initiating, self-renewal properties and give rise to nontumorigenic progeny. More and more data demonstrated
that CSCs play a pivotal role in the tumor relapse, metastasis and therapeutic refractoriness [5,6]. Moreover, imple-
mentation of treatments against CSCs suppresses chemoresistance and increases the effectiveness of conventional
therapy across a spectrum of malignancies [7]. Thus, CSC-focused therapy seems destined to be the core of effective
anticancer approaches.

Claudin proteins are crucial components of cellular tight junctions where they establish the paracellular barrier
to control the flow of molecules in the intercellular space between epithelial cells [8]. To date, the claudin family
in mammals is composed of 24 members with molecular weights ranging from 22 to 27 kDa, all of which are
thought to vary in expression depending on location and cell type [9]. Notably, the link between altered tight
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junctions and epithelial tumor development has been confirmed by earlier studies placing tight junctions in the
spotlight of cancer study, and this research area has become very promising as a result of the frequent existence
of altered claudin expression in cancer [10]. Among these claudin members, overexpression of claudin-3, claudin-4
and downregulation of claudin-7 were demonstrated in lung malignancies [11–14]. Although their dysregulation in
malignancies suggests that claudin proteins play a role in tumorigenesis [15–18], the exact underlying mechanism
remains unclear. As a member of the claudin family, claudin-3, also named Clostridium perfringens enterotoxin
receptor 2, is encoded by the CLDN-3 gene and located on chromosome 7. As an epigenetically silenced tumor
suppressor gene in hepatocellular carcinoma, claudin-3 has been reported to inhibit cancer aggressiveness via
WNT-EMT signaling, and loss of claudin-3 leads to colon cancer malignancy by hyperactivating Wnt/β-catenin
signaling [19,20]. However, increasing lines of evidence suggest that claudin-3 could play an oncogenic role in some
malignancies [21,22]. Although several other members of the claudin family, including claudin-1 and claudin-2,
function as tumor facilitators and promote tumorigenesis [23,24], the precise role for claudin-3 in cancer stemness
still remains to be investigated.

Side-population (SP) cells are a group of cells which cannot be stained with Hoechst 33342, as opposed to
those cells treated with the pump inhibitor verapamil. It has been reported that the SP cells in human lung cancer
cell line NCI-H460 are enriched in stem-like cancer cells [25], and thus we defined CSCs in NSCLC on the
basis of the SP phenotype. As the golden scale to evaluate the tumor stemness, the in vitro or in vivo limited
dilution assay (ELDA) has also been used to evaluate the efficiency of tumor-sphere formation or tumor generation
in nude mice. By these two methods, we identified claudin-3 as a positive regulator of cancer stemness and
CSCs-mediated chemoresistance in nonsquamous NSCLC. Using a CLDN-3 transcription-based drug screening
assay, small molecules including estradiol, withaferin A (WA) and fulvestrant were all found to downregulate
the transcriptional activity of claudin-3 and suppress cancer stemness in nonsquamous NSCLC. Furthermore,
antagonizing estrogen receptor-α, a newly developed positive prognostic indicator of NSCLC, could suppresses
cancer stemness via downregulation of claudin-3, indicating that claudin-3 could function downstream of estrogen
receptor-α (ER-α) signaling in mediating cancer stemness in nonsquamous NSCLC. In sum, targeting claudin-3
may provide an innovative strategy worth considering nonsquamous NSCLC therapy.

Materials & methods
Cell culture
Five nonsquamous NSCLC cell lines (H460, H1792, H157, H292 and A549) were purchased from Ameri-
can Type Culture Collection (ATCC; VA, USA). The A549 and H292 were maintained in DMEM medium
containing 10% of fetal bovine serum (FBS) and 50 U/ml of penicillin/streptomycin. The remaining cell lines
including H460, H1792 and H157 were cultured using RPMI1640 medium containing 10% of FBS and 50 U/ml
penicillin/streptomycin. Briefly, cells were cultured using a 6 cm dish with the split-ratio 1:5 every 2 days. Cells in
log-phase were harvested using trypsin-EDTA solution. The cell cultures were incubated at 37◦C with a humidified
atmosphere containing 5% of CO2.

siRNA transfections
Cells were transfected with pools of scrambled or target gene-specific siRNAs (100 nM) using Lipofectamine 2000
according to the manufacturer’s instructions. The sequences of designed siRNAs targeting claudin-3 were as follows
(sense): siCLDN-3-1 5′-GCUACGACCGCAAGGACUA-3′, siCLDN-3-2 5′-AGAUGCAGUGCAAGGUGUA-
3′. The siRNA sequence for ER-α was (sense): GCUACUGUGCAGUGUGCAA.

Lenivirus-mediated knockdown
The H460 stable claudin-3 knockdown cells line was created by lentiviral transduction of a pLentilox3.7 vector
containing a specific construct (CLDN-3 shRNA sense 5′-GCTACGACCGCAAGGACTA-3′). Package of re-
combinant lentivirus was performed by transfection of 293T cells. Briefly, shRNA expression vector pLentilox3.7-
shCLDN-3 or pLentilox3.7-null was cotransfected with package vectors pCMV � 8.9 and pCMV-VSVG into
293T cells using Lipofectamine 2000 R© (Invitrogen, Paisley, Scotland). Lentiviral particles in the culture media were
harvested at 72 h after transfection and filtered through a 0.46 um low protein binding polysulfonic filter (Milli-
pore, MA, USA). Then lentiviral particles were enriched into the CSCs media, DMEM/F12 serum-free medium
supplemented with 20 ng/ml EGF (BD Pharmingen, CA, USA), 20 ng/ml of bFGF (BD Pharmingen), 0.4% of
BSA (Sigma–Aldrich, MO, USA), 2% of B27 (BD Pharmingen) and 1% of methyl cellulose (Sigma–Aldrich) after
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ultracentrifugation. Cells were transfected with 1 × 106 of TU/ml lentiviral particles and sorted using BD Aria
software after 72 h of transfection. To enhance the infection efficacy of lentiviral particles, 6μg/ml of polybrene was
added to the cells. For tumorsphere transfection, doubled lentivirus transfection procedure was performed. Briefly,
7-day lung tumorspheres were transfected with 10 ul of 1 × 106 TU/ml lentivirus. The lentivirus-containing
medium was replaced and 30 ul of 1 × 106 TU/ml lentivirus was added to the cells in 2 days. The medium was
also changed after 24 h and tumorspheres were cultured for another 7 days. Then tumorspheres were treated with
cisplatin for 12 or 30 h and the cellular uptake of cisplatin or apoptosis was detected.

Antibodies
Rabbit polyclonal antibody against claudin-3 (catalog number NB100-91711) was purchased from Novus Biological
USA (CO, USA). Mouse monoclonal antibody against ER-α (catalog number GTX70171) and rabbit polyclonal
antibodies against CD133 (catalog number GTX12295), ALDH1A1 (catalog number GTX123974) and ABCG2
(catalog number GTX100437) were purchased from GeneTex (CA, USA). Mouse monoclonal anti-GAPDH IgG
(catalog number sc-47724) and HRP-conjugated secondary IgGs (catalog number sc-2054 and sc-2969) were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Sorting & analysis of SP cells
Cells were trypsinized and resuspended at 1 × 106 cells/ml in DMEM or RPMI1640 medium with 2% of
FBS containing 5 μg/ml of Hoechst 33342 at 37◦C for 90 min with or without 100 μM verapamil (Sigma)
to inhibit ABC transporters. Then cells were incubated on ice for 10 min and washed with ice-cold PBS before
flow cytometric sorting and analysis. Propidium iodide (PI) was used to distinguish live and dead cells, and the
HoechstRed/HoechstBlue negative and PI negative population represents the group of SP. The percentages of SP
were detected with BD Aria software and analyzed using FlowJo 7.6.1 software.

Lung-tumorspheres formation assay
Cells were seeded in ultra-low cluster plates (Corning Inc., NY, USA) and cultured in DMEM/F12 serum-free
medium supplemented with 20 ng/ml EGF, 20 ng/ml bFGF, 0.4% BSA and 2% B27 as well as 1% of methyl
cellulose (Sigma–Aldrich). For ELDA in vitro, cells at different densities (1, 10, 100 and 1000/well) were cultured,
12 wells per cell density, in stem cell medium in 96-well plates (200 μl/well) for 1 to 2 weeks. The numbers
of wells with at least one tumorsphere (diameter >50 μm) were counted in a blinded manner. Frequencies of
sphere-initiating cells were calculated by ELDA online program [26].

Tumorigenicity in vivo
Different numbers of cells were resuspended in RPMI1640 medium without FBS and subsequently injected (200μl
for each injection) subcutaneously into the flanks of male BALB/c nude mice (Model Animal Research Center of
Nanjing) at 3 weeks of age, which were housed in a specific pathogen-free facility. The visible xenograft tumors
were counted manually after 18 days of injection and the tumor formation rate was calculated using ELDA online
program. Procedures were carried out according to the National Institutes of Health Guide for the Care and Use
of Laboratory Animals (NIH publication number 80-23) revised 1996.

Apoptosis assay
To detect sensitivity of H460 cells or tumorspheres, cells/tumorspheres were treated with 10 μg/ml of cisplatin for
30 h followed by apoptosis detection using the Annexin V-FITC/PI double-staining method. Briefly, tumorspheres
were collected and trypsinized into single cells which were then washed and resuspended in binding buffer followed
by AnnexinV-FITC/PI staining. The frequencies of apoptosis were detected using FACS Calibur software and data
were analyzed using FlowJo 7.6.1 software.

Cisplatin uptake
Cells or tumorspheres were treated with 10 μg/ml of cisplatin for 12 h, and harvested cells were dispersed in water
and nitrolyzed by adding HNO3

+ into the solution and heating at 95◦C for 2 h. The solution was then treated
with H2O2 at 95◦C for 2 h and with HCl at 37◦C for 0.5 h. The content of Pt was determined by inductively
coupled plasma mass spectrometry after dilution to 1 ml. The average of three independent results was taken as the
final value for Pt.
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Western blot
Cells were washed with 1x PBS and lysed on an ice with RIPA buffer supplemented with a protease inhibitor
cocktail (P8340; Sigma–Aldrich). Lysates were subjected to SDS/PAGE followed by blotting with the indicated
antibodies. Signal detection was achieved using Clarity Western ECL substrate (Bio-Rad).

RNA extraction & RT-PCR
Total RNAs were isolated with TRIzol reagent (Invitrogen) following the manufacturer’s instructions. The RT-PCR
was performed in 20 μl of reaction mixture. The PCR products were resolved on 1.2% of agarose gels and stained
with GelRed. Glyceraldehyde 3-phosphate dehydrogenase was also detected as a loading control.

Statistics
Results are expressed as mean ± standard deviation. Student’s t-test or two-way ANOVA analysis followed by
Bonferroni post hoc test were used to determine the statistical significance of the differences between experimental
groups; p-values less than 0.05 were considered statistically significant. All data were processed with GraphPad
Prism 5.0 software.

Results
Claudin-3 is highly expressed in CSCs & positively correlated with cancer stemness in nonsquamous
NSCLC
By analyzing CLDN-3 expression in lung adenocarcinoma and normal lung tissues according to the TCGA and
GTEx data using the GEPIA online program developed by Z Tang, C Li and B Kang of Zhang Lab in Peking
University [27], CLDN-3 was found to be highly expressed in lung adenocarcinoma (Figure 1A). We next utilized
the GDS3837 (provided by R Kuner) and GDS3627 (provided by TP Lu) gene expression profile from the curated
datasets in the Gene Expression Omnibus repository. Analyses of differently expressed genes between paired tumor
sections and adjacent normal lung tissue specimens obtained from nonsmoking female NSCLC patients represent
an abundantly expressed claudin-3 in lung malignant tissues (Figure 1B). This observation suggests an important
role of claudin-3 in nonsquamous NSCLC. According to the GSE54712 [28] gene expression profile provided by BD
Lopez-Ayllon [29], CLDN-3 was found to be overexpressed in CSCs isolated from H460, which was subsequently
downregulated in redifferentiated cells under serum-containing culturing condition (Figure 2A). Thus, claudin-3
might be a potential indicator of cancer stemness in nonsquamous NSCLC. To test this hypothesis, we next
examined claudin-3 expression in CSCs. By Hoechst33342-based SP sorting followed by western blot and RT-PCR
assays, higher levels of claudin-3 protein and mRNA were both detected in H460 SP with higher levels of CSC
markers including CD133, ABCG2 and ALDH1A1 compared with those in unfractionated H460 (Figures 2B
& C). Meanwhile, abundant expression of claudin-3 was also observed in H460 tumorspheres compared with that
in the H460 parental cell line (Figure 2D). To further confirm the association between claudin-3 expression and
the CSCs phenotype, percentages of SP were detected in other three NSCC cell lines including A549, H157 and
H292, with a proportion of 0.6–3.5%. Notably, the percentage of SP in cells with higher claudin-3 protein level
was significantly higher than that in cells with less or no expression of claudin-3, indicating claudin-3 positively
correlated with cancer stemness in nonsquamous NSCLC (Figures 2E & F).

Claudin-3 positively regulates cancer stemness & CSCs-mediated resistance to cisplatin in
nonsquamous NSCLC
To investigate the role of claudin-3 in the maintenance of CSCs phenotype, RNAi-mediated claudin-3 knockdown
assay was performed, revealing that depletion of claudin-3 decreased the SP percentages in both H460 and H1792
(Figures 3A & B). To validate the function of claudin-3 in regulating cancer stemness in nonsquamous NSCLC,
the tumorsphere formation assay and ELDA analysis were performed using stable transfected shCLDN-3 H460
cell line (vector as the control). Based on the observation, depletion of claudin-3 downregulated the capacity of the
lung-tumorsphere formation (Figures 3C & D). Moreover, knockdown of claudin-3 decreased the tumorsphere
formation rate in vitro and the tumor formation rate in vivo (Figures 3E & F). Thus, claudin-3 was a positive
regulator of cancer stemness in nonsquamous NSCLC.

In view of the roles of CSCs in therapeutic refractoriness of tumors, it was therefore necessary to investigate
the involvement of claudin-3 in CSC-mediated chemoresistance. By examining cisplatin sensitivities and the
intracellular cisplatin level, downregulated cisplatin-induced apoptosis and decreased cellular uptake of cisplatin
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Figure 1. Claudin-3 is overexpressed in nonsquamous non-small-cell lung carcinoma. (A) Detection of CLDN-3
expression in LUAD (n = 483) and normal lung tissues (n = 347) according to The Cancer Genome Atlas
(TCGA) database and The Genotype-Tissue Expression (GTEx) database. (B) CLDN-3 expression analysis of paired tumor
and adjacent normal lung tissue specimens obtained from nonsmoking female non-small-cell lung carcinoma patients
in Taiwan obtained from Gene Expression Omnibus database (GDS3837)
(www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS3837). *p < 0.05, ***p < 0.001.
N: Normal samples; T: Tumors.

were both observed in H460 tumorspheres compared with the parental H460 (Figures 4A & B). To further confirm
the role of claudin-3 in mediating cisplatin resistance, lentivirus particle-mediated claudin-3 knockdown assays
were performed and the results showed that depletion of claudin-3 in tumorspheres reversed chemoresistance
and increased intracellular cisplatin content (Figures 4C & D). Meanwhile, claudin-3 knockdown in H460
tumorspheres by lentivirus transfection resulted in cleavage of caspase-9 and downstream PARP after treatment of
cisplatin (Figure 4E). These observations indicate that targeting claudin-3 could provide a promising strategy to
overcome chemoresistance mediated by CSCs in nonsquamous NSCLC.

Screening of alaudin-3 inhibitors to suppress cancer stemness in nonsquamous NSCLC
In an effort to select drugs targeting claudin-3 to suppress cancer stemness and its associated chemoresistance in
NSCC, a claudin-3 transcription-based dual luciferase reporter system was established and quantitative claudin-3
promoter activity profiles from H460 cells treated with ten drugs were obtained. Significantly, estradiol, WA and
fulvestrant could all downregulate the transcription activity of claudin-3 as well as its protein levels and decrease the
percentage of SP (Figures 5A–C). Among these drugs, WA has shown the strongest inhibitory effect on claudin-3
transcription and the maintenance of the SP group. Thus, we next confirm the role of WA in regulating cancer
stemness via in vitro tumorsphere assay and in vivo tumor formation assay. In consistent with the above observations,
WA significantly downregulated the formation capacity of H460 tumorspheres and decreased the sphere formation
rate, which required the role of claudin-3 (Figures 5D–F). Moreover, WA markedly increased sensitivity of H460
tumorspheres toward cisplatin, which was compromised in the absence of claudin-3 (Figure 5G). Thus, claudin-3
has been proved to be a potential target for NSCC therapy against CSCs.
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Figure 2. Claudin-3 expression is associated with cancer stemness in nonsquamous non-small-cell lung carcinoma. (A) CLDN-3 expression
profile from Gene Expression Omnibus database (GDS5410) in which CSCs were isolated from H460 and allowed to redifferentiate under
adherent conditions in serum-containing media for up to 24 h. (B) Sorting of SP from H460 cells using BD Aria. Verapamil was used as the
negative control for SP analysis. (C) Expression of claudin-3 as well as CSCs markers in H460 and H460 SP. (D) Detection of claudin-3
protein levels between parental H460 cells and H460 tumorspheres. (E) Detection of claudin-3 protein levels among nonsquamous NSCLC
cell lines including A549, H157 and H292. (F) Detection of SP percentage among various non-squamous NSCLC cell lines including A549,
H157 and H292. Data of SP analysis from triplicates are presented as the mean ± standard deviation; *p < 0.05; **p < 0.01; ***p < 0.001.
CSC: Cancer stem-like cell; NSCLC: Non-small-cell lung carcinoma; SP: Side-population.

Antagonizing estrogen receptor-α inhibits cancer stemness by suppressing downstream claudin-3 in
nonsquamous NSCLC
We noticed that the three identified drugs targeting claudin-3, including estradiol, WA, and fulvestrant, were
inhibitors of ER-α, demonstrated by previous reports [30–32]. By coincidence, altered transcriptome profiles be-
tween nonsquamous NSCLC and SCC showed that both ER-α and claudin-3 were preferentially expressed in
nonsquamous NSCLC rather than in SCC (Figure 6A). Notably, claudin-3 was dramatically downregulated with
decreased level of CSCs markers in ER-α-depleted MCF7 cell lines (Figure 6B). To confirm the relationship
between claudin-3 and ER-α, we performed knockdown assays and observed that ER-α depletion dramatically
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Figure 2. Claudin-3 expression is associated with cancer stemness in nonsquamous non-small-cell lung carcinoma (cont.). (A) CLDN-3
expression profile from Gene Expression Omnibus database (GDS5410) in which CSCs were isolated from H460 and allowed to
redifferentiate under adherent conditions in serum-containing media for up to 24 h. (B) Sorting of SP from H460 cells using BD Aria.
Verapamil was used as the negative control for SP analysis. (C) Expression of claudin-3 as well as CSCs markers in H460 and H460 SP. (D)
Detection of claudin-3 protein levels between parental H460 cells and H460 tumorspheres. (E) Detection of claudin-3 protein levels
among nonsquamous NSCLC cell lines including A549, H157 and H292. (F) Detection of SP percentage among various non-squamous
NSCLC cell lines including A549, H157 and H292. Data of SP analysis from triplicates are presented as the mean ± standard deviation; *p
< 0.05; **p < 0.01; ***p < 0.001.
CSC: Cancer stem-like cell; NSCLC: Non-small-cell lung carcinoma; SP: Side-population.
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Figure 3. Claudin-3 is a positive regulator of cancer stemness in nonsquamous non-small-cell lung carcinoma (cont.). (A) Effect of
siRNA-mediated claudin-3 knockdown on the percentage of side-population in H460 and H1792. (B) The efficiency of claudin-3
knockdown using semiquantitative RT PCR analysis. (C) Effect of claudin-3 knockdown on the capacities of tumorsphere formation (n = 8
per group). (D) The efficiency of claudin-3 knockdown using shclaudin-3 lentivirus particles. (E) Effect of claudin-3 knockdown on the
rates of tumorsphere formation. (F) Effect of claudin-3 knockdown on the rates of tumor formation. Data of SP analysis from triplicates
are presented as the mean ± standard deviation, *p < 0.05; **p < 0.01; ***p < 0.001. The p-value for E or F was calculated using the
online Extreme Limiting Dillution Analysis (ELDA) online program at http://bioinf.wehi.edu.au/software/elda/.RT PCR: Reverse
transcription PCR; SP: Side-population.

downregulated the transcription and protein levels of claudin-3 (Figures 6C & D). On the contrary, claudin-3
depletion has little effect on the level of ER-α mRNA (Figure 6E). To further investigate the relationship between
ER-α and claudin-3 in regulating stemness in nonsquamous NSCLC, SP assay was performed and the results
showed that ER-α knockdown significantly led to the downregulation of the frequency of SP cells. However, ER-α
silencing almost failed to decrease the percentage of SP in claudin-3-depleted H460 cells (Figure 6F). Therefore,
claudin-3 could function as the downstream of ER-α in mediating cancer stemness in nonsquamous NSCLC.

Discussion
Tight junctions are the most apical component of the junctional complex in epithelial or endothelial cells and
form a barrier to paracellular movement of substances separating the apical and basolateral fluid compartments
on opposite sides of the epithelial cell layer. As the pivotal element in the maintenance of tight junctions, claudin
proteins are abnormally expressed in various malignancies [33,34]. Recent studies have shown that claudin proteins
play an important role in epithelial to mesenchymal transition (EMT), the formation of CSCs or tumor-initiating
cells and chemoresistance [16,20,35,36], suggesting that claudins are promising targets for the treatment of chemore-
sistant and recurrent tumors. In this work, the role of claudin-3 in mediating cancer stemness in nonsquamous
NSCLC has been preliminarily elaborated. As claudin-3 contains two extracellular domains, which are accessible
as target sites, targeting claudin-3 will help provide promising strategies to overcome stemness in treatment of
nonsquamous NSCLC. As one kind of toxin produced by Clostridium species, which are the major causes of
food poisoning/gastrointestinal illnesses, Clostridium perfringens enterotoxin can bind with Claudin-3 and induce
rapid cytolysis [37]. Currently, CPE-based therapy has been widely used in targeted therapy against malignancies in
which claudin-3, the receptor of CPE, is highly expressed [38,39]. Considering that claudin-3 has been identified
as a positive regulator of stemness in nonsquamous NSCLC, CPE-based therapy could represent a highly effective
strategy to specifically target chemotherapy-resistant claudin-3-positive CSCs for therapeutic purposes.

Here, we have identified several small molecules including estradiol, WA and fulvestrant which could all
downregulate claudin-3 level and suppress cancer stemness in nonsquamous NSCLC. Among these molecules,
WA has shown the strongest inhibitory effect on claudin-3 expression and cancer stemness. As a steroidal lactone
occurring in Withania somnifera, WA exhibited cytotoxicity in a variety of tumor cell lines and in animal cancer
models without any noticeable systemic toxicity [40,41]. However, the mechanism of its action is currently under
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estradiol, WA and fulvestrant on the percentage of SP in H1792. (D) Effect of WA and claudin-3 knockdown on the capacities of
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deviation; *p < 0.05; ***p < 0.001. The p-value for (F) was calculated using the online ELDA software.
DDP: SP: Side-population; TCF: WA: Withaferin A.

extensive investigation. It has been demonstrated that WA has the ability to alter numerous cancer-associated
growth factor receptors, kinases and transcription factors and the ability to inhibit nuclear factor-κB activation and
angiogenesis [29,42–44]. In this work, WA was found to suppress cancer stemness by repressing claudin-3 expression.
Hence, this novel function of WA could provide a promising way of sensitizing CSCs-mediated chemoresistance
in nonsquamous NSCLC.

Another important strength of this study is that the relationship between claudin-3 and ER-α in nonsquamous
NSCLC has been uncovered. Estrogen is vital for normal postpubertal mammary development and long-term
exposure to estrogen is proven to be associated with an increased risk of breast cancer [45]. However, the research
area of estrogen signaling is not restricted in breast cancer. Considerable data showed that malignancies including
NSCLC, CRC and all associated with estrogen signaling [46–48]. A focus on ERs as potential indicators of prognosis
has played a significant role in the diagnosis and/or treatment of NSCLC [49]. In this study, targeting ER-α by small
molecules or siRNAs was found to downregulate the percentage of SP with decreased claudin-3 levels, suggesting
that ER-α could also be a contributing factor to cancer stemness in nonsquamous NSCLC similarly to the case in
breast cancer, by downregulating claudin-3 in regulating cancer stemness. This speculation can also be confirmed
by the claudin-3 expression profile from the Gene Expression Omnibus database (GDS4061) in which claudin-3
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Figure 6. Claudin-3 functions downstream of estrogen receptor-α in nonsquamous non-small-cell lung carcinoma. (A) Expression
analysis of ER-α and claudin-3 in AC and SCC samples from GEO database (GDS3627). (B) Effect of ER-α knockdown on expression of
claudin-3 as well as CSCs markers including CD133, CD24, ABCG2 in the breast cancer cell line MCF7. Data were obtained from GEO
database (GDS4061). (C) Effect of ER-α knockdown on the claudin-3 protein level in H1792. (D) Effect of ER-α knockdown on claudin-3
transcription in H1792. (E) Effect of ER-α and claudin-3 double knockdown on ER-α or claudin-3 expression in H460. (F) Effect of ER-α and
claudin-3 double knockdown on the percentage of SP in H460. Data from triplicates are presented as the mean ± standard
deviation; **p < 0.01; ***p < 0.001.
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Figure 6. Claudin-3 functions downstream of estrogen receptor-α in nonsquamous non-small-cell lung carcinoma (cont.). (A) Expression
analysis of ER-α and claudin-3 in AC and SCC samples from GEO database (GDS3627). (B) Effect of ER-α knockdown on expression of
claudin-3 as well as CSCs markers including CD133, CD24, ABCG2 in the breast cancer cell line MCF7. Data were obtained from GEO
database (GDS4061). (C) Effect of ER-α knockdown on the claudin-3 protein level in H1792. (D) Effect of ER-α knockdown on claudin-3
transcription in H1792. (E) Effect of ER-α and claudin-3 double knockdown on ER-α or claudin-3 expression in H460. (F) Effect of ER-α and
claudin-3 double knockdown on the percentage of SP in H460. Data from triplicates are presented as the mean ± standard
deviation; **p < 0.01; ***p < 0.001.
CSC: Cancer stem-like cell; ER-α: Estrogen receptor-α; GEO: Gene Expression Omnibus; SCC: Squamous cell lung carcinoma; SP:
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was markedly downregulated in ER-α knockdown MCF7 cells. Thus, claudin-3 could function downstream of
ER-α and positive regulates cancer stemness in nonsquamous NSCLC and strategies to suppress claudin-3 using
ER-α inhibitors may be potential anti-CSCs therapies in the treatment of nonsquamous NSCLC.

Conclusion
This benchmarking exercise characterized the role of claudin-3 as a positive regulator of cancer stemness in
nonsquamous NSCLC and confirmed the relationship between claudin-3 and its upstream ER-α. Moreover,
claudin-3-targeted therapies using small molecules including ER-α inhibitors could contribute to specifically target
CSCs for nonsquamous NSCLC therapy.

future science group www.futuremedicine.com



Research Article Ma, Yin, Ma, Elshoura & Wang

Future perspective
Although the role of claudin-3 in CSCs has been defined in nonsquamous NSCLC, the mechanisms by which
claudin-3 regulates cancer stemness have yet to be explored in depth in further research. Whether targeting claudin-
3 suppresses tumor relapse after chemotherapy or not still remains to be investigated. Moreover, establishment
of a systemic high-throughput drug screening system based on this target could be a promising strategy against
nonsquamous NSCLC in future.

Summary points

• Claudin-3 is overexpressed in nonsquamous non-small-cell lung carcinoma (NSCLC).

• Claudin-3 expression is associated with cancer stemness in nonsquamous NSCLC.

• Claudin-3 is a positive regulator of cancer stemness in nonsquamous NSCLC.

• Claudin-3 is a positive regulator of cancer stem-like cells-mediated cisplatin resistance in nonsquamous NSCLC.

• Withaferin A was found to suppress cancer stemness by repressing claudin-3 expression.

• Claudin-3 level positively correlated with estrogen receptor-α (ER-α).

• Transcription of claudin-3 requires ER-α.

• Claudin-3 functions as one downstream target of ER-α.
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