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Abstract: Affective computing is a field of study that integrates human affects and emotions with
artificial intelligence into systems or devices. A system or device with affective computing is beneficial
for the mental health and wellbeing of individuals that are stressed, anguished, or depressed. Emotion
recognition systems are an important technology that enables affective computing. Currently, there
are a lot of ways to build an emotion recognition system using various techniques and algorithms.
This review paper focuses on emotion recognition research that adopted electrocardiograms (ECGs)
as a unimodal approach as well as part of a multimodal approach for emotion recognition systems.
Critical observations of data collection, pre-processing, feature extraction, feature selection and
dimensionality reduction, classification, and validation are conducted. This paper also highlights
the architectures with accuracy of above 90%. The available ECG-inclusive affective databases
are also reviewed, and a popularity analysis is presented. Additionally, the benefit of emotion
recognition systems towards healthcare systems is also reviewed here. Based on the literature
reviewed, a thorough discussion on the subject matter and future works is suggested and concluded.
The findings presented here are beneficial for prospective researchers to look into the summary of
previous works conducted in the field of ECG-based emotion recognition systems, and for identifying
gaps in the area, as well as in developing and designing future applications of emotion recognition
systems, especially in improving healthcare.

Keywords: electrocardiogram (ECG); affective computing; emotion recognition system; healthcare

1. Introduction

Research interest in affective computing via physiological modalities has been pop-
ularized by the accelerated development of technological solutions, particularly within
the healthcare industry. The field of affective computing originated from a paper written
by Rosalind Picard in 1995, discussing neurological studies of human emotions and the
possibility for computers to mimic them by expression recognition [1]. Affective computing
is a multidisciplinary study that revolves around computer science, psychology, cognition,
and physiology [2].

The significance of emotions in natural human interaction was demonstrated by
Ekman et al. [3] from the premise “If B perceives A’s facial expression of emotion, B’s
behavior toward A may change, and A’s noticing this may influence or determine A’s
experience of emotion”. Meanwhile, in a book by Reeves et al. [4], the authors claimed
that humans treated computers as if they are just another living being too. From both
arguments, it can be deduced that if computer systems are capable of discerning and
responding to human affects, then the interactional gap between people and machines
will be as naturalistic as talking to a friend and improve the human–computer interaction.
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Adopting emotion recognition systems should be considered as a footstep towards instilling
empathy, sympathy, and compassion into artificially intelligent machinery.

Emotion recognition systems have a lot of prospective applications, spanning health-
care, entertainment, e-learning, marketing, human monitoring, and security. Accord-
ing to [5], there were three major applications of emotion recognition systems specifically
using ECG signals:

• Firstly, monitoring human emotions during certain tasks and assessing the behavioral
response in critical situations. For example, in [6], the emotion recognition system
focuses on studying a driver’s performance during a race.

• Next, clinical application in monitoring patients’ psychological condition for relevant
drug prescriptions or treatment. In [7], emotion recognition is implemented in health-
care settings to promote relaxation and reduce stress. Three emotional services are
provided in the design framework, which are relaxation, amusement, and excitement
services.

• Finally, emotion recognition can be used for marketing. Emotion recognition can be
utilized for website optimization [8], where the system can be designed to collect
information on which adverts attract the most attention, which can allow catering
appropriate contents according to audience demography.

The physiological approach towards emotion recognition has become a better alter-
native to facial expressions, gestures, and vocal traits. Machine vision-based emotion
recognition systems are prone to fake emotions and can be manipulated easily [9–11].
This is why many studies focused on physiological signals, including the multimodal
approach, by combining different physiological signals from biosensors such as an ECG,
an electroencephalogram (EEG), an electromyogram (EMG), electrodermal activity (EDA)
or galvanic skin response (GSR), a photoplethysmogram (PPG) or blood volume pressure
(BVP), or a respiratory inductive plethysmograph (RIP). Although the multimodal emo-
tion recognition approach commonly performed better, the unimodal approach has the
advantages of a lower processing time and simpler data collection [12].

The brain and heart are connected via the autonomic nervous system (ANS), in which
both indirectly influence each other’s behavior [13]. The connection of the sympathetic
nervous system (SNS) and parasympathetic nervous system (PNS) is part of the ANS.
Thus, emotional experience does cause some changes in the heart rhythm, and this can be
detected through ECG readings. The purpose of this review is to sum up the literature to
date that has reported the adoption of ECG as an input of emotion recognition systems.
This paper also discusses ECG features such as the heart rate (HR), as well as heart rate
variability (HRV), and their relationship with the autonomic innervation of the heart.

The next sections discuss the review methodology, followed by the theoretical background
of the autonomic innervation of the heart, electrocardiograms, various emotional models, and
emotion elicitation and emotion evaluation techniques. ECG-inclusive datasets are reviewed
and analyzed in Section 4. Section 5 discusses the methodology of developing an emotion
recognition system from the pre-processing of ECG signals, feature extraction, feature selection
and dimensionality reduction, classification, and validation. Section 6 focuses on the discussion
of the summarized literature. The applications of emotion recognition systems in healthcare
are reviewed in Section 7, and the discussion of the reviews is presented in Section 8. The last
section concludes the work.

2. Review Methodology

The journals and articles reviewed in this work underwent a thorough selection
process. Initially, keywords for the search criteria were identified. Studies associated
with “emotion recognition”, “ECG”, and “healthcare” were searched throughout different
academic databases. Table 1 shows the publisher database and number of studies reviewed
for ECG-based emotion recognition, and healthcare applications of emotion recognition
systems. Here, IEEE Xplore was the database with the most papers reviewed.
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Table 1. Number of papers reviewed from the respective databases.

Publisher Database ECG and Emotion
Recognition Healthcare Application

IEEE Xplore 26 9

Science Direct: Elsevier 4 1

Nature: Scientific
Reports/Data 4 0

ACM DL 3 1

Springer Link 3 2

MDPI 2 0

IOP Science 2 1

J-Stage 1 0

Springer Nature 1 0

IOS Press 1 0

Wiley Online Library 1 0

Fuji Technology Press Ltd. 1 0

IJEECS 1 0

Frontiers 1 0

Total 51 14

The exclusion criteria after the first reading included the removal of duplicated publi-
cations, contextual irrelevancies, and non-English papers. The challenge in collecting the
articles for review was the status of the article, that is, whether it is open access or included
in our institutions’ subscription or not.

In total, for ECG-based emotion recognition, 51 papers were reviewed, and the distri-
bution according to the year the papers were published is shown in Figure 1. The trend
shows that the number of works increases by year, and this reflects the growing interest
of researchers in this field. The overview also shows the number of ECG-based emotion
recognition studies conducted with unimodal and multimodal approaches.

Figure 1. Overview of the years selected studies were published.

3. Theoretical Background

The contents covered here were cited from textbooks, academic journals, conference
papers, and other sources with contextual benefits.

3.1. Autonomic Innervation of The Heart

The centers of the ANS’s control over the heart rhythm are located at the medulla
oblongata [14]. Without any external factor, both centers provide an infinitesimal amount
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of stimulation to the cardiac muscle and cause it to have an autonomic tune. However,
upon excitation, the cardioaccelerator releases the neurotransmitter norepinephrine and
causes the HR to increase drastically. This process occurs throughout the SNS, as well as
at the sinoatrial (SA) node, and is commonly known as the “fight or flight” response [15].
As for the decrease in the HR, the cardioinhibitory centers release the neurotransmitter
acetylcholine (Ach) to the PNS. Metaphorically, this activation can be referred to as the “rest
and digest” operation [15]. SNS and PNS stimulation flows through the cardiac plexus,
cervical ganglia, and superior thoracic ganglia to the SA and atrioventricular (AV) nodes,
with the nerves’ fibers reaching the atria and ventricles. Figure 2 shows the connection of
the vagus nerve (PNS) and sympathetic cardiac nerves (SNS) in a simple model.

Figure 2. The ANS connection between the brain and heart [16].

The physiological interrelation between the heart and brain communication influences
certain characteristic changes when it comes to emotion. The ANS’s influence on emo-
tional changes regulates various other body parameters [17]. According to the HeartMath
Institute, the dynamic, continuous, and bidirectional communication of both organs affects
one’s perception, emotion, intuition, and general health [13]. Hence, detecting the cardiac
rhythm for emotion recognition purposes based on autonomic innervation is necessary in
healthcare as a preventive measure towards negative emotions such as stress [18].

3.2. Electrocardiogram (ECG)

An ECG measures the electrical activity of the heart in different phases and perspec-
tives based on the situation and configuration [19]. The signal acquired provides a graphical
depiction of the deflection and wave series produced by each cardiac cycle, as shown in
Figure 3. The main purpose of an ECG in clinics is to detect pathological cardiac conditions
such as arrhythmia, heart disease, and epilepsy [20].

A normal ECG signal should have three segmented waves in a single cycle [19].
The first wave materializes from the atrial depolarization, and it is called the P wave.
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The second wave is the QRS complex, where it contains the highest amplitude caused by
ventricular depolarization. The interval distance between R peaks is where the inter-beat in-
terval (IBI) is usually calculated for HR detection [21]. Additionally, to extract HRV features
from ECG signals, QRS detection is essential to sort out the RR intervals [22]. After a few
milliseconds of plateau, a T wave appears because of ventricular repolarization [23], and
the cycle repeats.

According to Rattanyu [24], and Bexton et al. [25], ECGs are one of the most widely
used biosensors in emotion recognition because of their quality, and the information on
human emotions contained in the signals. Various studies have used ECGs as a single
modality for emotion recognition. Theekshana et al. [26] stated that there are four prime
reasons that ECGs alone are sufficient for an emotion recognition system. Firstly, ECG sig-
nals capture the heart activity, and ANS stimulation towards each emotion causes rhythmic
changes in the heart [25]. Secondly, an ECG can be extracted using a less intrusive, mobile,
and wearable device [27]. Thirdly, an ECG is a versatile biosensor that can collect data from
different parts of the body: the chest or the limbs, as shown in Figure 4. Lastly, ECG signals
have a higher amplitude among other biosignals [24].

Figure 3. ECG cycle in a healthy and normal heart [28].

Figure 4. Possible electrode placements for ECG recordings [19]: (a) electrode placement for limbs
lead configuration; (b) electrode placement for chest lead configuration [29].
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3.3. Emotion Models

Emotion is a subjective and conscious mental experience accompanied by particular
biological responses or changes [30]. Experts from different backgrounds have tried to
uncover the universal definition of emotion; however, none of them have come to an
agreement in establishing a single emotional model [15]. Despite this, the two most widely
accepted and used emotional models are discrete categories and the affective dimension [1].
In addition, this paper also discusses another commonly used emotional model, the binary
emotional model.

3.3.1. Discrete Emotional Model (DEM)

The DEM categorizes emotions into standard terms such as joy, fear, anger, disgust,
sad, funny, and neutral [31]. This emotional model is standardized and shared across
languages and cultures [32]. Cicero and Graver [33] named 4 basic categories, while
Ekman [34] summarized 6, and Izard [35,36] suggested 10 basic emotions. Although
the number of emotion classes in the DEM varies, there are similarities between them.
Among the emotion labels, the most common are happiness, sadness, and anger [20,37–41].
The reason for the three of them being selected the most is because of the prominent arousal
level that can be easily detected compared to more relaxed emotions [22].

3.3.2. Affective Dimensional Model (ADM)

The ADM, which is also known as the continuous dimension model, is a range of
two-dimensional planes of valence and arousal. One researcher preferred to add another
plane of dominance into the model [42]. The ADM was developed by Russell [43] and
has been adopted widely by researchers from different backgrounds. Figure 5 shows the
illustration of valence, arousal, and dominance on a positive and negative scale. Valence is
the feeling of pleasantness, either being appetitive or aversive, while arousal is the intensity
of the feeling being experienced [44]. The dominance scale represents the authority to be in
control, ranging from submissive to feeling empowered.

Figure 5. The graphical scheme provided to subjects to understand the ADM scales [45].

The versatility of the ADM compared to the DEM is demonstrated in Figure 6.
Based on the valence and arousal scale, the categories of emotions can be segmented
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depending on the degree of intensity. High valence–high arousal (HVHA) is mapped to
excitation, while high valence–low arousal (HVLA) is mapped to feeling calm, or relaxation.
Low valence–high arousal (LVHA) is considered as anger and feeling distressed, while low
valence–low arousal (LVLA) is related to sadness and feeling depressed. The middle of the
scale is considered as a neutral state.

Figure 6. The mapping function between the ADM and DEM [46].

3.3.3. Binary Emotional Model

The binary emotional model consists of positive and negative emotional states (Pos/Neg) [47].
The purpose of this model is to simply generalize between which emotions are bad and which
emotions are good. Negative emotions may cause mental stress to the bearer and the people around
them. It is unhealthy to be exposed to prolonged negative emotions as it affects the physiological
state of a person. Depression, anxiety, and bipolar disorder are known effects of emotional and
mental stress [48,49]. Moreover, by simplifying the emotional model to two classes, a targeted
application of an emotion recognition system can be built with less complexity. A higher accuracy
of training and testing models can also be expected. Figure 7 shows the emotional stress model
proposed by [39]. Instead of valence, the author used a pleasantness scale to describe the region
of potential mental stressors. Any emotions categorized under negative valence such as sadness,
anger, fear, and disgust are potential stress factors that may lead to complications. Thus, the binary
emotional model is another important classification model for affective computing studies.
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Figure 7. Pos/Neg as a model that identifies between good (no stress) and bad (stress) emotions.

3.4. Emotion Elicitation

Inducing basic emotions for data collection in an experiment requires certain guide-
lines and standard operating procedures. There are five common elicitation techniques
which are audio visual, imagery, music, memory recall, and the situational procedure [50].
The less common approaches are naturalistic conversations or debates [51], driving [52],
video games [53], and virtual reality [54].

Audio visual techniques can be segmented film clips for targeted emotions, or videos
with the same purpose [31,45,55–59]. The length of the videos varies, as does the length
of the recorded physiological signals. Imagery is the act of reading vignettes [50] and
experiencing deep emotions through contemplation [60], but in addition to that, pictorial
images such as the International Affective Picture System (IAPS) [61] have been used
widely too. Music listening is another popular way to activate emotions through the lyrics,
melody, and tempo variations [62]. The renowned dataset for affective audio stimulation is
the International Affective Digitized Sounds system (IADS) [63]. Memory recall involves
remembrance of personal experiences to reactivate the essence of emotions circa that
moment [64]. The situational procedure necessitates fabricating a social environment that
elicits the targeted emotion.

As it was described in [50], the most effective way to induce basic emotions is through
audio visuals. Imagery is effective for happiness, surprise, fear, and anger. Music is
only effective for happiness, sadness, and fear. Memory recall is recommended to induce
happiness, anger, disgust, sadness, and fear, but not surprise. Finally, the situational
procedure is a good approach for happiness, anger, fear, and surprise.

3.5. Emotion Evaluation

Emotion evaluation is an annotation perspective for emotion labeling on the data col-
lected. The most common approach is through a first-person perspective or self-assessment.
In this way, the subject personally labels their emotions on a Self-Assessment Manikin
(SAM) [65]. The questionnaire varies depending on which emotional models are used.
Usually, there will be a pictorial description of emotions and the intensity scale to ease the
labeling process, as shown in Figure 5. The problem with internal annotation is that the
subject might feel discomfort and insecure in sharing their true conscious and unconscious
experiences towards the stimuli [15]. This indirectly reduces the reliability of the reported
emotional experience.

Another perspective for emotion annotation is implicit assessment or external eval-
uation. This can be conducted through a second-person perspective and third-person
perspective. The second-person perspective is someone who watches the subject experi-
ence the stimuli in real time and labels what they think the subject feels [51]. Meanwhile,
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third-person perspectives are external, conducted by watching the recordings of the sub-
ject’s facial expression and body gestures, and then only annotating the guesses on what
emotions the subject feels. Both methods have a disadvantage of bias, and they can easily
be deceived [15]. Their perception often depends on personality, cultural bias, and environ-
mental attributes.

4. ECG-Inclusive Affective Datasets

Affective datasets that have been collected using various physiological modalities
are available in academic archives. Although they are not standardized, there are still
commonalities between them. Since this review paper is only interested in ECG-based
emotion recognition systems, the datasets enlisted are ECG-inclusive modalities. The focus
is on the summary of the stimulation used, the data size, the modalities included, the ECG
device used, the ECG configuration, emotional annotations, the model, and perspectives.
Among the datasets with ECG signals are the following:

1. AMIGOS [55]: This stands for A dataset for Multimodal research of affect, personality
traits, and mood in Individuals and GrOupS. The data were collected from 40 subjects
watching videos, with 16 samples each. Biosignals included are ECG, EEG, and GSR.
The ECG device used was a Shimmer, at a 256 Hz sampling frequency. The ECG
lead configurations used were right arm left leg (RA-LL), and left arm left leg (LA-
LL). The emotion annotation labels were from a self-assessment, and third-person
perspectives with a 3D ADM.

2. ASCERTAIN [56]: This stands for a multimodal databASe for impliCit pERrsonaliTy
and Affect recognitIoN using commercial physiological sensors. The data were col-
lected from 58 subjects watching 36 video clips. The physiological signals used
were ECG, EEG, and GSR. For ECG, the sampling rate was 256 Hz, with two un-
specified lead configurations. The emotion annotation perspective was only from
self-assessment, and the model used was the ADM on a scale of valence and arousal.

3. AuBT [66]: This stands for Augsburg Biosignal Toolbox by the University of Augs-
burg. It contains a MATLAB GUI for emotion recognition purposes, together with a
data corpus recorded from ECG, EMG, skin conductance (SC), and respiration (RSP).
The data were from a single subject, with 100 samples collected within the span of
25 days while listening to music of the subject’s choice. The ECG signal sampling
rate was 256 Hz, with only one lead configuration. The emotions were labeled by
self-assessment using the DEM. The four classes of emotions are joy, anger, sadness,
and pleasure.

4. CASE [67]: This stands for the Continuously Annotated Signals of Emotion. The data
were collected from 30 subjects in real time while watching various videos. The physi-
ological modalities included are ECG, BVP, EMG, and GSR (EDA). The ECG device
used was from Thought Technology, and the configuration setup had three leads,
1 kHz. The annotation was by self-assessment using the ADM.

5. CLAS [68]: This stands for Cognitive Load, Affect and Stress Recognition. The data
were collected from 62 subjects, with 32 samples each. The stimuli were separated
equally between video clips and IAPS pictures. The biosignals included are ECG,
PPG, and EDA. The ECG device used was the one-lead Shimmer3, with a right arm
left arm configuration. The sampling rate was 256 Hz. Self-annotation of the valence
and arousal ADM was performed by the subjects.

6. DECAF [57]: This stands for a multimodal dataset for decoding user physiological
responses to affective multimedia content. The data were collected from 30 subjects
with 76 samples. Here, 40 of the 76 samples were from music videos at a 1 min cap,
while the others were from watching movie clips. The biosignals included are ECG,
EMG, magnetoencephalogram (MEG), and electrooculogram (EOG). The sampling
rate for the ECG was 1 kHz, and it was downsampled to 256 Hz. A one-lead configu-
ration was used for this setup. The annotation was from a first-person perspective,
and the ADM with a 3D scale was implemented.
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7. DREAMER [58]: This dataset contains data collected from 23 participants, with
18 samples each. The stimuli used were video clips ranging from 1 to 3 min, with the
focus on the ECG and EEG modalities. The ECG device used was a low-cost, wireless,
portable, and wearable off-the-shelf device from Shimmer. The sampling rate was
256 Hz, with two-lead and three-lead configurations. Self-annotation of the subjects
was conducted using a valence, arousal, and dominance ADM.

8. DSDRWDT [52]: This stands for Detecting Stress During Real-World Driving Tasks.
The data were collected from 24 subjects while they were driving in a real-world
condition. The biosignals included are ECG, EMG, SC, and RSP. The ECG device used
was a FlexComp, with a 496 Hz sampling rate. The lead used was right arm left leg
(RA-LL). The drivers labeled their stress levels through three stages: low, medium,
and high. The emotional model considered was the Pos/Neg category model.

9. EMDC [69]: This emotion-specific multilevel dichotomous classification dataset con-
tains signals collected from 3 subjects, with 360 samples of music listening. The phys-
iological modalities included are ECG, EMG, SC, and RSP. The ECG device used
was a three-lead Procomp2 Infiniti, at a 256 Hz sampling frequency. The affective
annotations were from self-perspective with a 2D ADM.

10. K-EmoCon [51]: This dataset contains data collected from 32 subjects in real time
from a naturalistic conversation (paired debates on social issues) to induce emotions.
The physiological modalities included are ECG, EEG, BVP, EDA, and skin temperature
(SKT). For the ECG signal, a Polar H7 was used, at a 1 Hz sampling rate. The only
feature extracted was the HR. This paper claims to be the first publicly available
dataset on emotion recognition that has a multi-perspective annotation from self-
assessment, second person and third person. The ADM with valence and arousal
scales was implemented.

11. MANHOB-HCI [59]: Data were collected from 27 subjects, with 20 samples, using
ECG, EEG, GSR, EDA, RSP, and SKT. The ECG device used was a Biosemi Active II,
with a three-lead configuration. The sampling rate was 1024 Hz and was downsam-
pled to 256 Hz. Based on the emotional videos watched, the subjects self-reported
their affective state with a 3D ADM.

12. MPED [31]: This stands for Multi-Modal Physiological Emotion Database. The data
were collected from 23 subjects, with 28 samples, watching video clips less than 5 min
each. The biosgnals included are ECG, EEG, GSR, and RSP. The Biopac System with
three-lead configurations and a 250 Hz sampling frequency was used for the ECG
signal acquisition. The annotation perspective was from the first-person view using
seven classes of the DEM: joy, funny, anger, fear, disgust, sad, and neutral.

13. SWELL [70]: This dataset is also known as SWELL knowledge work (SWELL-KW),
and it is a new multimodal dataset for research on stress and user modeling. The data
were collected from 25 subjects performing tasks such as writing, presenting, reading,
and searching to elicit stress. The physiological signals recorded were ECG and SC.
The ECG was recorded through a Mobi device (TMSi), with the electrodes placed in
a triangular configuration on the chest. The sampling rate was 2048 Hz, with three
leads attached. The assessment was conducted by the subjects through labeling two
emotional models, which were the ADM and Pos/Neg.

14. WESAD [71]: This stands for Wearable Stress and Affect Detection. The data were
collected from 15 subjects watching video clips and provided with public speaking
and mental arithmetic tasks. The biosignals included are ECG, BVP, EDA, EMG, RSP,
and temperature (TEMP). The ECG signal was acquired from a RespiBAN Professional
using a three-lead configuration. The sampling rate was 700 Hz. The subject self-
annotated their emotions using a three-class Pos/Neg model. Amusement, neutral,
and stress were the classification categories implemented.

All of these ECG-inclusive datasets are summarized in Table 2. The stimulus used
to induce the emotions during data collection, the data size, available modalities, details
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of the settings of ECG collection, the emotion annotations, the model, and perspectives
are tabulated.

Dataset Popularity Analysis

Even though multiple datasets have been proposed and made available for others to use,
not all datasets have been adopted by other researchers. Hence, based on the summarized
literature from this review, the number of times a dataset has been adopted and cited in other
studies (excluding self-citation) was calculated and is plotted in Figure 8. The most popular
dataset being used for emotion recognition studies using ECG, as observed here, is AuBT, with
six adoptions. Although the database was published in 2005, the citations observed here came
from 2016 onwards. The popularity of the AuBT dataset is followed by AMIGOS, with four
adoptions from 2018 to 2020. Third place goes to DREAMER, with two adoptions in 2020
and 2019. SWELL was published in 2014, but the adoption of the dataset is only found in
two papers from 2020. The other three mentions are DECAF, MANHOB-HCI, and WESAD.
All three have one adoption and citation in other research studies. Other datasets such as
ASCERTAIN, CASE, and CLASS are not found in any other studies by far. Many of the works
reviewed used their own collected data.
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Table 2. Affective datasets available with the inclusion of the ECG modality.

Dataset Stimuli
Data Size

(Participants ×
Samples)

Physiological
Modalities ECG Device ECG LEAD Sampling Rate Emotional

Annotations Emotional Model Annotation
Perspectives

AMIGOS [55] 51–150 s videos 40 × 16 ECG, EEG, GSR Shimmer RA-LL (Lead 2),
LA-LL (Lead 3) 256 Hz Valence, Arousal,

and Dominance ADM Self and 3rd person

ASCERTAIN [56] 51–128 s videos 58 × 36 ECG, EEG, GSR NA 2 Leads 256 Hz Valence and Arousal ADM Self

AuBT [66] 2 min of music
listening 1 × 100 ECG, EMG, RSP, SC NA 1 Lead 256 Hz Joy, Anger, Sadness,

and Pleasure DEM Self

CASE [67] <3 min videos 30 × 20 (real time) ECG, BVP, EMG,
GSR (EDA) Thought Technology

RA-LA (Lead 1),
RA-LL (Lead 2),
LA-LL (Lead 3)

1000 Hz Valence and Arousal ADM Self

CLAS [68] 16 video and 16
IAPS pictures 62 × 32 ECG, PPG, EDA Shimmer3 RA-LA (Lead 1) 256 Hz Valance and Arousal ADM Self

DECAF [57]
1 min music videos

and ~ 80 s movie
clips

30 × 76 ECG, EMG, EOG,
MEG NA RA-LA (Lead 1)

1 KHz
downsampled to 256

Hz

Valence, Arousal,
and Dominance ADM Self

DREAMER [58] 65–393 s film clips 23 × 18 ECG, EEG Shimmer ECG RA-LL (Lead 2),
LA-LL (Lead 3) 256 Hz Valence, Arousal,

and Dominance ADM Self

DSDRWDT [52] 50–90 min of driving 24 ECG, EMG, SC, RSP FlexComp RA-LL (Lead 2) 496 Hz Low, Medium, and
High Stress Pos/Neg Self

EMDC [69] 3–5 min of music
listening 3 × 360 ECG, EMG, SC, RSP Procomp2 Infiniti 3 Leads 256 Hz Valance and Arousal ADM Self

K-EmoCon [51] 10 min naturalistic
conversations 32 (real time) ECG, EEG, BVP,

EDA, SKT Polar H7 1 Hz Valence and Arousal ADM Self, 2nd and 3rd
person

MANHOB-HCI [59] 35–117 s videos 27 × 20 ECG, EEG, GSR,
EDA, RSP, SKT Biosemi Active II 3 Leads

1024 Hz
downsampled to 256

Hz

Valence, Arousal,
and Dominance ADM Self

MPED [31] <5 min videos 23 × 28 ECG, EEG, GSR, RSP Biopac System 3 Leads 250 Hz
Joy, Funny, Anger,
Fear, Disgust, Sad,

and Neutral
DEM Self

SWELL [70]
Writing, presenting,

reading, and
searching

25 × 3 ECG, SC Mobi device (TMSi) 3 leads 2048 Hz Valance, Arousal,
and Stress ADM and Pos/Neg Self

WESAD [71]

Video clips, and
public speaking and

mental arithmetic
tasks

15 ECG, BVP, EDA,
EMG, RSP, TEMP

RespiBAN
Professional 3 Leads 700 Hz Neutral, Stress, and

Amusement Pos/Neg Self
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Figure 8. The number of times datasets were applied in different research studies found in the
summarized literature.

5. Development of Emotion Recognition Systems

There are several steps in developing emotion recognition systems. This work focuses
on the development of emotion recognition systems using machine learning techniques.
The first step is pre-processing, which is to clean the signal from unwanted noises. Next is
feature extraction using various techniques. The usage of feature selection as well as feature
reduction to find the relevant emotion-related features is optional and can be included after
feature extraction. The last step is classification and validation techniques using machine
learning algorithms. The common adopted pipeline of emotion recognition models is
presented in Figure 9.

Figure 9. General methods for an ECG-based emotion recognition system using machine learning.

5.1. Pre-Processing

An ECG signal is considered as a high-sensitivity physiological signal with a low
recording voltage between 0.5 and 5 mV [72]. Generally, the signal is susceptible to noise
and corruption due to various internal and external factors depending on the method of
application. The main sources of ECG noise are power line interference, muscle movements,
electrode–skin contact, motion artifacts, baseline wander, electronic and electromagnetic
device interference, external electrical system interference, internal high-frequency noise,
and respiration or bowel sounds. The common frequency for muscle movements is 5–50 Hz,
0.12–0.5 Hz (at 8–30 beats per minute) for respiratory, 50/60 Hz on AC electrical systems,
and >10 Hz on other electrical and electronic devices [73]. Although there is a wide variety
of ECG filters, the applications depend on specific needs to denoise and reduce the amount
of information complexity towards a desired level.

The multiple-configuration Butterworth filter is the most widely used filter based
on the summarized papers. In [47,74], a low-pass Butterworth filter with a 60 Hz cut-off



Sensors 2021, 21, 5015 14 of 37

frequency was applied to remove a higher background noise of ECG signals. A 0.05–100 Hz
Butterworth bandpass filter was used in [69] to remove noise, while a 49–51 Hz band-stop
Butterworth filter was used in [75] for power line interference at 50 Hz. According to [72],
although the bandpass filter may remove most of the stated noises, solely depending on it
is discouraged as the result might not be the best. A fourth-order Butterworth filter with
a 100 Hz cut-off frequency [76] and a sixth-order Butterworth filter with a 45 Hz cut-off
frequency [40] were used to remove high-frequency noise and powerline interference.
The lowest order of the Butterworth filter works best in the time domain, while in the
frequency domain, a higher order is better.

In removing a high-frequency interference, [75] applied a 1–60 Hz bandpass filter,
while [77] used a 5–15 Hz bandpass filter. In [24], an interpolation filter was utilized
to remove signals of 30 Hz and below. A notch filter or a band-stop filter was applied
in [20,78] at 50 Hz. A second-order infinite impulse response (IIR) notch filter was used to
eliminate powerline noise and motion artifacts in [47]. A fourth-order notch filter at 50 Hz
was used in [76] to eliminate power line interference, as suggested by [79].

The most common frequencies in ECG signals that should be preserved for further
processing and feature extraction are 0.67–5 Hz (at 40–300 bpm) for detecting the HR and
P wave. The QRS complex can be detected within 10 to 50 Hz, and the T wave at 1–7 Hz.
A high-frequency potential may also be considered at 100–500 Hz [73]. To determine
which filter is best to be used, the frequency setting and calibration pulse should always be
informed first so that the ECG signal can be interpreted accurately.

5.2. Feature Extraction

ECG feature extraction has different approaches depending on the way raw signal
calculations can be manipulated into meaningful information. This section begins with the
most basic ECG signal processing through PQRST detection and the extraction of statistical
features. Next, feature extraction for the HR and within beat (WIB) features is explained.
The third part summarizes HRV and IBI as the most used features from ECG modalities to
detect human emotions through ANS activity within the heart. The last part summarizes
other feature extraction techniques used throughout the literature reviewed.

5.2.1. PQRST Detection and Statistical Features

The most basic features to be extracted from ECG signals are the PQRST points’ allo-
cations. Between the P wave, QRS complex and T wave, the QRS complex was considered
important in defining the HR and HRV through IBI calculation [55,80]. The Pan–Tompkins
QRS detection algorithm [81] is considered as the most common technique to find the R
peak location [58,67,69]. In [39,40], the QRS complex was derived by applying a nonlinear
transformation on the first derivative (Gaussian first-order differentiator) of the filtered
ECG signal [82,83]. Continuous wavelet transforms (CWT) are applied to detect a precise
R location and then the QS, P, and T waves [84]. Finally, in [83], a built-in R peak detection
was embedded in Acknowkedge3.8.2 application software, and there is no need for the
researcher to manually extract the features.

Based on PQRST detection, individual statistical features can also be extracted [58,66,85,86].
The statistical features extracted include mean, median (med), standard deviation (std) and
quartile deviation, minimum (min), maximum (max), and range (max-min) of individual P, Q, R,
S, and T. The authors of [84] extracted only the amplitude of P, R, and S, before proceeding to
analyzing the other features.

5.2.2. HR and WIB Features

HR is measured in beats per minute (bpm). Considering that one cycle or one beat
can be measured between two successive R peaks, the HR can be derived simply through
averaging the overall signals collected through a period. The HR is proven to show distinct
feature changes [87] and has been used in various ECG-based affective studies [6,24,39,51,
53,55–57,67,71,75,78,85,88]. The benefits of HR over other features are the simplicity of the
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calculation and not requiring a highly accurate measurement. Even during an intensive
exercise, the measurement of the HR is still reliable.

WIB features were proposed by [24], which calculate the statistical values of ECG
intervals. Mean, med, max, min, and standard deviation are calculated from PR, ST,
and QRS intervals [26]. Instead, in [58,66,85,86], PQ, QS, and ST intervals were used to
calculate the statistical features stated, with an addition to the range. QRS morphologies
were extracted in [89] based on clinical application. The morphology features are qrsWBR
(width between R peaks and the next Q), qrsWRE (width between S and R peaks), qrsABR
(difference between amplitude of R peaks and the next Q), qrsARE (difference between
amplitude of R peaks and the consequential S), and qrsMOR (the shape of the QRS interval).

5.2.3. HRV and IBI Features

HRV measures specific changes between heart beats in the time domain. The time
between beats is measured in milliseconds (ms) and is called an RR interval or IBI. The vari-
ation in IBI values contributes to the readings of HRV. HRV features are claimed to be
one of the most used methods in ECG-based emotion recognition systems [69,90]. HRV is
also known to have distinct changes in emotion variations [87] and used as an indication
of stress and mental effort in healthy adults [69]. Moreover, HRV is the most precise
non-invasive physiological technique in measuring the activity of the ANS throughout the
body. The widely available and affordable consumer-grade ECG devices that can record a
significantly good signal are sufficient for HRV feature extraction.

Out of the 51 studies summarized, 31 of them used HRV, with a slight common
variation. However, in general, there are three domains of HRV feature analysis: time
domain, frequency domain, and time–frequency domain. A detailed explanation of each
domain is presented below:

• Time domain [26,91,92] (Temporal [15]): This measures the amount of variability in
IBI, where the expression comes in the form of a natural logarithm (Ln) of original units,
or the original units themselves, for a more normally distributed formation. There are
short-term indices for recordings around minutes in length, and long-term indices
which usually record over a period of 24 h. The first feature matrix is the standard
deviation of the normal-to-normal interval (SDNN). This feature is represented in the
unit of milliseconds (ms) for a standard short-term recording of 5 min [93], and 60 to
240 s for ultra-short term recordings [94,95]. SDNN changes also correlate with SNS
and PNS activity in the heart. Next, the standard deviation of RR peaks (SDRR) is
very similar to the previous case, but it includes false and abnormal beats measured at
R peaks. NN50 and pNN50 are the number of adjacent normal-to-normal intervals
and percentage of them that are more than 50 ms. These features are known to
accommodate PNS activity in the heart [96]. Other variations are NN20 and pNN20,
respectively. Next, the root mean square of successive differences (RMSSD) is an index
of IBI variance in the HR. Finally, the HRV Triangular Index (TriInd) feature is usually
combined with RMSSD to detect pathological cardiac complications, and triangular
interpolation of a normal-to-normal interval histogram (TINN) is used as a histogram
baseline for a normal-to-normal interval.

• Frequency domain [26,91,92] (Spectral [15]): This measures the amount of power at
various frequencies using fast Fourier transformation (FFT). The amplitude of FFT
can then be derived into a power spectral density (PSD). In spectrogram analysis,
there is a range of feature levels available such as ultra-low frequency (ULF), very-low
frequency (VLF), low frequency (LF) and high frequency (HF), as shown in Figure 10.
However, in the emotion recognition system, ULF and VLF are not utilized as both
need at least 24 h of ECG recording, which is not practical for emotion recognition.
VLF, LF, and HF bands have a window range from 0.0033 to 0.04 Hz, 0.04 to 0.15 Hz,
and 0.15 to 0.40 Hz. All three correlate with SNS and PNS activity changes. In fact,
a low HF power reflects negative emotions such as anxiety, worrying, stress, and panic.
Based on the bands, there are also variations of the normalized LF and HF, the LF/HF
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ratio, and the total spectral power. Other statistical features that have been extracted
from the frequency bands are spectral centroids, spread, kurtosis, skewness, slope,
variation, decrease, roll-on/off, and total energy.

• Nonlinear domain [15,91] (Geometrical [15,26]): This measures the nonlinearity of
time series of the unpredictability of the HRV complexity mechanism. The features are
extracted from Poincare geometric plots and allow a refined pattern detection through
a scatter plot. The parameters are the area of the total HRV eclipse (S), each point, the
standard deviation from both axes (SD1), the standard deviation of each point from
both axes plus the RR interval (SD2), and SD1/SD2. The feature variation includes
SD12, Area0, Area1, Area2, Area3, and Area4.

Figure 10. Power spectral density (PSD) features [97].

5.2.4. Empirical Mode Decomposition, Wavelet Transform, and Fourier Transform

Empirical mode decomposition (EMD), also known as the Hilbert–Huang transform
(HHT), is a technique to transform signals into parts called intrinsic mode functions
(IMF) [98]. This technique is suitable for nonlinear and nonstationary signals such as those
from an ECG. With the IMF characteristic, the instantaneous frequency and amplitude of
the signal can be defined. Moreover, the HHT also preserves the characteristic of frequency
changes as the lengths of original signal and IMF are the same. The application of EMD
for ECG feature extraction techniques to emotion recognition systems is seen in a few
papers such as [21,26,54,76,99,100]. In [54], 35 features were extracted from IMF1 and IMF2.
The features consist of statistical features such as mean, max, standard deviation, variance,
skewness, kurtosis, and others.

The wavelet transform is a technique for multiresolution analysis [101] and divided
into two forms. The continuous wavelet transform (CWT) has the capability of extracting
features from the signal with the determination of extremum points and inflection points,
while the discrete wavelet transform (DWT) can extract statistical and stochastic charac-
teristics, and the energy spectrum. In general, the wavelet transform decomposes data
into different frequency and time scales using a mathematical transformation function.
The computing process involves dilation and translation of functions, or multiscale refine-
ment of signals. The wavelet transform is also known to be able to solve difficult problems
that Fourier transforms are not capable of [102]. In [84,101], the CWT is used to perform
the feature extraction on ECG signals, while [89,103] applied the DWT in their framework
process.

The Fourier transform is another technique for decomposing functions that are de-
pendent on the time of space into functions that are dependent on the temporal or spatial
frequency. The two common Fourier transforms in emotion recognition studies are the
discrete Fourier transform (DFT) and the FFT. They are almost identical methods, with
the FFT being a more efficient function, where the computation performs faster than the
DFT. Again, in [76], the authors combined EMD and the DFT as IMF alone does not contain
much information to provide any distinctive features. Another adoption of the DFT is also
found in [26], where the application of feature extraction is paired with EMD and other
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methods. Finally, application of the FFT is only seen in one paper [69], where the features
were derived from a partitioned coefficient within the frequency range into overlapping
sub-bands with the same bandwidth. From that, the sub-band spectral entropy (SSE) is
computed to identify the disorganization or uncertainty in a random variable. This helps
the pattern recognition by scaling the intensity of a classifier’s confidence.

5.2.5. Others

There are some independent feature extraction techniques based on ECG signals used
for emotion recognition systems. Various novel approaches have been proposed to perform
the task with the aim of extracting useful feature information that is relevant to the ANS
activity of the heart. The prospective approach has been taken, from the mathematical
process derivation function to pictorial plotting and statistical feature analysis.

Detrended fluctuation analysis (DFA) and detrended cross-correlation analysis (DCCA)
were applied in [104]. Features from the multifractal spectra were also extracted in that
paper. DFA is categorized under nonlinear feature analysis, and the work in [105] also
applied this method along with Poincare plot feature extraction from HRV.

In [20], Coiflets wavelets (Coif5) at level 14, the discrete cosine transform (DCT),
and Daubechies wavelet (db4) at level 8 were applied before using matching pursuit
coefficients for feature extraction. The features extracted were statistical such as mean,
variance, standard deviation, minimum, and maximum.

Instead of using the numerical values of ECG signals to extract the features, a graphical
plot and image pattern recognition were applied in [47]. The methods used were the local
binary pattern (LBP) and the local ternary pattern (LTP). The LBP is widely used in
computer vision and image processing research, particularly in facial recognition. The LTP
is the modification of the LBP by changing it from a binary operation of 1-0 to three
operations of -1-0-1. The operation depends on the frame length and frame shift to extract
the features.

Another method that has been reported is feature extraction through the Nonlinear
Autoregressive Integrative (NARI) Point-Process Model [106]. The analysis of heartbeat
dynamics started from detecting RR peaks, and following the Wiener–Voterra representa-
tion, a specific point process model was created for instantaneous identification up to the
third order. The features are extracted from Lyapunov exponents as well as instantaneous
spectra, and spectra. This evaluation is also known to be in the realm of high-order statistics
(HOS).

A nonlinear approach based on Hurst was proposed in [40] by using rescaled statistics
(RRS) and finite variance scaling (FVS). The new Hurst features are combined into HOS
to be classified into six basic emotional states. The value of Hurst can also be obtained
by EMD, the wavelet transform, and finite variance scaling. Before applying the feature
extraction procedure, the QRS complex is extracted for further computation of RRS and
FVS. In this process, six features are extracted from each sample in the study.

Other ECG feature extraction methods found in the reviewed works are the multi-
variant correlation method and spectrograms. In [107], the authors applied a linear multi-
variate approach for their feature function analysis. Meanwhile, in [108], the author
extracted the features using deep learning by converting time series data to frequency
domain-based images. Based on the images, only the 0–5 Hz range was converted into a
spectrogram, and the data were fed into a VGG-16 network. Finally, 4096 features were
extracted and studied.

5.3. Feature Selection and Dimensionality Reduction

Extracted features do not promise fully relevant correlations with physiological
changes in emotion regulation. Feature selection is a method to optimize the classification
architecture by only picking the best feature combinations and eliminating noninformative
features. This can also reduce the computational cost of the classification in the later step.
In [26], recursive feature elimination, the chi-square test, the P test, random forest feature
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selection (RF FS), extra tree feature selection, and random support vector machine feature
selection were used. Moreover, swarm intelligence is also common in the feature selection
process. The author of [74] applied the genetic algorithm, while ant colony optimiza-
tion was used in [104]. Binary particle swarm optimization (BPSO) and hybrid particle
swarm optimization (HPSO) have also been applied for feature selection [84]. The wrapper
method and the Tabu search algorithm are found in [77] and [103]. In [109], the author
used Kullback–Leibler divergence as a feature selection. Other common techniques are
sequential forward selection (SFS) and sequential backward selection (SBS), which have
been applied in [86,87,110].

Dimensionality reduction is a technique to reduce the number of features by trans-
forming a higher dimension feature matrix into a lower dimension without losing the
necessary information. The two most used techniques were principal component analysis
(PCA) and linear discriminant analysis (LDA). The transformation of PCA is unsupervised,
while LDA is supervised. The applications of PCA were viewed in [20,55,67,85,89,108,111].
LDA, also known as Fisher’s linear discriminant analysis, was used in [20,24,53,87] as a
dimension reduction procedure.

The applications of feature selection and dimensionality reduction techniques stated
are reported to be beneficial in terms of improving the training and testing accuracy for
emotion recognition systems. Moreover, the time taken to perform the classification is
reduced significantly as less data need to be processed at a time. Finally, the chance to
overfit the trained model is reduced, as the noisy data are eliminated from the final data
fed to the classifier.

5.4. Classification

Classification techniques are divided into two main categories which are machine
learning and deep learning. Commonly, if deep learning is adopted in physiological-based
emotion recognition, there are no feature extraction and feature selection steps. If the
deep learning architecture has a convolutional layer, it might somehow be considered as a
dimensionality reduction stage.

Machine learning methods are divided into three learning categories which are super-
vised learning, unsupervised learning, and hybrid learning. In affective computing, the
majority of the research adopted supervised learning through emotion labels such as ADM,
DEM, and Pos/Neg through SAM. However, there is one work that used unsupervised
learning, which is [112]. The ECG signals were unlabeled, and the convolutional neural
networks (CNN) were trained to find any signal transformation for emotional patterns.
Then, the weights were passed on to the labeled data for testing. The accuracy shows a
significantly better result than most of the supervised learning techniques.

A classifier that has been frequently adopted and performed the best in emotion
recognition systems is the support vector machine (SVM) [15]. From 24 out of the 51 studies
summarized here (presented in the following section), SVM was adopted as either the
only classifier or one of the machine learning algorithms to be compared. SVM kernels are
simply the methods or behavior of making the hyperplane decision boundaries work in
certain manners. In [89], SVM constantly performed better than random forest through
every ratio of generated emotional data in the training set.

Although SVM is popular, it is not always the best classifier, as reported in sev-
eral works. Other well-performing classifiers used are k-nearest neighbour (KNN) and
naïve Bayes (NB). KNN was reported to perform better than SVM in [39,77]. Mean-
while, [56] showed that NB performed better than SVM in both valence and arousal
classification using a single ECG modality. Classifiers that were also reviewed are decision
tree (DT), random forest (RF), AdaBoost (AB), gradient boost (GB), quadratic classifier
(QDA), and LDA. For less known classifiers such as extra tree, regression tree, and en-
semble bag tree, their performance was reported to be considerably good in [26] when
compared to RF and GB.
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Neural network-based deep learning classifiers come in different forms and config-
urations. Based on the literature, there are a lot of neural network (NN) infrastructures
such as 1-NN, deep convolution neural network (DCNN), probabilistic neural network
(PNN), backpropagation neural network (BPNN), radial basis function neural network
(RBFNN), multilayer perceptron (MLP), and extreme learning machine. Extreme learning
machines alone were shown to improve the training accuracy of many databases [108].
DCNN also showed classification accuracy of the AMIGOS dataset in [113] for valence
and arousal. The best accuracy was shown in [20] using PNN to classify five-class and
three-class DEMs. However, the study was subjected to a credibility request as the result
might be biased by overfitting.

5.5. Validation

Validation is a crucial step in building a machine learning model, especially when
dealing with a subjective application such as emotion recognition. This step is designed to
see the overall performance of the trained models when it comes to new data. The partition-
ing between training and testing datasets is to ensure the model can perform a validation
step by imitating real-world scenarios outside of the experiment setup [15]. The generaliza-
tion ability of validation allows the model to increase variability and reduce overfitting.
The most common validation techniques are called cross-validation (CV) with different
versions of approaches.

Non-exhaustive cross-validation of k-CV is a resampling procedure conducted with
k number of folds to reshuffle and train the limited data sample, with 5 and 10 being
the standard number of k when it comes to the number of folds in k-CV. When k is
bigger than that, the subjected models are considered biased. The 5-fold CV was practiced
in [54,74], while a rare 15-fold CV was only conducted in [54]. Moreover, 10-fold CV is the
most widely practiced cross-validation technique, with 12 papers in total [6,26,39,47,53–
55,88,99,112,114,115].

Exhaustive cross-validation techniques have two main variations. The first is leave-
one-out cross-validation (LOOCV), where the models are tested and validated from end
to end without leaving one participant or subject as a final validation. This method takes
more time than leave-one-subject/participant-out cross-validation (LOSOCV/LpO CV).
The main advantage of exhaustive CV over non-exhaustive CV is the lower bias as it
trains the possible validation combination across all datasets. However, considering a
large amount of computational work, the validation process takes a significantly longer
time to complete. LOOCV was applied in [55,56,68,69,77,106,109,116], while LOSOCV was
adopted in [71,105,110].

6. Review of ECG-Based Emotion Recognition Systems

The 51 reviewed works are summarized in Tables 3 and 4. Table 3 summarizes
31 studies on combinations of unimodal and multimodal ECG-based affective research that
reported on ECG standalone results. Meanwhile, Table 4 summarizes 20 affective research
studies that included ECG as one of their physiological modalities but did not mention
the classification accuracy of using solely ECG as the input. In this section, the works that
achieved more than 90% accuracy are highlighted.
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Table 3. Research that only uses ECG as a unimodal approach or a multimodal physiological approach, with ECG standalone accuracy results included.

Source Dataset Modalities ECG Pre-processing ECG Extracted Features Features Selection Selected Features Classifier Validation Accuracy

[20]

Own: 11 subjects, 56 music
listening
DEM (happiness, sadness,
peacefulness, scary, neutral)
and ADM (valence, arousal)

ECG, GSR Digital notch filter at 50 Hz

Matching pursuit. Min,
mean, max, var, std of Coif5
at level 14, db4 at level 8,
DCT

LDA, PCA, Kernel-PCA NA PNN NA

Subject-dependent and
subject-independent using
PCA:
100%

[21]
Own: 44 subjects, 5 images
ADM (valence,
active/passive arousal)

ECG NA

EMD (bivariate extension of
EMD), Hilbert–Huang
Transform, local oscillation in
every mode

NA NA LDA NA up to 89%

[24]

Own: 12 subjects, 60 samples
each
DEM (anger, fear, sadness,
disgust, joy, neutral)

ECG Interpolation filters remove
30 Hz and below

- IBI
- WIB

Least Significant
Difference—ANOVA

36 features: 11-feature
approach and 3-feature
approach

LDA, Adaptable KNN NA 11-feature approach 37.23%
3-feature approach 61.44%

[26]

Own: 25 subjects, 488
samples
DEM (anger, sadness, joy,
pleasure)

ECG Butterworth bandpass filter
0.05–100 Hz

- PQRST, HRV: sdnn, mn_nn,
rmssd, m_nn, nn50, pnn50,
hf, hfnu, lf_hf, lfnu,
total_power, vlf, sd1, sd2
- WIB: PR, ST, QRS min, max,
std, mean, med
- EMD: spectral power of IMF
in time and frequency
domain, instantaneous
frequency of IMF, spectral
power of instantaneous
frequency of IMF
- TFB (ten-frequency band)

Recursive Feature
Elimination, Chi-Square Test,
P test, RF FS, Extra Tree FS,
Random SVM FS

- EMD: spec_2, spec_4
- HRV: sdnn, mn_nn, m_nn
- WIB: median_pr, max_pr,
sd_pr, mean_qrs, max_qrs,
min_qrs
- TFB: band_2, band_3,
band_5, band_7, band_10

RF, Extra Tree, Gradient
Boost, AB SVM, AB DT, AB
Naïve Bayes

10-fold CV

80% extra tree classifier and
feature selection
79.23% RF classifier and extra
tree feature selection
72.66% gradient boost
classifier and RF FS

[39]
Own: 5 subjects, 15 video
clips
(Pos, Neg, Neutral)

ECG Elliptic bandpass filter, DWT Time domain: HR, MRAmp,
MRRI NA NA KNN, SVM 10-fold CV

Pos/Neg Neutral KNN:
66.49% 60:40 train/test,
66.22% 70:30 train/test,
67.54% 80:20 train/test
Pos/Neg KNN:
74.67% 60:40 train/test,
77.69% 70:30 train/test,
77.42% 80:20 train/test
Pos/Neg SVM:
64.98% 60:40 train/test,
65.52% 70:30 train/test,
66.04% 80:20 train/test

[40]
Own: 60 subjects, 60 samples
DEM (happiness, sadness,
fear, surprise, disgust, anger)

ECG

Baseline wander removed
using wavelet-based
algorithm, 6th-order
Butterworth filter with 45 Hz
cut-off

Nonlinear features “Hurst”
using RRS and FVS from
QRS. Combined HOS: Hurst,
skewness based on Hurst,
kurtosis based on Hurst

NA NA
Bayesian classifier,
Regression tree, KNN, Fuzzy
KNN

Random validation,
Subject-independent
validation

Fuzzy KNN
6 Class: 92.87% RRS, 76.45%
FVS

[47]

Own: 8 subjects
DEM (joy, anger, sadness)
+
AuBT

ECG
2nd-order IIR notch filter,
Butterworth low-pass filter
with 60 Hz cut-off frequency

LBP, LTP: 3 s, 5 s, 10 s, 15 s
frame length, and 1.5 s, 2.5 s,
5 s, 7.5 s frame shift

NA NA KNN 10-fold CV LBP 84.17%,
LTP 87.92%

[55] AMIGOS ECG, EEG, GSR NA

Root mean square of IBI,
mean IBI, 60 spectral power,
LF, MF, HF of HRV spectral
power, HR, HRV statistics:
mean, std, skewness,
kurtosis, % of time the future
value above/below mean ±
std

PCA NA Linear SVM 10-fold CV, LOOCV

Short video scenario: 53.5%
V, 55.0% A
Long video scenario: 55.0% V,
54.3% A
Both:
54.5% V, 55.1% A
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Table 3. Cont.

Source Dataset Modalities ECG Pre-processing ECG Extracted Features Features Selection Selected Features Classifier Validation Accuracy

[56] ASCERTAIN ECG, EEG, GSR NA

10 low-frequency PSD, 4 very
slow response PSD, IBI, HR,
HRV statistics: mean, std,
skewness, kurtosis, % of time
the future value
above/below mean ± std

NA NA Linear SVM, NB LOOCV SVM: 56% V, 57% A
NB: 60% V, 59% A

[58] DREAMER ECG, EEG No pre-processing

- PQRST features: mean,
med, std, min, max, range
- HRV: RMMSD, PSD LF, PSD
HF, LF/HF, total power

NA NA RBF SVM NA 62.37% V,
62.37% A

[71] WESAD ECG, BVP, EDA, EMG, RSP,
TEMP NA

- HR, HRV: mean, std
- HRV: NN50, pNN50, TINN,
RMS, ULF, LF, HF, ULF,
LF/HF, fULF-HF, relative
power, normalized LF,
normalized HF

NA NA DT, RF, AB, LDA, KNN LOSO CV

3 Class:
DT 57.81%, RF 60.36%, AB
61.71%, LDA 66.29%, KNN
54.76%
Pos/Neg:
DT 80.17%, RF 82.78%, AB
83.37%, LDA 85.44%, KNN
79.19%

[74] Own: 16 subjects, 96 samples
ADM (valence, arousal) ECG Butterworth low pass filter HRV Genetic Algorithm NA SVM 5-fold CV ADM: 72.9%

89.6% V, 82.3% A

[75] Own: 6 subjects, 36 film clips
(Pos, Neg, Neutral) ECG, EEG, RSP

Remove baseline drift, 1–60
Hz bandpass filter, 49–51 Hz
band-stop Butterworth filter

HR, HR stability (HRstd),
power (Hpow) NA NA Linear SVM NA

Pos/Neg, Neutral:
HR 69.0%,
HRstd 84.2%,
Hpow 70.4%

[76]

Own: 30 subjects, 60 video
clips
DEM (happiness, sadness,
fear, surprise, disgust,
neutral)

ECG

4th-order notch filter at 50
Hz, 4th-order Butterworth
filter 100 Hz cut-off, digital
high-pass filters

EMD combined with Hilbert
transform, EMD combined
with DFT

NA NA LDA, KNN NA KNN: 52%

[77] Own: 34 subjects,
Pos/Neg (stress, no stress) ECG, EDA, ST 5–15 Hz bandpass filter

HRV time and freq domains:
mRR, medRR, mHR, SDRR,
RMSSD, RR50, pRR50, LF,
HF, LF/HF

Wrapper method
HRV: mRR, medRR, mHR,
SDRR, RMSSD, RR50, LF, HF,
LF/HF

LDA, QDA, SVM, KNN LOOCV KNN: 88.03%

[84]
Own: 391 subjects, 10 film
clips
(joy, sadness)

ECG 35 Hz low-pass filter and 50
Hz power source notch filter

CWT, 79 features: mean, std,
med, min, max, range of
intervals. P, R, S amp, HRV,
and PSD

BPSO, HPSO

20, 16: Most selected: max R,
range R, mean R, med R,
range QS, std PQ, std S,
mean QS, std QS, med P

Fisher classifier Run 40 times Joy: 84.45%,
Sadness: 88.43%

[86]
AuBT
DEM (only joy and pleasure
data)

ECG NA 81 features of
HR and HRV

ANOVA: 44 features, SFS: 37
features, SBS: 3 features

R-range, Rampl-std,
HRV-max, HRV-range,
HRVDistr-range

SVM, LDA, Fisher’s linear
discriminant NA SVM + SFS-SBS-ANOVA:

92%

[89] DECAF ECG Butterworth filter
HR, DWT, QRS morphology:
qrsWBR, qrsWRE, qrsABR,
qrsARE, qrsMOR

NA NA SVM, RF NA 63.4% RF
64.5% SVM

[99] AuBT ECG, EMG, SC, RSP Adaptive low-pass filter HHT (EMD and Hilbert
transform) fission and fusion NA 4, 8, 12, 16 IMF features SVM 10-fold CV Fission 69%, Fusion 56%

[101] AuBT ECG, EMG, RSP, SC NA 16 features of CWT Morlet
wavelet coefficients NA NA SVM NA 75%

[102] AuBT ECG NA
Wavelet transform: max and
std of multiscale wavelet
coefficients

NA NA BPNN, RBFNN NA BPNN: 87.5%,
RBFNN 91.67%

[103]
Own: 391 subjects, 10 film
clips
DEM (joy, sadness)

ECG NA DWT, 79 features Tabu Search Algorithm

23, 12: Most selected: std S,
max R, std QS, range R, mean
S, med R, med S, std R, min
R, min S, PNN50 HRV, LF
HRV

KNN, Fisher-KNN Run 9 times KNN: 75.85%,
Fisher-KNN: 85.78%
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Table 3. Cont.

Source Dataset Modalities ECG Pre-processing ECG Extracted Features Features Selection Selected Features Classifier Validation Accuracy

[104]

Own: 20 subjects, 400
samples
DEM (happy, sad, pleasant,
angry)

ECG NA

- Statistical features of time
and frequency domain: max,
min, mean, std, rrmean, rrstd,
energy, ratio
- DFA: α, α1, α2
- Multifractal Features: α0,
∆α
- DCCA: ρDCCAh,
ρDCCAm, ρDCCAl

Max–Min Ant System, Ant
Colony Optimization NA KNN, SVM, DT CV

Best Classifier: KNN
4 Class: 92%
Happy 91%
Sad 92%
Pleasant 88%
Angry 97%

[106]

Own: 30 subjects, 110
samples
DEM (sadness, anger,
happiness, relaxation) and
ADM (valence, arousal)

ECG Artifact removal and filtering
Instantaneous Spectrum and
Bispectrum, Dominant
Lyapunov Exponent

NA NA SVM LOOCV 4 Class: 79.29%
V/A: 79.15%, 83.55%

[108] AMIGOS, DEAP, DREAMER,
MANHOB-HCI

ECG, EEG, GSR, EDA, RSP,
SKT, etc.

Moving average filter with
0.25 s window length

HRV: pNN50
Spectrogram: 4096 features PCA 30 features Extreme learning machine NA

V/A (Individual): DEAP
70.86%, 71.09%; AMIGOS
81.89%, 82.74%;
MANHOB-HCI 78.76%,
78.76%; DREAMER 80.43%,
80.68%
(Combined): DEAP and
AMIGOS 59.69%, 63.61%;
DEAP, AMIGOS, and
MANHOB-HCI 58.57%,
61.84%
(Transfer Learning): Train
(DEAP and AMIGOS) Test
(MANHOB-HCI) 64.77%,
62.50%; Train (DEAP) Test
MANHOB-HCI 63.59%,
61.46%

[111]

Own: 25 subjects, 50 samples
each
Pos/Neg and
DEM (sad, angry, fear, happy,
relax)

ECG NA

- HRV: Time Domain (Mean
RRI, CVRR, SDRR, SDSD)
- Frequency Domain (LF, HF,
LH ratio)
- Statistic Analysis (Kurtosis
coefficient, Skewness,
Entropy)
- Parameters of Poincare Plot
(SD12, SD22, SD2SD1ratio)

PCA Selected 5 from 13.
CVRR, LF, HF, HF ratio, SD1 SVM NA Pos/Neg: 71.4%

5 Class: 56.9%

[112] AMIGOS, DREAMER,
WESAD, SWELL ECG

High-pass IIR filter with
bandpass of 0.8 Hz. Z-score
normalization

High-level spatiotemporal
features NA NA Self-Supervised CNN 10-Fold CV

AMIGOS: 87.5% V, 88.9% A;
DREAMER: 85.0% V, 85.9% A
WESAD: 96.9% Pos/Neg;
SWELL: 97.3% V, 96.7% A,
93.3% Stress

[114] Own: 21 subjects,
(Pos, Neg) ECG, RIP Tomkins’s algorithm

9 features: heartbeat freq low,
med, high, ratio low/high;
QD, SD, 3.32QD

Correlation-based feature
selection

HR power in Bands 1 and 3,
mean, med, and 80th
percentile of stretch

SVM 10-fold CV ~85%
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Table 3. Cont.

Source Dataset Modalities ECG Pre-processing ECG Extracted Features Features Selection Selected Features Classifier Validation Accuracy

[113] AMIGOS ECG, GSR
Pan–Tompkins QRS
detection. 0.5–15 Hz cut-off
frequency removal

- IBI time domain: meanNN,
medNN, SDNN, rmSSD,
pNN50, pNN20, coefVarSD,
medADNN, coefVarNN,
mCoeffVarNN, Shanon
Entropy, HRV triangular,
numArtifacts
- Freq domain: peakHF,
hTotalPowerRatio, normHF,
peakLF, lfhfRatio,
lfTotalPowerRatio, normLF,
totalPower, ulfPeak, vhfPeak,
vlfPeak
- Nonlinear domain:
correlation dimension,
entropy, SVD, HF, LF, VLF,
Shannon, fractal dimension
Higushi and Petrosian,
Fisher information

NA NA DCNN NA 71% V,
81% A

[116] Own: 25 subjects, 3 movies
DEM (fear, disgust, neutral) ECG

Quantization, Normalize
Relative Compression
Measure

NA NA NA 1-NN Leave-one-out strategy
Fear: 77%,
Disgust: 63%,
Neutral: 74%

[117]
Own: 26 subjects
Pos/Neg (stressed, not
stressed)

ECG, RSP Filtered and normalized

- HRV: var, quartile deviation,
low freq energy, med freq
energy, high freq energy,
low/high freq energy ratio
- Non-HRV: mean, med, 80th
percentile, 20th percentile
- HR

NA NA RBF SVM Cross-subject validation 95% Not stressed,
89% Stressed
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Table 4. Multimodal research that includes ECG model but did not perform an independent classification for the signal.

Source Dataset Physiological
Modalities ECG Pre-Processing ECG Extracted

Features Features Selection Selected Features Classifier Validation Accuracy

[6] Own: 10 subjects
(Pos/Neg)

ECG, EMG, RSP,
EDA

Low-pass filters at
100 and 500 Hz

HR, mean amp,
mean abs first
difference

NA NA

SVM, adaptive
neuro-fuzzy
inference system
(ANFIS)

10-fold CV SVM 79.3%,
ANFIS 76.7%

[51] K-EmoCon ECG, EEG, BVP,
EDA, SKT NA HR NA NA NA NA NA

[52]
Own: 24 subjects,
112 samples
(Pos/Neg)

ECG, EMG, SC, RSP NA

HRV: power
spectrum, LF, HF,
LF/HF,
sympathovagal
balance ratio, MF

ANOVA NAs
Fisher projection
matrix, linear
discriminant

NA 97%

[53]

Own: 58 subjects
DEM (anger,
boredom, fear,
frustration,
happiness) and
ADM (valance,
arousal)

ECG, EDA, EMG,
RSP

Baseline removal,
filtering

- HRV/IBI, HR time
domain: mean, med,
max, min, range, var,
std, ave derivative,
abs deviation,
kurtosis, skewness.
- HR freq domain: 3
frequency bands, 4
energy bands

Fisher’ linear
discriminant

~ 8 selected ECG
features out of 173
features

Linear SVM 10-fold CV V/A: 58.5%
5 class: 63.4%

[54]

Own: 30 subjects,
virtual reality
DEM (disgust, fear
happy, sad)

ECG, PPG EMD

IMF1, IMF2; 35
features: mean, max,
std, min, log energy,
var, skewness,
kurtosis, rms, crest
factor, shape fac,
impulse fac, margin
fac, energy, med,
mean freq, rom of
square level, band
power occupied
bandwidth, change
points, power
bandwidth, Shannon
energy, mad,
third-order
interception,
interquartile range,
spurious free
dynamic range, peak
to rms, snd, thd,
total jitter, ave freq,
entropy

NA NA Ensemble bagged
trees

5-fold, 10-fold,
15-fold CV 85.7%

[57] DECAF ECG, EMG, EOG,
MEG NA IBI, HR, HRV, PSD NA NA Linear SVM NA 60% V,

57% A
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Table 4. Cont.

Source Dataset Physiological
Modalities ECG Pre-Processing ECG Extracted

Features Features Selection Selected Features Classifier Validation Accuracy

[59] MANHOB-HCI ECG, EEG, GSR,
EDA, RSP, SKT NA

HRV, RMS of
MSDFSB, SD, 56
spectral power, LF,
MF, HF, HRV PS,
Poincare analysis

NA NA RBF SVM NA
(ECG + Peripherals):
45.5% V,
46.2% A

[67] CASE ECG, BVP, GSR, RSP,
ST, EMG NA

TEAP,
Pan–Tompkins QRS
detector: HR, IBI,
SDNN

PCA Mean HR NA MANOVA NA

[68] CLAS ECG, PPG, EDA NA NA NA NA Polynomial SVM Leave one out (ECG + PPG):
V/A: ~70%

[69]

Own: 3 subjects, 120
samples
ADM (valence,
arousal)

ECG, EMG, SC, RSP NA

FFT, SSE: meanEn-
ergy_SubSpectra,
meanHR_HRVtime,
power-
Low_HRVspec,
mean_MSE,
mean_SSE, etc.

NA Valence 71, Arousal
45, 4 Class 77 SBS pLDA, EMDC LOOCV

EMDC:
Subject-dependent
average: 95%
Subject-independent:
70%

[78]

Own: 20 samples
each
ADM (valence,
arousal)

ECG, EMG, EDA, ST,
BVP, RSP

Low-pass filter with
90 Hz, sharp
high-pass 0.5 Hz,
notch filter 50 Hz

HR, HRV, IBI NA NA NN NA 89.93% V,
96.58% A

[107]

Own: 101 subjects, 4
video clips
DEM (amusement,
anger, grief, fear)

ECG, GSR, OXY
0.5 Hz high-pass
filter, 35 Hz low-pass
filter

Multi-variant
correlation methods NA NA RF NA 74%

[85] AuBT ECG, EMG, SC, RSP Low-pass filter,
normalization HR statistical values ANOVA, SFS, SBS,

PCA NA KNN, LDF, MLP NA

4 Class: LDF-SFS
92.05%
V/A:
MLP-SFS-Fisher
88.64%, LDF-SFS
96.59%

[88]
Own: 22 subjects
Pos/Neg (stress,
stress-free)

ECG, EEG NA

7 features: HR, HRV:
VLF, LF, HF, LFnu,
HFnu, LF/HF power
ratio

Paired t-test, PCA RBF and sigmoid
SVM 10-fold CV

Sigmoid SVM
79.54%,
RBF SVM 63.63%

[100] AuBT ECG, EMG, SC, RSP NA

EEMD: Time
Domain, Time
Frequency Features,
Nonlinear Features,
IMF

NA NA C4.5 DT NA
Joy 100%, Anger
100%, Sadness 88%,
Pleasure 92%
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Table 4. Cont.

Source Dataset Physiological
Modalities ECG Pre-Processing ECG Extracted

Features Features Selection Selected Features Classifier Validation Accuracy

[105]

Own: 4 subjects,
DEM (excited,
happy, calm, tired,
bored, sad, stressed,
angry)

ECG, PPG, ST NA

HRVAS Toolbox
(HAR, PWTT): IBI,
SDNN, RMSSD,
pNN50, HRVi,
TINN; PDS Welch,
Lomb-Scargle
periodogram,
Autoregression: VLF,
LF, HF, normLF,
normHF, LF/HF;
Nonlinear: sampen,
DFA, Poincare plot
SD1, SD2, SD1/SD2

NA NA

KNN, DT, Bagged
Ensembled (BE)-DT,
Personalized-
Baseline,
BLD

LO-participant-OCV

Best classifier:
BE-DT:
Personalized 70.60%,
Generalized BE-DT
62.14%

[109]
Own: 15 subjects
Pos/Neg (Fear,
Normal)

ECG, ST, EDA NA

HRV time domain:
mean, SDNN,
RMSSD, NN50,
pNN50

Kullback–Leibler
Divergence Mixed NN, LDA, QDA LOOCV

NN 92.5%,
LDA 81.2%,
QDA 85.6%

[110]

Own: 14 subjects, 10
samples
DEM (sadness,
disgust, fear,
happiness, neutral)

ECG, SC, RPS, ST NA

HRV:
- Time domain
(SDNN, RMSSD,
SDSD, pNN50,
pNN20, FF)
- Frequency domain
(LF, HF, normLF,
normHF, LF/HF)

SFFS, SFFS-FP,
mRMR, mRMR-FP,
ReliefF, ReliefF-FP,
IG, IG-FP, OneR,
OneR-FP, Chi2,
Chi2-FP

NA
KNN, SVM, RF, ML,
RIPPER, C4.5 DT,
NB

LOSOCV MLP 60.3%

[115]

Own: 30 subjects
DEM (amusement,
fear, sad, joy, anger,
disgust)

ECG, EEG NA HRV NA NA MLP, SVM, Bayesian
Network 10-fold CV Bayesian Network

98.06%

[118] Own: 47 subjects
(Pos/Neg Neutral) ECG, PPG NA

- 11 statistical time
domain: SDNN,
NN50, pNN50,
SDSD, RMSSD,
SDRR, δx, Nδx, Υx,
NΥx, STDDRRI,
- HRV RRI using
STFT (short-time
Fourier transform):
LF, HF, TP, LF/HF,
HF/(LF + HF).
- HRV Poincare plot:
SD1, SD2, SD12,
Area0, Area1, Area2,
Area3, Area4

NA NA CNN NA 75.4%
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In Table 3, there are seven works that reported more than 90% accuracy in classifying
emotions based on varying emotional models. Firstly, Sarkar and Etemad [112] performed
a self-supervised emotion recognition study using four datasets which are AMIGOS,
DREAMER, WESAD, and SWELL. Based on the raw ECG signals from each dataset, the
neural network learned high-level abstract representations, and the weight was transferred
to an emotion recognition network. The results show an improved performance compared
to fully supervised learning. Although AMIGOS and DREAMER did not manage to pass
90% and above accuracy, WESAD and SWELL were claimed to be successfully classified,
with accuracy above 90%. With 96.9% accuracy, the author managed to classify WESAD
with the Pos/Neg Model. Moreover, with 97.3%, 96.7%, and 93.3%, the author managed to
classify SWELL on a model based on a binary scale of valence, arousal, and stress.

In a study conducted by Zhang et al. [104], the data were labeled according to a DEM
with four classes of emotions of happy, sad, pleasant, and angry. The overall accuracy
based on the ECG unimodal approach was reported to be 92%. The individual accuracies
were 97%, 92%, 91%, and 88% for angry, sad, happy, and pleasant. The best classification
results among three classifiers were achieved using KNN from two sets of extracted
features. The first feature set consisted of the time and frequency domains, with statistical
characteristics of ECG signals, while the second set of features was correlation features.
The correlation features were inclusive of the autocorrelation feature parameter, cross-
correlation feature, and multifractal feature parameters. The feature selection used was the
max–min ant system, which is a derivation of ant colony optimization.

Goshvarpour et al. [20] conducted an emotion recognition study based on ECG and
GSR collected from 11 subjects that listen to music as an affective stimulation method.
The result analysis was taken from the perspective of performance comparison between
ECG and GSR unimodal approaches. Based on the matching pursuit method, three dic-
tionaries were applied for feature extraction on the raw ECG signals, which were Coiflets
wavelets (Coif5) at level 14, the discrete cosine transform (DCT), and Daubechies wavelet
(db4) at level 8. Three feature selection methods were compared, and PCA was considered
as the best one for the application of the study as the recognition rate was constantly 100%
for subject-dependent and subject-independent scenarios across the ADM as well as the
DEM. The classification was conducted using PNN with a 0.01 sigma value. By far, this
paper reports the highest claimed accuracy for a unimodal ECG-based emotion recognition
system.

The work by Hovsepian et al. [117], for ECG classification of binary stress and non-
stress (Pos/Neg), reported 89% and 95% accuracy, respectively. The classifier used was
SVM with RBF kernels trained using HR, HRV, and non-HRV features. The raw ECG
signals were filtered and normalized before being extracted. Validation was also conducted
between subjects as more than twenty subjects participated in the study.

In a study by Selvaraj et al. [40], six classes of emotions from the ECG unimodal
approach were successfully classified with a maximum accuracy of 92.87%. The experiment
was conducted on sixty subjects by inducing happiness, sadness, fear, disgust, surprise,
and neutral emotions. The features that were extracted from ECG signals were nonlinear
features or Hurst features. The features were derived from RRS and FVS. They also
proposed a novel Hurst feature by merging RRS and FVS with HOS. The dataset was
separated with a ratio of 70:30 for training and testing datasets. Four classifiers were
considered: Bayesian classifier, regression tree, KNN, and fuzzy KNN, where the last
classifier performed the best.

Xun and Zheng [86] also managed to obtain 92% accuracy in classifying joy and
pleasure from the AuBT dataset. They only utilized the ECG signals from the database to
perform the study. The ECG features were extracted using AuBT toolboxes, which provided
a combination of HR and HRV features. A total of 81 features were extracted, but only 5
final features were selected using a combination of analysis of variance (ANOVA), SFS,
and SBS. The final selected features were R_range, ecgRampl-std, ecgHrv-max, ecgHrv-range,
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and ecgHrvDistr-range. The classification was conducted using SVM, LDA, and Fisher’s
linear discriminant analysis with SVM as the best methods.

Guo [102] performed a comparison study between BPNN and RBFNN in classifying
emotions using the AuBT dataset. The accuracy result for BPNN was 87.5%, while for
RBFNN, it was 91.6%. The ECG features extracted were from the multiscale wavelet
decomposition method for the extraction of the maximum value of wavelet coefficients
and the standard deviation. The study highlighted that wavelet coefficients that are treated
as eigenvectors are able to effectively characterize ECG signals.

Meanwhile, in Table 4, there are seven works that reported more than 90% accuracy in
classifying emotions based on varying emotional models and multiple modalities inclusive
of ECG. Lee and Yoo [109] collected multimodal physiological signals from ECG, EDA, and
SKT from 15 subjects. The highest classification accuracy was found using NN at 92.5%,
while 85.6% and 81.2% were found using QDA and LDA. The study also showed that a
higher accuracy is expected by applying feature engineering through multimodal feature
extraction and feature selection. The features extracted from ECG signals are time domain
HRV features. The feature selection algorithm used was Kullback–Leibler divergence.
EDA features were selected more frequently than the others, but as for ECG features,
RMSSD, NN50, SDNN, and LF/HF were among the selected features in subject-dependent
scenarios. The affective model used was Pos/Neg as the collected samples were based on
fear as the negative label, and normal as neutral.

In [100], Gong et al. managed to classify joy and anger with 100% accuracy, while
pleasure and sadness were classified at 92% and 88%. The study was conducted using the
AuBT database and utilized a multimodal approach. The ECG, EMG, SC, and RSP were
extracted using the ensemble empirical mode decomposition (EEMD) method, and the
classifier used was C4.5 DT.

The authors of [115] focused on the combination of ECG and EEG for the application
of an emotion recognition interface for interactive contents. The feature extracted from the
ECG signals was HRV, and the classifiers tested were MLP, SVM, and a Bayesian network.
By adopting 10-fold cross-validation, the best classifier reported was the Bayesian network,
with 98.06% accuracy in recognizing six emotions from the DEM. Collected from 30 subjects,
the emotions were amusement, fear, sadness, joy, anger, and disgust.

Kim and Andre [69] collected ECG, EMG, SC, and RSP signals from three subjects
and performed a feature-based multiclass classification. The ECG features extracted were
based on the HRV time, frequency, and nonlinear domains. Using a novel technique called
emotion-specific multilevel dichotomous classification (EMDC), the authors managed to
obtain a 95% average accuracy for subject-dependent and 70% for subject-independent
scenarios. Among 110 combined extracted features, the best emotion-relevant feature
from ECG was SD2 from the HRV Poincare plot for valence, arousal, and four classes of
valence/arousal.

The study by Wagner et al. [85] adopted the AuBT multimodal physiological signal
approach for emotion recognition. The ECG features extracted were HR statistical values.
A few feature selection and classification techniques were tested to assess the recognition
performance. With 92.05% accuracy, the four classes of emotion were classified using the
linear discriminant function (LDF), and the features were selected using SFS. The same
configuration obtained 96.59% accuracy on classifying arousal. However, for valence, the
highest accuracy achieved was 88.64% using MLP and the combination of Fisher and SFS.

Healey and Picard [52] performed emotion recognition through detecting stress in
a real-world driving scenario. A total of 24 drivers were tested through different traffic
conditions in the greater Boston area while continuously providing feedback on their stress
level. ECG, EMG, SC, and RSP sensors were attached to their body, and the data were
recorded. The ECG features extracted were from the HRV power spectrum and sympatho-
vagal balance ratio. The Fisher projection matrix and linear discriminant were used to
determine the accuracy of the Pos/Neg emotional model. High, medium, and low stress
recognition accuracies were 97.4%, 94.7%, and 100%, respectively.
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Lastly, Haag et al. [78] took a multimodal approach towards emotion recognition by
incorporating ECG, EMG, EDA, ST, RSP, and BVP. The ECG features extracted were HR,
HRV, and IBI. Using NN, the study managed to classify arousal with 96.58% accuracy, and
valence with 89.93% accuracy.

7. Application of Emotion Recognition System in Healthcare

A lot of treatments are available for physical illness, but it is not the same for psy-
chological illness. Emotional health is important for the wellbeing of one’s mental state.
A negative emotional state may cause social and physical problems if left undiagnosed and
untreated. For instance, prolonged exposure to stress or depression may lead someone
to withdraw from a healthy relationship with the people around them and being aggres-
sive, which could be dangerous for him/herself and the people around them. Moreover,
negative emotions may also cause physical problems such as headaches, stomach upset,
and muscle ache. An emotion recognition system can be utilized to improve the healthcare
sector, especially in addressing metal health issues.

7.1. Emotion Recognition Application in Healthcare Utilizing ECG

The authors of [7,18] proposed a new healthcare system that focuses on emotional
wellbeing. The system consists of physiological sensors (ECG and EEG) to measure and
detect emotions. Based on that, the system provides necessary services such as relaxation,
amusement, and excitement. These three emotional services are selected to balance out
negative emotions detected from the subject with strong positive states. The relaxation
service consists of a guided deep breathing exercise proven to benefit stress management.
The exercise came with virtual objects in augmented reality and musical assistance for
a calming effect. The system utilizes augmented reality as an output service channel,
thus providing amusement and excitement services to the user interaction with the virtual
objects. The interaction is enabled by Kinect’s gesture detection.

A healthy workplace environment using a novel mood recognition solution that is
able to identify eight different DEM emotions in every two-hour interval was proposed
in [105]. The employees were provided with a wearable physiological device (ECG, PPG,
and TEMP) along with a complimentary smartphone application called “HealthyOffice”.
The configuration setup was conducted to facilitate a periodical self-reporting towards the
current emotional state in a structured manner. The objective of constantly monitoring
employees’ emotions in the workplace is to optimize the overall mental health of the
organisation by eliminating anxiety, stress, and depression in the working environment.
Thus, higher productivity is expected, and the output revenue can be significantly mea-
sured. A similar study of emotion healthcare application in the workplace environment
was also conducted in [77], with a slightly different approach. This study used ECG, EDA,
and TEMP as the physiological models. Rather than identifying the spectrum of basic
emotions, the work only focused on stress and non-stress binary emotional classification.

A clinical application of emotion recognition systems was presented by [117]. The study
utilized ECG and respiration sensors to detect stress symptoms in the patients. The targeted
application of the work was towards patients who suffer migraine, addiction (substance or
smoking), and stress-related disorders. The benefit of monitoring the patients’ emotional
stress condition is to ensure that a negative tendency is not triggered. Daily stress manage-
ment can reduce severe addictive behavior and refrain from triggering migraine. The work
also proposed a combination of physiological signals and other data such as visual exposure,
social interactions, geoexposures, light and sound exposures, and digital trails to deter-
mine which parameters influence stress triggers. In [119], a home healthcare system using
wearable physiological sensors that have an emotion recognition function was designed.
The targeted groups for the application of the system were elderly and sub-healthy people.
HR, TEMP, and SC were monitored at the wrist of the wearer in real time. The data were
broadcast wirelessly to the family doctor or health practitioner who is responsible for the
subject. An alert system was also embedded in the design to send a text message and notify
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the doctor, in case of a risky situation. The healthcare system can detect the states of joy,
anger, and sadness.

The cardiac defense response (CDR) is a specific field of study that is closely related to
psychophysiological reactivity towards an intense stimulation. CDR serves as a protective
function of the fight or flight response in case of dangerous situations [120]. However,
when exposed to it for a long period of time, anxiety, stress, depression, and other mental
disorders might arise. The author of [121] proposed a novel integrated system using ECG
signals to detect fear in real time. Since fear is the emotional response when a person is in
danger, the system was designed to detect a prolonged CDR. In healthcare, this system is
important for monitoring stress and early prevention of mental disorders.

7.2. General Healthcare Application of Emotion Recogntion Systems

The application of emotion recognition in military healthcare was studied in [122].
Since armed forces are constantly exposed to a highly stressful scenario and environment,
many of them tend to develop psychiatric conditions such as depression, post-traumatic
stress disorder (PTSD), and suicidal thoughts. To prevent dispatching emotionally unstable
personnel into a risky mission, the work proposed the usage of emotion recognition
screening to assess the mental health status of the subject. The system also analyzed the
reaction towards stressful emotions of the subjects. However, further development is still
needed for any practical application.

Next, an emotion recognition system was applied in [123] to improve the patient
e-healthcare system in a so-called smart city. Medical doctors have difficulties in detecting
and controlling the degree of pain experienced by their patients, especially for patients
who cannot express it verbally such as babies. Thus, the study proposed a remote patient
monitoring system that employs an automatic emotion detection architecture. The system is
capable of achieving a more personalized pain detection index through emotion monitoring.
With a proper analysis provided, the result of this system manages to obtain an accuracy of
approximately 90% using SVM as the classifier.

Faiyaz et al. [124] proposed a novel e-healthcare support system with emotion recog-
nition using fuzzy logic. The framework designed is suitable in the context of a real-life
healthcare environment. Monitoring patients’ emotions through the e-health system influ-
ences their satisfaction, wellbeing, and physical health. With the emotional feedback from
their customers, healthcare providers can improve the quality of their services. The way of
treating with empathy can be instilled in medical practitioners when they are aware of the
affective state of their patients. This system is beneficial to both parties and improves the
overall standards of the healthcare industry.

A fairly recent study was conducted in detecting the emotional state of patients during
the spread of the virus SARS-COV-2, where face masks are mandatory [125]. A facial
emotion recognition study was conducted with masked and unmasked versions of data.
The unmasked faces in the database were modified digitally to add an artificial blue surgical
mask over the face of the subjects. The system was designed to encourage pleasantness
in doctor–patient interaction. However, with face masks being worn, inter-professional
communication in healthcare is being upheld by the adoption of emotion recognition
systems.

Another study that used computer vision to detect emotions in a healthcare center
was presented in [126]. A multimodal visualization analysis was conducted on the facial
expression of patients monitored using a monitoring camera at different intervals. The data
were transmitted using the Internet of Things (IoT) and processed at the analysis center.
If the system detected an abnormal expression, it would alert the physician in charge to
check up on the patient.

Mental disorders and depression are serious illnesses that reduce the quality of life
of individuals and the people around them. Early diagnosis of these psychiatric diseases
can be conducted using an emotion recognition system, as proposed in [127]. The psy-
chiatric patient-centric pervasive (P-cube) platform was designed to connect with the



Sensors 2021, 21, 5015 31 of 37

subject’s smartphone or laptop to collect data for emotion recognition. Utilizing speech
data recorded from the headset, the system can provide the therapist with deeper affective
insights into a subject’s mental state. Six basic emotions are detected using the system:
anger, boredom, desperation, disgust, happiness, and pride.

Finally, ref. [128] proposed a speech signal-based emotion recognition system to
analyze and detect compounded emotions. Prolonged anger, fear, and sadness are com-
pounded with anxiety, where the person is prone to develop a more serious mental and
physical health condition in the future. Compounded emotions might also drive a person
to use substances, and, in the worst case, to commit suicide. The study designed a neural
network-based autoencoder to extract suprasegmental features in voices and detect the
early symptoms of anxiety disorder.

8. Discussion
8.1. Summary of the Review

The objective of this work was to perform a comprehensive review on emotion recog-
nition systems that adopt ECG signals, and on their applications in healthcare. From
the research reviewed, it is shown that with a combination of good pre-processing tech-
niques, feature extraction and selection methods, and classification algorithms, human
emotions can be recognized by machines with a medium to good accuracy. Even though
the research on affective computing has been around for more than a decade, a standard
universal emotional model has still not been achieved. Emotional models such as the ADM,
DEM, and Pos/Neg are still ambiguous, particularly in the number of classes for the DEM.
There are three-class, four-class, and even five-class labels for the DEM, which somehow
raise the question of the purpose of recognizing each emotion. However, with the valence
and arousal scale in the ADM, and the stress and non-stress binarization of Pos/Neg, the
targeted application of emotion recognition systems is more focused and simpler.

The other angle reviewed here is how extracted ECG features are relevant to the ANS
activity in the heart. Our eyes cannot visibly capture any characteristic changes in the raw
ECG signal; however, the feature extraction techniques are sensitive enough to extract the
informative features of ECG. Additionally, feature selection and dimensionality reduction
allow only the most relevant features to be adopted to recognize the specific emotion, while
features that are unnecessary are eliminated.

The classification and validation steps are the most important parts in emotion recogni-
tion systems. Different classifiers use different learning approaches towards the data being
trained. Even though the most used machine learning algorithm for emotion recognition
systems is SVM, it is not necessarily the best approach. As it was previously discussed,
there are few studies that managed to outperform SVM’s performance with other machine
learning models. In addition, the reason most research on emotion recognition used ma-
chine learning instead of deep learning is because of the scarcity of the data available.
As it was summarized, in the available databases, the number of subjects and samples
are less compared to medical databases that deal with cardiac disease. Nonetheless, deep
learning has been considered and has shown a promising performance. With more data,
deep learning is a good direction for this area. However, collecting a large database to
perform a subject-dependent and subject-independent analysis requires a lot of time and
cost. Thus, it is important for researchers to properly decide the pipeline of their research
and consider validation techniques in order to increase variability.

Finally, application of emotion recognition systems in healthcare focusing on mental
health was reviewed in Section 6. Emotion recognition systems are able to help in assessing
the mental state of an individual. The output of the system can then be used as an input
for a system that responds to the emotion to provide comfort and regulate the emotion so
that a positive emotion is experienced by the individual.



Sensors 2021, 21, 5015 32 of 37

8.2. Research Challanges

Among the studies reviewed, the challenge for ECG-based emotion recognition sys-
tems is the lack of affective databases with a large number of samples taken from subjects
with different backgrounds. Current affective databases are limited by an age group bias,
where only university students participated in the data collection processes. Moreover, one
of the regional experiments conducted caused the database used to have a homogenous
locality sample from people with the same ethnic backgrounds.

The next challenge comes from the perspective of annotation, as well as unstandard-
ized emotional models and scales. Since emotions are subjective experiences defined
through different perspectives, the inexactness may cause classification fallacies. If the
emotion experienced by a subject contradicts the perceived emotions by a second- or
third-person perspective, this might cause a huge mess in the system. When dealing
with insufficient datasets, researchers tend to combine datasets to increase the sample
size. The unstandardized emotional models and scales cause a huge challenge in adopting
different affective datasets in one study.

The last challenge is the applicability of emotion recognition systems designed for
real-world situations, especially in healthcare. The majority of the studies summarized are
not available for actual use because of the complexity of the design. The whole purpose of
academic research is to promote intelligent solutions to issues or problems faced in real life.
However, since the studies are not repeatable or are difficult to replicate, other researchers
have difficulties in improving the steps taken from previous works. In order to make
emotion recognition systems common in the healthcare industry, the models proposed
have to be simple, efficient, and reliable, in addition to being tested vigorously.

8.3. Future Works

Further research should be conducted on emotion recognition systems based on ECG
signals for healthcare purposes. Primarily, the relationship of different age groups, eth-
nicities, and personalities towards emotion stimuli and responses should be investigated.
The bigger the sample size with a heterogenous background, the better the classification
approach, and thus a universal system can be built. Next, the perspective of intercompati-
bility between one dataset and another should be reviewed if the same methodologies are
to be applied to compensate the training and testing accuracy and promote the generaliz-
ability of the developed system. The research of emotion recognition should be closer to a
real-life scenario, where the computer can learn to eliminate more outside noise, instead of
working in a controlled environment. By applying this approach, the system should be
robust and versatile for further application and commercialization. By deploying emotion
recognition systems for healthcare usage, the architecture built must be reliable in dealing
with different scenarios. Finally, various other possible real-world use cases of emotion
recognition systems which allow personalization in real time should be explored.

9. Conclusions

This review has shown that emotion recognition systems are an essential subject
in healthcare, and the application of them is possible via ECG as a unimodal or multi-
modal approach. The growing trend of research related to emotion recognition systems
is a heathy step towards the maturity of this field. Future endeavours of incorporating
emotional health in technological development will contribute to more responsible and
sustainable innovations.
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