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Abstract: The L-protein of vesicular stomatitis virus (VSV) is a single-chain multi-domain
RNA-dependent RNA polymerase. Previously reported attempts of intramolecular insertions
of fluorescent proteins into the L-protein resulted in temperature-sensitive and highly attenuated
polymerase activity. Here, we describe a novel insertion site that was selected based on in silico
prediction. Of five preselected locations, insertion of the fluorescent protein mCherry in the
VSV polymerase between amino acids 1620 and 1621 preserved polymerase function even after
extended passaging and showed only mild attenuation compared to wildtype VSV polymerase.
High magnification fluorescence imaging revealed a corpuscular cytosolic pattern for the L-protein.
To confirm that the insertion site tolerates inclusion of proteins others than mCherry, we cloned
mWasabi into the same position in L, generating a VSV-LmWasabi, which was also functional. We also
generated a functional dual-color-dual-insertion VSV construct with intramolecularly labeled P
and L-proteins. Together, our data present an approach to tag VSV polymerase intramolecularly
without perturbing enzymatic activity. This L fusion protein might enable future tracing studies
to monitor intracellular location of the VSV transcription and replication machinery in real-time
life-imaging studies.
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1. Introduction

Vesicular stomatitis virus (VSV) is a prototypical member of the family Rhabdoviridae and is widely
studied as a model for viruses with nonsegmented negative-sense RNA genomes [1]. Its genome
encodes five proteins in the following order from 3′ to 5′: nucleoprotein (N), phosphoprotein (P),
matrix protein (M), glycoprotein (G), and polymerase (L). The viral genes are transcribed sequentially
by the VSV polymerase, leading to a protein gradient from N to L [2,3]. The VSV L-protein is a
single-chain multi-domain RNA-dependent RNA polymerase, which also catalyzes mRNA 5′-capping,
cap methylation, and mRNA 3′ polyadenylation [4]. It is responsible for genome replication as well
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as mRNA transcription. Recently, the structure of the L-protein was revealed using cryo-electron
microscopy. A structural organization of five distinct domains and two linker regions was described:
an RNA-dependent RNA polymerase spanning amino acid positions 35–865; a capping domain at
positions 866–1334; a linker 1 at positions 1335–1357; a connector domain at positions 1358–1557;
a linker 2 at 1558–1597; a methyl-transferase at positions 1598–1892; and a C-terminal domain at
1893–2109 [5]. Replication occurs via a tripartite replicase complex formed by the N, P, and L-proteins,
whereas the transcription complex is formed by P and L without N but rather with support from
cellular proteins [6].

Stable intramolecular tagging with fluorescent proteins can support the study of viral protein
function and was previously reported for two VSV proteins. The P-protein was shown to tolerate a
green fluorescent protein (GFP) insertion at amino acid position 196 in its so-called hinge region [7]
without significantly impairing its function. It was also demonstrated that the M-protein remains
functional with an insertion of either eGFP or mCherry at amino acid position 37 [8]. Both VSV variants
displayed only moderate attenuation. In contrast, a VSV construct with a G-protein c-terminally
fused with GFP was replication competent and genetically stable only in the presence of unmodified
G-protein either provided in trans or as an additional copy in the virus genome [9]. Previous attempts of
inserting a fluorescent protein into the L-protein of VSV in the context of a fully replication-competent
virus, however, were unsuccessful so far [10,11]. C- and N-terminal fusion proteins of the L-protein
have also not been described thus far. Consequently, fluorescently tagging of the L-protein of VSV
for life imaging and tracing for instance has remained elusive. Based on sequence comparisons of
related Mononegavirales viruses from the genus morbillivirus for which successful insertions of
fluorescent proteins have been described, it was attempted to generate an L-protein-eGFP variant
with an insert site at aa1595. Though such recombinants could be rescued, replicative activity was
limited by temperature sensitivity and viruses could not propagate at 37 ◦C beyond a few initial
rounds of replication. Other attempted sites of insertion (1318, 1374, 1472, 1522, and 1577) resulted in
polymerases without significant activity [10,11].

In this study, we used in silico prediction tools guided by the previously published L-protein
structure to identify five potential in-frame insertion sites for mCherry. Locations at the surface and
within flexible loops were factored into the selection process. Using a mini-genome assay, two out
of the five selected insertion sites showed intact polymerase activity. For both L-protein variants,
we generated full-length VSV plasmids of which one variant—VSV-L-MT1620-mCherry—yielded
a replication-competent virus. Our data demonstrate, for the first time, the possibility to tag VSV
polymerase intramolecularly without severely interfering with its enzymatic activity. Such a tool could
potentially facilitate real-time tracing and kinetic studies of the VSV transcription and replication
machinery in future studies.

2. Materials and Methods

2.1. Structure Visualization and Molecular Modeling

All structures were analyzed using Coot 0.8.7.1 [12] and UCSF (University of California,
San Francisco) Chimera 1.12 [13]. Images of molecular structures were generated with UCSF Chimera
1.12. A VSV-L-MT1620-mCherry model was generated as follows: VSV L-protein (protein data
bank (PDB) accession code 5a22) and mCherry (PDB accession code 2h5q) were docked with ZDock
server [14]. VSV L-protein was defined as the reference structure to which unrestrained mCherry was
docked in rigid body mode. One of the top hits was chosen because N- and C-termini of mCherry
were located nearby the MT1620 insertion site. Subsequently, FiberDock [15] was used for flexible
refinement of the rigid-body protein–protein docking solution. The (GGSG)3-Linkers were manually
introduced in Coot 0.8.7.1 and modeled using ModLoop [16].
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2.2. Viruses and Cells

Generation of VSV and VSV-GFP was described previously [17,18]. VSV-GFP-∆L was cloned
and produced analogous to VSV∆L-DsRed described previously [19]. BHK-21 cells (American Type
Culture Collection, Manassas, VA, USA) were cultured in Glasgow minimum essential medium
(GMEM) (Lonza) supplemented with 10% fetal calf serum (FCS; Thermo Fisher Scientific, Vienna,
Austria), 5% tryptose phosphate broth (Gibco, Carlsbad, CA. USA), 100 units/mL penicillin (Gibco),
and 0.1 mg/mL streptomycin (Gibco). 3T3 cells (kind gift from Tim Fenton, UCL London, UK), 293T
(American Type Culture Collection, Manassas, VA, USA), A549 (DSMZ, Germany), HEp-2 (CLS,
Eppelheim, Germany), and 293-VSV (293 expressing N, P-GFP, and L of VSV; [20]) were cultured
in Dulbecco’s Modified Eagle Medium (DMEM) (Lonza) supplemented with 10% FCS (Invitrogen),
1% P/S (PAA Laboratories), 2% glutamine (PAA Laboratories), 1× sodium pyruvate (Gibco), and 1×
nonessential amino acids (Gibco).

2.3. Plasmid Construction

VSV L-expression plasmid insertions were introduced by three-fragment Gibson assembly [21].
The mCherry insert (fragment 1) was framed with a GGSGGGSGGGSG linker ((GGSG)3) sequence with
the forward primer mCherry-GGSG for (5′-GGCGGAAGCGGCGGAGGGAGCGGGGGCGGGA
GCGGAATGGTGAGCAAGGGCGAGG-3′) as well as with the reverse primer mCherry-GGSG
rev (5′-GCCGGATCCACCGCCTGAGCCGCCTCCGGACCCTCCCTTGTACAGCTCGTCCATG-3′).
Two overlapping PCR products (fragment 2 and 3) were generated from the L-protein expression vector
pCI-Neo-L that contained complementary sequences to the (GGSG)3-linker sequences of fragment 1.
Fragments 2 and 3 contained overhangs to the (GGSG)3 linker at the 5′ end with primer n*-insertGGSG
rev and 3′ end with primer n*insertGGSG for, respectively.

Splitting of the expression vector in fragments 2 and 3 was performed to increase PCR product
yield of an otherwise unfavourably large (11,767 bp) vector. Depending on the insertion site,
the primers contained complementary sequences to the L-protein of 19–22 bp and a 21 bp part
that was complementary to the GGSG-linkers (see Table 1).

VSV L virus insertions were introduced by a four-fragment Gibson assembly. The larger part of
the vector was provided by restriction enzyme digestion with enzymes SfoI and FseI of either pVSV-gfp
for VSV-GFP-L-mCherry or pVSV-XN2-1 for VSV-L-mCherry, VSV-L-mWasabi, and VSV-L-GFP
vectors. This fragment is referred to as fragment 4. The mCherry/mWasabi insert (fragment 1) was
framed with two (GGSG)3 linker sequences with forward primer mCherry/mWasabi-GGSG for
(5′-GGCGGAAGCGGCGGAGGGAGCGGGGGCGGGAGCGGAATGGTGAGCAAGGGCGAGG-3′)
and reverse primer mCherry/mWasabi-GGSG rev (5′-GCCGGATCCACCGCCTGAGCCGCCTCCGGA
CCCTCCCTTGTACAGCTCGTCCATG-3′). L-protein sequences surrounding fragment 1, hereafter
referred to as fragments 2 and 3, received overhangs to the (GGSG)3 linker at the 5′ end with primer
n*-insertGGSG rev and 3′ end with primer n*-insertGGSG for, respectively. GFP was PCR amplified
with primers GFP for and rev (Table 1). VSV-L-CD1595-GFP [11] fragments 2 and 3 were generated
with primers CD1595insertGFP for and rev (Table 1). These fragments vary slightly in length in every
construct depending on the insertion site. Fragment 2 received an overhang to fragment 4 with
forward primer 49bp-before-FseI (5′-GCTGCCAAGTAATACACCGG-3′). Fragment 3 received an
overhang to fragment 4 with reverse primer 50bp-after-SfoI (5′-TTTATCTCCTCCTAAAGTTTC-3′)
(*position of respective insertion site; see Table 2). Inserts were PCR size and sequence confirmed.

VSV-P-mCherry-L-mWasabi was generated by the insertion of mCherry at aa position 196 [7] in
VSV-L-mWasabi using primers 196-GGSG-P for and rev to generate fragments between the nearest
restriction enzyme sites for Bst1107l and XbaI with overlaps to VSV-L-mWasabi cut with Bst1107l
and XbaI and GGSG linkers. The same mCherry fragment framed with (GGSG)3 was used as in
L-insertion viruses. Additionally, mutations observed in one VSV-L-mWasabi variant near the sites
of insertion (K1402R and M1936I) were introduced by Gibson assembly site-directed mutagenesis.
VSV-P-mWasabi-L-mCherry was generated analogously to VSV-P-mCherry-L-mWasabi with the
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starting vector VSV-L-mCherry instead of VSV-L-mWasabi, being digested with Bst1107l and XbaI.
(GGSG)3 framing primers for mCherry could be used for mWasabi as well because the N- and
C-terminal sequences of mCherry and mWasabi are identical.

To exclude random insertions of mCherry in other part of the VSV genome, additional insert
control primers more distant to mCherry were used: for. 3′-CATGCCGAGGACAGTTCTCTAT-5′ and
rev. 3′-ATTTCCTCCGACTCAAAGCAG-5′.

VSV, VSV-GFP, VSV-L-mCherry, and VSV-GFP-L-mCherry regions framing the mCherry
insert were compared in agarose gel electrophoresis. VSV, VSV-GFP: 1114 bp; VSV-L-mCherry,
VSV-GFP-L-mCherry: 1893 bp.

Table 1. L-expression plasmid cloning strategy primer. italics—L sequence; underline—mCherry sequence.

Name For/Rev Sequence (5′-3′ Direction)

CD1506insertGGSG for for GGCTCAGGCGGTGGATCCGGCCTGTGGCTGTTCAGCGACG
CD1506insertGGSG rev rev GCTCCCTCCGCCGCTTCCGCCCTGGCTGTAGTGGCTGCGG
CD1537insertGGSG for for GGCTCAGGCGGTGGATCCGGCAGCGGCAAGGACAAGAACGAG
CD1537insertGGSG rev rev GCTCCCTCCGCCGCTTCCGCCCAGGAAGGGCTTGTACAGGATC
MT1603insertGGSG for for GGCTCAGGCGGTGGATCCGGCGAGAGCCGCGGCACCATCAC
MT1603insertGGSG rev rev GCTCCCTCCGCCGCTTCCGCCGCGGCCCCAGGGAGGGTAG
MT1620insertGGSG for for GGCTCAGGCGGTGGATCCGGCTACCCCAAGATGCTGGAGATGC
MT1620insertGGSG rev rev GCTCCCTCCGCCGCTTCCGCCTGGGGTGGTGGTGTAGTACAC
MT1889insertGGSG for for GGCTCAGGCGGTGGATCCGGCCAGTTCATCCCCGACCCCTTC
MT1889insertGGSG rev rev GCTCCCTCCGCCGCTTCCGCCGCTGGGGATGCCGGTCAGG

mCherry-GGSG for for GGCGGAAGCGGCGGAGGGAGCGGGGGCGGGAGCGGA
ATGGTGAGCAAGGGCGAGG

mCherry-GGSG rev rev GCCGGATCCACCGCCTGAGCCGCCTCCGGACCCTCC
CTTGTACAGCTCGTCCATG

Gibson new for for GGCAGGGTCGGAACAGGAG
Gibson new rev rev CAGGCGTTTCCCCCTGGAAG

Table 2. Vesicular stomatitis virus (VSV) plasmid cloning strategy primer. italics—L sequence;
underline—mCherry sequence.

Name For/Rev Sequence (5′-3′ Direction)

CD1506insertGGSG rev for GGCTCAGGCGGTGGATCCGGCCAATTATGGTTATTCTCAG
CD1506insertGGSG for rev GCTCCCTCCGCCGCTTCCGCCTGAATAATGTGATCTGTATTTTC
MT1620insertGGSG rev for GGCTCAGGCGGTGGATCCGGCTACCCAAAGATGCTAGAGATG
MT1620insertGGSG for rev GCTCCCTCCGCCGCTTCCGCCAGGGGTGGTCGTATAATAAAC

mCherry-GGSG for for GGCGGAAGCGGCGGAGGGAGCGGGGGCGGGAGCGGA
ATGGTGAGCAAGGGCGAGG

mCherry-GGSG rev rev GCCGGATCCACCGCCTGAGCCGCCTCCGGACCCTCC
CTTGTACAGCTCGTCCATG

49bp-before-FseI for GCTGCCAAGTAATACACCGG
50bp-after-SfoI rev TTTATCTCCTCCTAAAGTTTC

196-GGSG-P for for GGCTCAGGCGGTGGATCCGGCGTTTGGTCTCTCTCAAAGACAT
196-GGSG-P rev rev GCTCCCTCCGCCGCTTCCGCCATCTGATACTGCTTCTGATTGG

33bp-before-Bst1107l for AAGGAATGCCCGACAGCC
35bp-after-XbaI rev TCCGTCACCTCCGACAGAG

CD1595insertGFP for for GGCATGGACGAGCTGTACAAGATGAGCTATCCCCCTTGGGG
CD1595insertGFP rev rev CAGTTCCTCGCCCTTGCTCATGTCTTTATTATTATCCTTAGCAATCCCG

GFP for for ATGAGCAAGGGCGAGGAACT
GFP rev rev CTTGTACAGCTCGTCCATGCC

2.4. Mini-Genome Assay

Transfection of L-mCherry expression plasmids was performed with a TransIT®-LT1 transfection
kit from Mirus in 293T cells. Plasmid DNA and transfection reagent amounts were chosen according to
manufactures’ recommendations for 24-well plates, in which 2.7 × 105 293T cells per well were seeded
one day before transfection. P-expression plasmids were co-transfected with L-mCherry expression
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plasmids. Twenty-four h after transfection, 293T cells were infected with VSV-GFP-∆L at a multiplicity
of infection (MOI) of 10. Images were acquired 48 h after infection.

2.5. Virus Recovery

VSV-L-MT1620-mCherry, VSV-GFP-L-MT1620-mCherry, VSV-L- MT1620-mWasabi, VSV-L-
CD1595-GFP, and VSV-P-mCherry-L-mWasabi were rescued in 293T cells by CaPO4 transfection of
whole-genome VSV plasmids with L-mCherry insertions together with N-, P-, M-, G-, and L-expression
plasmids as helper plasmids as described previously [22]. M and G-proteins as helper plasmids are
optional in the recovery of VSV, chosen here as a precaution to support the rescue of potentially
attenuated virus variants. After the rescue, viruses were passaged on 293-VSV cells and plaque purified
twice on BHK-21 cells. VSV-L-CD1595-GFP stocks were produced at the permissive temperature of
33 ◦C [11].

2.6. Immunoblotting

BHK-21 cells were infected with VSV, VSV-GFP, VSV-L-MT1620-mCherry, or VSV-GPF-L-MT1620-
mCherry at an MOI of 5, and cell lysates were prepared 8 h later. Uninfected BHK-21 cells were used
as a control. Cells were lysed in ice-cold cell lysis buffer (50 mmol/liter HEPES, pH 7.5; 150 mmol/liter
NaCl; 1% Triton X-100; 2% aprotinin; 2 mmol/liter EDTA, pH 8.0; 50 mmol/liter sodium fluoride;
10 mmol/liter sodium pyrophosphate; 10% glycerol; 1 mmol/liter sodium vanadate; and 2 mmol/liter
Pefabloc SC) for 30 min. To dispose of cellular debris, cell lysates were centrifuged at 13,000 rpm for
10 min. Supernatants containing proteins were stored at −80 ◦C.

SDS-PAGE of protein lysates was performed under reducing conditions on a 12% polyacrylamide
gel. For comparison of VSV, VSV-GFP, VSV-L-MT1620-mCherry, and VSV-GFP-L-MT1620-mCherry,
the 8-h time point lysates were used. Proteins were transferred to 0.45-µm nitrocellulose membranes
(Whatman, Dassel, Germany) by using a tank blotting system. The blotting time was 90 min.
The membrane was blocked overnight with 1 × PBS containing 5% skim milk and 0.1% Tween 20
(PBSTM) and incubated for 3 h at room temperature with an mCherry-specific rabbit monoclonal
antibody diluted 1:1000 in PBSTM. The antibody was raised in house against recombinant mCherry
and affinity purified. After washing, a peroxidase-conjugated rabbit IgG-specific antibody from goat
(Invitrogen, Carlsbad, CA), diluted 1:5000 in PBSTM was added and the blot was incubated for another
hour. After washing, blots were developed with enhanced chemiluminescence (ECL). After the first
detection, the same blot was reused to stain for loading control. Actin was stained with a β-actin
specific monoclonal antibody from mouse (A2228; Sigma, Munich, Germany) diluted 1:5000 in PBSTM,
and a secondary horseradish peroxidase-conjugated mouse IgG-specific antibody from goat was used.

2.7. Virus Sequencing

Genomic viral RNA of viruses generated in this study was purified with PeqGOLD Viral RNA kit
(Peqlab), and cDNA synthesis was performed with RevertAid First Strand cDNA Synthesis Kit (Thermo
Fisher Scientific) according to manufacturer’s recommendations. Ten overlapping PCR products per
virus genome were generated. Subsequently, PCRs were column purified and Sanger sequenced by
Microsynth AG (Balgach, Switzerland) with up to 40 different primers, i.e., sequencing reactions,
depending on amount of inserts (1 or 2) and sequence quality, to obtain whole genome sequences.

2.8. Plaque Assay

Five-fold serial dilutions of virus stocks were prepared and used to infect BHK-21 cells at 60%
confluency in 6-well plates. One hour after infection, cells were washed with PBS and covered
with a 2.5% plaque agarose/GMEM mixture. After 24 h at 37 ◦C, plaques were visualized by
fluorescence microscopy.
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2.9. Single Step Growth Curve and TCID50 Assay

In 12-well plates, 105 cells per well were seeded one day before infection. BHK-21, 293T, HEp-2,
A549, and 3T3 cells were infected in duplicates with a multiplicity of infection (MOI) of 3 of the
respective VSV variants at either 33 ◦C or 37 ◦C, respectively. One hour after infection, the medium was
removed, cells were washed twice with PBS, and fresh medium was added. Supernatant was collected
at the indicated time points and stored at −80 ◦C until further analysis. For quantification, the 50%
tissue culture infective dose (TCID50) assay was performed as described previously [23]. In short,
100 µL of serial dilutions of virus were added in octuplicates to 103 BHK-21 cells seeded in a 96-well
plate. Six days after infection at 37 ◦C (or 33 ◦C for VSV-L-CD1595-GFP), the TCID50 were read out and
titers were calculated according to the Kaerber method [24].

2.10. Interferon (IFN) Sensitivity and Cell Viability Assay

Virus cell killing was assessed in an Interferon-response assay, in which interferon (IFN)-competent
BHK-21 cells were treated with increasing amounts (10, 100, 500, and 1000 U/mL) of recombinant
universal type I IFN (PBL assay science, Piscataway Township, NJ) and infected with MOIs 0.1, 1,
and 10. Cells were seeded at 104 one day before IFN treatment. IFN treatment was performed 16 h
before infection. Seventy-two h at 37◦ post infection, thiazolyl blue tetrazolium bromide (MTT) was
added for 4 h. Cells were then dissolved in 0.1 M HCl with 1% SDS for another 4 h. Colorimetric
changes were measured at 540 nm.

2.11. Virus Passage

VSV-GFP-L-MT1620-mCherry, VSV-L-MT1620-mCherry, and VSV-L-CD1595-GFP were
serial-passaged for 10 times at 37 ◦C or until no more virus could be detected. VSV-L-CD1595-GFP
passage was initiated at the permissive temperature of 33 ◦C followed by 37 ◦C conditions. For each
passage, 2 µL of supernatant were transferred to 3 × 105 cells in 1 mL medium per 12-well dish well
after 24 h of incubation. Titers were determined with TCID50 at 37 ◦C for VSV-L-MT1620-mCherry
passages and at 33 ◦C for VSV-L-CD1595-GFP.

2.12. Fluorescence Microscopy and Time-Lapse Recordings

One day before infection, 2 × 105 BHK-21 cells were seeded in polylysine-coated glass bottom
dishes (ibidi GmbH, Gräfelfing, Germany). Nuclei were stained with 0.5 µM Sir-DNA (tebu-Bio
GmbH, Offenbach, Germany) 30 min prior to infection, and P glycoproteins were inhibited with 5 µM
verapamil for better Sir-DNA staining. BHK-21 cells were infected with an MOI of 10. Single images
were acquired 6–10 h after infection at 37 ◦C using a 63X/NA1.4 objective on an automated live
cell imaging Zeiss Axiovert 200M microscopy equipped with a Sola light engine LED light source
(Lumencor, Visitron Systems GmbH, Puchheim, Germany) and a pco.edge 4.2 scMOS camera (PCO
AG, Kelhaim, Germany) and controlled by VisiView software (Visitron). Exposure times were 200 ms
for mCherry/mWasabi, 50 ms for Sir-DNA, and 10 ms for phase contrast. For time-lapse recordings,
images were taken for 8 h every 10 min from 10 different positions.

3. Results

3.1. In Silico Prediction of Potential mCherry Insertion Sites

Using in silico prediction and recent information on the 3D structure of the L-protein, we
focused our search for potential insertion sites on the connector domain (CD; 1358–1557) and the
methyltransferase domain (MT; 1598–1892) (Figure 1A,B). We narrowed the region for possible insertions
sites in the L-protein to the three globular domains, which were described to fold independently [25],
therefore possibly being more permissive for insertion. Additional factors were to avoid the core
catalytic domains as well as structured surfaces, which might interact with other VSV proteins. We also
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avoided insertion sites within alpha-helices and beta-sheets to conserve structural integrity of the
protein. Finally, we selected regions located at the surface and in flexible loops, which should minimize
the possibility of steric clashes. This led to the identification of the following candidate insertion sites:
CD1506, CD1537, MT1603, MT1620, and MT1889 (Figure 1A,C).Viruses 2019, 11, x FOR PEER REVIEW 7 of 18 
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Figure 1. Domain organization, structure, and insertion sites in the VSV L-protein. (A) Schematic VSV
genome organization showing the genes in 3′to 5′ directions and the VSV L-protein domain scheme
with its corresponding domain borders labeled with black numbers [5]. Blue labels indicate candidate
insertion sites tested herein. (B) VSV L-protein structure as determined by Liang et al. [5]:. Right panel
visualizes the zoom to connector domain (CD; in yellow), methyltransferase domain (MT; in orange),
and the C-terminal domain (CTD; in red). (C) Zoom on CD, MT, and CTD (colors as above) with loops
indicated in blue that were chosen as insert site. (D) Molecular model of VSV L-protein with mCherry
(depicted in purple) insertion at position MT1620.

We chose the fluorescent protein mCherry as an insert protein due to its activity in monomeric
form without the need to dimerize. We also theorized that intramolecular insertions would benefit
from adjustable connections and, hence, included two (GGSG)3-linkers flanking the mCherry sequence
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within the construct. A projected model of an mCherry inserted into position MT1620 of the VSV
L-protein is shown in Figure 1D.

3.2. VSV-GFP-∆L Screening Points towards Two Promising Insertion Sites

To accelerate the screening of the candidate insertions, we chose to apply a mini-genome
approach. L-mCherry expression vector plasmids with insertions at CD1506, CD1537, MT1603,
MT1620, and MT1889 were generated. After transfection of these five constructs in 293T cells, infection
with a propagation-incompetent VSV-GFP-∆L virus, which lacks the gene for the viral polymerase L
and codes for eGFP as reporter, was performed. In this screening, all sites showed mCherry signal to
various extent—indicative for functional expression of the mCherry within the L-protein sequence.
However, only two sites (CD1506 and MT1620) showed eGFP signal, indicating transcriptional activity
of the respective L-mCherry fusion protein (Figure 2A). Thus, every insertion site allowed correct
mCherry folding, although with varying efficiency, but only two insertions retain polymerase activity.
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L-protein domain scheme with insertion sites. Middle: Images of 293T cells transfected with five
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different L-mCherry expression plasmids. The corresponding insertion sites are labeled with the
domain abbreviation followed by amino acid number. Red indicates L-mCherry expression. Bottom:
GFP signal after inoculation with VSV-GFP-∆L at a multiplicity of infection (MOI) of 10 depicted from
the same micrograph frames as above. Green fluorescence indicates functional L-mCherry fusion
proteins and polymerase activity. Scale bar 50 µm. (B) Fluorescence and phase contrast images of
VSV-L-mCherry and VSV-GFP-L-mCherry 24 h after infection of BHK-21 cells: Virus genome schemata
are displayed above the fluorescence images. Scale bar 50 µm. (C) Immunoblot against mCherry
under reducing conditions on 12% polyacrylamide gel: β-actin was used as loading control. VSV,
VSV-GFP, VSV-L-mCherry, and VSV-GFP-L-mCherry infected BHK-21 cells 8 h after infection were
used to prepare lysates.

3.3. MT1620 Insertion is Compatible with VSV Replication

Next, we cloned the mCherry gene into the full-length VSV genome at L-protein sites CD1506 and
MT1620. Insertions were performed into two VSV backbones, one with eGFP as an additional reporter
at fifth position in the genome, the other without eGFP (see schemes above the photomicrographs
in Figure 2B). Generation of VSV-L-MT1620-mCherry and VSV-GFP-L-MT1620-mCherry yielded
replication competent viruses, which was detected by the cytopathic effect (CPE) and
fluorescent signal (Figure 2B). In contrast, the attempt to rescue VSV-L-CD1506-mCherry and
VSV-GFP-L-CD1506-mCherry failed. Expectedly, VSV-GFP-L-MT1620-mCherry showed fluorescent
signals in both the fluorescein isothiocyanate (FITC) and tetramethylrhodamine (TRITC) channels and
VSV-L-MT1620-mCherry showed fluorescent signals only in the TRITC channel (Figure 2B). To address
whether the insertion site only tolerates mCherry or other reporter genes also, we cloned and rescued
VSV-L-MT1620-mWasabi. The resulting recombinant construct showed green fluorescence and intact
polymerase activity comparable to the mCherry counterpart. Notably, mWasabi fluorescence yield is
stronger than mCherry’s [26], which results in earlier and stronger focal fluorescence signals.

To verify mCherry presence at the protein level, we performed immunoblots with an mCherry
specific antibody. BHK-21 cells were infected with VSV, VSV-GFP, VSV-L-MT1620-mCherry,
and VSV-GFP-L-MT1620-mCherry. As a positive control, a vector containing only mCherry was
transfected in BHK-21 cells. mCherry inside L protein displayed a signal at high molecular weight
(expected at 267 kDa), in accordance with the production of the L-mCherry fusion protein after viral
infection (Figure 2C).

Taken together, these results show the successful insertion of mCherry at position MT1620, leading
to a replication competent virus.

3.4. Viral Genome Sequencing Reveals Secondary Mutations

Upon whole genome sequencing of rescued VSV-L-insertion variants, we observed one to two
secondary non-synonymous mutations in all viruses, which are located in proximity to the site of
insertion (supplementary Figures S1 and S2). We did not find any silent mutations. The mutations in
L-mWasabi viruses were located upstream (mWasabi 1: K1402R; mWasabi 2: R1410T) and downstream
(mWasabi 1: M1936I; mWasabi 2: I1899L) of mWasabi. VSV-L-mWasabi with mutations K1402R
and M1936I was used for further experiments (including for generation of a double insertion virus
described below). The mutations in L-mCherry viruses were located downstream of mCherry
(VSV-GFP-L-mCherry (mCherry 1): C2098G, E2107A; VSV-L-mCherry (mCherry 2): N2109Y). We were
not able to rescue viruses that did not harbor associated mutations in the L protein. Whether these
mutations are conditional and required for proper polymerase function remains to be studied.

3.5. Insertion of mCherry at Position MT1620 Results in Temperature-Stable VSV Recombinant with Mildly
Attenuated Virus Replication and Activity

We next compared MT1620 mCherry and the previously published temperature-sensitive CD1595
GFP insertion variants with wildtype L VSV counterparts for their replication kinetics on BHK and



Viruses 2019, 11, 989 10 of 18

HEp-2 cells at 33 ◦C and 37 ◦C (Figure 3). VSV-GFP and VSV-L-MT1620-mCherry yielded similar titers
in different cell lines both at 33 ◦C and 37 ◦C (Figure 3B). In contrast, VSV-L-CD1595-GFP yielded a
wild-type comparable titer only at 33 ◦C compared to a titer reduction of about 2 logs at 37 ◦C in both
cells tested, confirming previous reports on the temperature-labile characteristics of the L-CD1595-GFP
mutant. To confirm that the temperature stable activity of the VSV-L-MT1620-mCherry can generalize
to other cells, we performed single-step growth curves on human 293T and A549 cells and mouse
3T3 cells. No differences in titer were observed between incubations at 33 ◦C and 37 ◦C, and titer
differences between the virus variants were only marginal (Figure 3C). We next compared viral activity
in a cell viability assay on BHK-21 cells under increasing doses of IFN type 1 (Figure 3D). IFN was
added 16 h before infection. Compared to VSV and VSV-GFP, VSV-L-MT1620-mCherry showed only
mildly reduced cytotoxic activity, and a high MOI could overcome the protective effects of IFN-1 on
BHK cells. In comparison, cell killing was strongly reduced with VSV-L-CD1595-GFP with high MOIs
unable to neutralize the IFN-1 effect. Together, our data support that insertions of mCherry at L-protein
position MT1620 are well tolerated, resulting in only mild attenuation compared to wild-type VSV in
contrast to previously described insertions [10,11].
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Figure 3. L-Insertion site MT1620 performed better than previously described CD1595. (A) Virus
genome schemes of used viruses: VSV; VSV-GFP; VSV-L-MT1620-mCherry; and VSV-L-CD1595-GFP.
(B) Viral replication kinetics of VSV-GFP, VSV-L-MT1620-mCherry, and VSV-L-CD1595-GFP compared
in BHK-21 and HEp-2 cells at 33 ◦C and 37 ◦C. Titers were quantified using TCID50 assays at 33 ◦C,
a permissive temperature for VSV-L-CD1595-GFP. Data shown as mean (SD) from two independent
samples. (C) Viral replication kinetics of different VSV strains. Single-step growth kinetics of VSV-GFP,
VSV-L-MT1620-mCherry, and VSV-L-CD1595-GFP in A549, 293T, and 3T3 cells at 33 ◦C and 37 ◦C.
Titers were quantified using TCID50 assays. Data shown as mean (SD) from two independent samples.
(D) Comparison of virus-induced cytotoxic activity in an IFN response thiazolyl blue tetrazolium
bromide (MTT) viability assays. IFN responsive BHK-21 cells were treated with increasing amounts
(10, 100, 500, and 1000 U/mL) of IFN for 16 h before infection with MOIs 0.1, 1, and 10. The viability is
shown normalized to the untreated control. Bars represent means +/- SEM (n = 4).
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3.6. VSV L-MT1620-mCherry Insert Variants Are Genetically Stable

To assess genetic stability, VSV-GFP-L-MT1620-mCherry and VSV-L-MT1620-mCherry were
passaged 10 times at 37 ◦C. Plaque assays were performed before and after passaging. At both
endpoints, all of the 100 counted phase contrast plaques were positive for mCherry fluorescence,
as shown in exemplary VSV-L-MT1620-mCherry plaques (Figure 4A). In addition, sequencing of
both VSV-L-MT1620-mCherry and VSV-GFP-L-MT1620-mCherry confirmed genetic stability in the
L-protein insertion region and the adjacent segments, where secondary mutations were observed
initially in the course of a genome-wide sequencing (Supplementary Figure S1). As passage of
the L-CD1595 insertion variant had previously been reported to be abortive after 4 cycles [11], we
compared viral titers in the course of sequential passage at 37 ◦C of VSV-L-MT1620-mCherry and
VSV-L-CD1595-GFP (Figure 4B). Viral titers of the MT1620-mCherry insertion variant remained
comparable with starting titer throughout the passages, unlike the CD1595-GFP mutant, which seized
propagation after 3 passages.
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Figure 4. L-mCherry insertion viruses are genetically stable. Assessment of plaque fluorescence
after passaging: (A) BHK-21 cells were infected with VSV-L-MT1620-mCherry in serial dilutions.
Plaques were identified by cytopathic effect (CPE; delineated by circles) and then checked for
fluorescence. (B) VSV-L-MT1620-mCherry and VSV-L-CD1595-GFP passages were performed at
37 ◦C (33 ◦C for initial L-CD1595-GFP variant production) and titrated with TCID50. Titrations were
performed at the corresponding permissive temperatures (37 ◦C for L-MT160-mCherry variant; 33 ◦C
for L-CD1595-GFP variant).

3.7. High Magnification Fluorescence Microscopy Shows Viral Inclusion Bodies and Distinct Patterns of
Localization of GFP, L-mCherry, and L-mWasabi

It has been reported that VSV forms so-called viral inclusion bodies (VIBs) during replication,
which are known to contain concentrated levels of P and L protein [27]. To investigate VIB formation,
we used high-resolution fluorescence time-lapse microscopy. We observed distinct cytosolic foci
of mCherry fluorescence suggestive of VIBs, although no validation was performed (Figure 5A).
Nuclear dye SiR-DNA (infrared channel) confirmed the cytosolic character of the fluorescence signal.
We also compared eGFP and mCherry signals with the double fluorescent VSV-GFP-L-MT1620-mCherry.
eGFP signal arose earlier in the infection and was diffuse, whereas mCherry signal was focal with
a distinct nuclear sparing. VIB-like signals were detectable over a range of 4–16 h using time-lapse
analysis (Figure 5B, supplemental Video 1), though the distinct corpuscular signal disappeared during
late-stage virus replication and mCherry signal became diffuse throughout the cell (not shown). To test
whether position MT1620 of the L protein also tolerates insertion of a protein other than mCherry,
we generated VSV-L-MT1620-mWasabi. This variant displayed similar growth characteristics as the
mCherry insertion mutant (see below and Figure 6B). Of note, the mWasabi fluorescence signal was
markedly more corpuscular than mCherry reporter (Figure 5C), presumably due to the multifold
stronger brightness of mWasabi compared to mCherry [26].
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Figure 5. High magnification fluorescence microscopy shows distinctive fluorescence pattern of GFP,
L-mCherry, and L-mWasabi. (A) Assessment of putative viral inclusion bodies: BHK-21 cells were
infected with VSV-L-mCherry at MOI of 10. Images of one representative cell in phase contrast,
tetramethylrhodamine (TRITC), and infrared (0.5 µM SiR-DNA for nuclear staining) channel are shown.
(B) Assessment of the kinetic of GFP vs. mCherry fluorescence in time-lapse recording: BHK-21 cells
were infected with VSV-GFP-L-mCherry at MOI of 10. Images were acquired for 12 h after infection.
Images of one representative cell in fluorescein isothiocyanate (FITC) and TRITC channels at three time
points are shown. (C) Assessment of putative viral inclusion bodies in a representative micrograph of
BHK-21 cells infected with VSV-L-mWasabi at MOI of 10. Scale bar: 20 µm.
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Figure 6. Attenuated double P- and L-insertion viruses display co-localizing fluorescent signals:
(A) Assessment of putative P- and L-protein interaction in a representative micrograph of BHK-21
cells infected with VSV-P-mCherry-L-mWasabi at MOI of 10 at 10 h post infection. (B) Viral
replication kinetics of parental VSV, VSV-GFP, VSV-L-MT1620-mCherry, VSV-L-MT1620-mWasabi,
VSV-P-mWasabi-L-mCherry, and VSV-P-mCherry-L-mWasabi compared in BHK-21 at 37 ◦C in a
multistep replication kinetics (MOI 0.1) at time points 12, 24, 36, and 48 h after infection. Titers were
quantified using TCID50. Data shown as mean (SD) from two independent samples.

3.8. A Dual Insertion VSV-P-mCherry-L-mWasabi Construct Displays Co-Localization of Fluorescently Tagged
P and L Protein

In order to assess the feasibility of multi-intramolecular labeling within a single VSV variant, we
generated dual fluorescence VSV-P-mWasabi-L-mCherry and VSV-P-mCherry-L-mWasabi combining
the previously described VSV P-protein insertion site [7] with our L-MT1620 insertion site. Both viruses
showed co-localizing fluorescence signals in FITC and TRICT channels, putatively representing the
interaction of P-mCherry and L-mWasabi fusion protein interactions (Figure 6A). Both double insertion
viruses produce significantly lower titers compared to parental VSV (up to 5 logs at 12–24 h), VSV-GFP,
and single L-insertion VSV variants (about 2 logs at 12–24 h), as shown in a multistep (MOI 0.1)
replication kinetic at 37 ◦C (Figure 6B).

4. Discussion

The VSV polymerase, which is referred to as L protein (for “large protein”), is a single chain
multi-domain RNA-dependent RNA polymerase, which catalyzes genome replication as well as mRNA
transcription, capping, and methylation. We present here a novel insertion site into which relatively
large proteins such as mCherry or mWasabi can be introduced as a novel functional domain into the L
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protein without deleteriously impairing replication competence. However, L-insertion VSV variants
were slightly attenuated relative to parental VSV.

This intramolecular tagging approach is a strategy to express additional genes from a viral genome.
The more common approach is the insertion of an additional gene alongside an extra intergenic region
to extend the natural transcription gradient of the virus to the added gene [28]. Respective to the
transgene position, its quantity is lesser than the preceding and greater than the following gene.
There are multiple rationales to introduce transgenes into VSV, e.g., to incorporate therapeutic genes,
vaccine antigens, or marker genes to mark infected cells or viral proteins. Intramolecular insertions in
the context of vaccine antigens can be advantageous because antigens would already be present in (and
presented by) the virion. An advantage of intramolecular insertions in the context of tracing studies is
that single VSV protein detection becomes possible. A disadvantage of intramolecular insertions is
the possibility for attenuation, which appears to be associated with some intramolecular insertions
compared to an insertion at additional intergenic regions [7,8].

Previous attempts to generate replication-competent VSV variants with an L-protein eGFP
insertion resulted in viruses that were either unable to replicate or temperature sensitive [10,11].
These L-protein eGFP insertions were generated based on sequence similarities of VSV L with the
polymerase of related Mononegavirales viruses, where insertions had been successful, e.g., measles
virus (MV) [29], rinderpest virus (RPV) [30], and canine distemper virus (CDV) [31]. The structure of
the VSV L protein was revealed after these initial insertion attempts [5], and some of the shortcomings
of the previously studied insertion sites can now be understood in retrospect. For example, one
published insertion site at aa1472 is found to be located in a groove between the connector domain
(CD), methyltransferase (MT), and the C-terminal domain (CTD). Hence, the insertion of GFP resides in
the hydrophobic core of the polymerase and would likely produce steric clashes [32]. As the published
insertion at aa1595 is located almost at the end of a linker where P-protein is assumed to bind [5],
the resulting variant showed some residual activity, as recently confirmed by another study [33]. On the
other hand, some of the other described insertions in closer vicinity to the P-protein binding site may
impair proper interaction. Finally, it could be hypothesized that the attempted insertion site aa1318,
due to its proximity to a cysteine at position aa1302 could destabilize the loop between aa1302 and
aa1318 and, therefore, interfere with structural integrity.

Here, we predicted potentially suitable insertions sites based on the published L structure.
As shown in Figure 1, we specifically chose flexible surface-bearing loops, which we expected to
allow heterologous protein insertions without disturbing the functional domains of the L protein,
resulting in the selection of sites CD1506, CD1537, MT1603, MT1620, and MT1889. The viruses with the
insertion at L-MT1620, despite minor attenuation, proved to be replication competent and were further
characterized. This minor attenuation may be due to L-protein-mCherry fusion protein misfolding as
well as disturbance of structural rearrangements in L, which occur during viral genome replication
and mRNA transcription, capping, and methylation. However, we did not observe temperature
sensitivity when comparing VSV-L-MT1620-mCherry with VSV-GFP at 33 ◦C and 37 ◦C in different
cell lines. Notably, we performed replication kinetics on HEp2 cells, which have been shown to be
nonpermissive for VSV variants with impaired methyltransferase activity [34]. BHK-21 cells have
high intrinsic methylase activity that can rescue viruses with impaired methyltransferase activity [34].
Since we made our insertion in the methyltransferase domain and used BHK-21 cells in most of our
experiments, HEp-2 cells were an important indicator for the possible disturbance of methyltransferase
activity in our insertion viruses. We observed only marginal titer differences between 33 ◦C and
37 ◦C in HEp-2 cells, possibly indicating a slight methyltransferase activity reduction. When we
compared VSV-L-MT1620-mCherry with previously described VSV-L-CD1595-GFP, we observed titer
reductions up to 3 logs for the latter construct. We tested the integrity of mCherry insertions by several
techniques. The region of the insert was sequenced. Second, we showed that mCherry appears at
high molecular weight in immunoblotting, where one would also expect L protein. Third, in contrast
to 5th-position GFP signals, which were diffuse, mCherry fluorescent signals were focal in high
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magnification microscopy imaging, which suggests co-localization with L-protein replication bodies.
The phenomenon of VSV to form cytoplasmic inclusions has been described previously and was
attributed to focal accumulations of the viral replication machinery [27,33]. The focal accumulations of
L-mCherry or L-mWasabi proteins in VSV-L-MT1620-mCherry-infected cells are highly reminiscent of
the replication bodies described for VSV and other viruses, such as rabies virus, where the phenomenon
is termed Negri body-like structures (NBLs) [35].

In our time-lapse infection experiment, we saw that 5th-position GFP signal manifests prior
to mCherry signal. The sequential gene expression of VSV is one of the fundamental principles of
negative-strand RNA viruses of the order of mononegaviruses [36]. The sequential gene expression
of VSV supports our data, since GFP is located at position 5 in our construct, followed by the
L-protein-mCherry at position 6. This leads to larger amounts of GFP compared to mCherry and,
consequently, an earlier fluorescence detection. However, the later appearance of the mCherry signal
could also be due to its weaker fluorescent capacity [37] as well as the possible misfolding of some
L-protein-mCherry fusion proteins.

RNA virus polymerases have high error rates mainly due to missing proofreading activity of
RNA-virus polymerases [38,39]. It was described previously that mutations introduced in a flexible
structural motif of the VSV N protein are complemented in cis by additional N mutations and in trans
by mutations in the P and L proteins to restore activity of the N-P-L complex [40]. We found mutations
in our viruses near the site of insertion. Viruses with the same inserts produced mutations in similar
sequence areas. We, therefore, speculated cautiously that these cis-complementing mutations may be
necessary for proper fusion protein function.

To assess genetic stability of our insert position in comparison with a previously
reported position [10,11], we passaged VSV-GFP-L-MT1620-mCherry, VSV-L-MT1620-mCherry,
and VSV-L-CD1595-GFP with low MOI at 37 ◦C. Virus plaques were checked for overlap of phase
contrast plaques and mCherry fluorescence in VSV-L-MT1620-mCherry before and after passaging both
L-mCherry insert viruses 10 times at 37 ◦C. After passaging, we found no plaques lacking mCherry
fluorescence. As shown previously, mutations in GFP—resulting in changes of the proteins fluorescence
spectrum—can be found after VSV-GFP passaging [41]. The preservation of red fluorescence in all
observed plaques may indicate that mutations or deletions in mCherry could cause structural changes,
impairing L-protein function and aborting propagation of mutated insert variants. We titrated
VSV-L-MT1620-mCherry and VSV-L-CD1595-GFP passages and found that VSV-L-MT1620-mCherry
retained high titers of 108 TCID50 in each passage at 37 ◦C, other than VSV-L-CD1595-GFP, for which
titers declined after only a few passages.

The VSV L-mCherry fusion protein presented here may enable the more detailed study of VSV
replication, especially when combined with previously described P-GFP [7] and M-GFP [8] insertions.
In a first proof-of-concept, we generated dual fluorescence viruses VSV-P-mWasabi-L-mCherry and
VSV-P-mCherry-L-mWasabi. The brighter fluorescent protein mWasabi was used in the L protein to
balance the expression gradient. Though attenuated in the replicative capacity compared to parental
VSV, we observed co-localization of mCherry and mWasabi signals, which is indicative of the known
interaction of P and L proteins. Functional characterizations, for example, with inhibitors of VSVs
replication and transcription machinery, of this construct will be the subject of future studies.

5. Patents
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