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3 Institute of Chemistry, Jan Dlugosz University in Czestochowa, Armii Krajowej Ave. 13/15,

42-200 Czestochowa, Poland
* Correspondence: dkras@cbmm.lodz.pl (D.K.); rafal.karpowicz@chemia.uni.lodz.pl (R.K.);

draj@cbmm.lodz.pl (J.D.); Tel.: +48-42-680-32-34 (J.D.)

Abstract: The purpose of this mini-review is to comprehensively present the synthetic approaches
used for the preparation of non-racemic mono- and multi-substituted thiophenes, which, in turn,
can be applied as precursors for the synthesis of chiral polythiophenes isolated as a single chemical
entity or having supramolecular thin-layer architectures.
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1. Introduction

The phenomenon of chirality plays a key role not only in plant and animal life, but
also in the biological activity of drugs, food additives and agrochemicals [1–5]. In conse-
quence, chiral structures are used very often as active components in pharmaceutical [6–9],
agrochemical [10,11] and food formulations [12]. The last two decades have witnessed
a growing demand for such derivatives as essential component of new materials includ-
ing nonfunctionalized and functionalized polythiophenes (PTs). Interest in this group of
synthetic polymeric materials comes from the hope that they may mimic the behavior
of natural polymers and find application, for example, as chiral sensors, chiral catalysts
and chiral chromatographic supports. When considering chiral PTs, the most readily
available group should be derivatives of general formula 2 (Scheme 1) containing at least
one substituent with a stereogenic center at the three-position (or at the four-position or
both positions). They can be prepared by the chemical or electrochemical oxidation of the
corresponding monomers of general formula 1 (unsubstituted or suitably functionalized in
the two and/or five positions).
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Scheme 1. The general approach to conductive polymers 2 from the monomeric units 1. 
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provides the polythiophenes with a lower degree of HT (head-to-tail) type coupling in the 
main polymeric chain. They contain more regiochemical defects, which results in a 
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Scheme 1. The general approach to conductive polymers 2 from the monomeric units 1.

The synthetic non-regioselective routes to 2,5-coupled, 3-substituted polythiophenes
provides the polythiophenes with a lower degree of HT (head-to-tail) type coupling in the
main polymeric chain. They contain more regiochemical defects, which results in a distor-
tion of the conjugated chain and a lower effective conjugation. Among these methods are
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chemical oxidative coupling using the Sugimoto protocol [13] and dehalogenative polycon-
densation using Ni(COD)2 [14]. The growing demand for the highly conductive materials
applicable in electronic devices (i.e., field effect transistors, organic light-emitting diodes,
photovoltaic cells, or sensors) induces the rapid developments in the regiospecific routes to
regioregular PTs since the regioregular structure affects the improvement of their physico-
chemical properties and their self-organization. Most of the synthetic approaches are based
on the transition metal-catalyzed coupling reactions [15–17]. The first synthesis of regioreg-
ular head-to-tail coupled poly(3-alkylthiophenes) (PATs) was reported by McCullough
and Lowe [18]. In this approach, the starting material is 2-bromo-3-substituted thiophene,
which is selectively metalated with lithium diisopropylamide (LDA) and then treated with
magnesium bromide, which led to the formation of the corresponding Grignard reagents.
Their coupling reaction is catalyzed by Ni(dppp)Cl2. The modification of this method,
developed by McCollough, is the GRIM metathesis procedure, which requires the use of
a 2,5-dibromo-substituted thiophene derivative. The substrate reacts with the Grignard
reagent, forming the corresponding thienyl magnesium halides, which then undergo a
Ni-catalyzed coupling reaction. The polymerization proceeds via a living chain growth
polycondensation mechanism that was independently discovered by Yokozawa and McCul-
lough in 2004 [19,20]. Another regiospecific polymerization route that provides head-to-tail
(HT) coupling products is the so-called Rieke method. It involves Ni-catalyzed coupling
of organozinc halides generated in situ from 2,5-dihalogented thiophene derivatives by
reactive forms of zinc [21]. The exception is when the palladium catalyst [Pd(PPh3)4] is
utilized in this reaction of organozinc species, leading to a regiorandom type of coupling.

All the above-mentioned regiospecific polymerizations giving access to a wide range of
3-substituted polythiophenes with enhanced chiroptical properties require the use of a Ni-
based catalyst and are based on the initial generation of organozinc or organomagnesium
halides.

In turn, the Pd-catalyzed HT-coupling based polymerizations were also developed.
These pathways demonstrate the good efficiency in Suzuki or Stille coupling reactions
using boro- or organotin compounds generated from the starting 2-monohalo-thiophene
derivatives. The Pd-catalyzed Stille or Suzuki polymerizations have already been found to
proceed via step-growth polymerization and by a non-controlled mechanism providing the
polymers with the lower polydispersity [15,22]. It should be noted that the organotin or
organoboronic derivatives should be prepared under cryogenic conditions and they should
be isolated prior to the next step.

Advances in the development of the efficient polymerization techniques leading
to well-ordered conjugated polymers are based on some modifications, mostly in the
Kumada-based polycondensation, which uses the internal initiator/catalyst and as well the
recently applied external initiator species [23,24]. Kumada catalyst transfer condensative
polymerization, being a modified GRIM method, is a controlled chain-growth polymerization
that requires the use of a Ni-based chain initiator/catalyst.

The pool of controlled chain grow polymerizations complements a Pd-RuPhos pro-
tocol that is Pd-catalyzed Negishi coupling polymerization between organozinc com-
pounds [25].

Dehydrohalogenative polycondensation is the other example of Ni-catalyzed [Ni
(dppp)Cl2] polymerization, which requires the use of a mono-halogenated thiophene sub-
strate and a Knochel–Hauser base to proceed at room temperature with high regioregular
couplings [26–28].

The other strategy to synthesize regioregular polythiophenes, apart from the selection
of a methodology distinguished by the type of metal catalyst, the reaction conditions and
the control over the polymerization of monomeric units, relies on designing the symmetrical
units. In this way, regiochemically defined polythiophenes could be obtained from the
units that contain the spacer block between 3-substituted thiophenes. Similarly, HH-TT
coupled PATs and TT-HH PATs are accessible from regiochemically defined bithiophenes,
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i.e., the HH-dimer of substituted thiophene or TT dimers and synthesized via one of the
non-regiospecific methods ( i.e. FeCl3-mediated chemical polymerization).

These studies were summarized less or more briefly, occasionally, as part of reviews
on chiral conductive polymers [29–33]. It is obvious that in all the studies devoted to
the synthetic and structural aspects in the chemistry of chiral PTs, the preparation of the
appropriately designed monomeric substrate constitutes an indispensable opening stage.
Reading the original chemical literature gives the impression that the topic is treated quite
briefly and without taking into account sufficient experimental details, the knowledge of
which should be more or less helpful for all researchers in this field, especially for beginners
entering this fascinating and rapidly developing topic. Therefore, the main focus of this
mini-review is to extensively discuss the applied synthetic approaches extracted from
the original publications that have been published since the first article on this topic in
1988 [34]. Taking into accounts the analysis of the substrate requirements of the mentioned
polymerization methods, we propose the organization of the manuscript based on the type
of substitution in monomeric precursors. Below, one by one, we will present protocols
leading to optically active (or in some cases to racemic) thiophene derivatives of general
structure 1:

(a) monothiophenes substituted at the three-position of the ring with a group containing
a stereogenic center or stereogenic axis;

(b) monothiophenes substituted at the three-position of the ring with a group containing
a stereogenic center and at once functionalized at the two and/or five positions;

(c) monothiophenes substituted at the three and four positions with a group(s) containing
a stereogenic center and nonfunctionalized or functionalized at the two and/or five
positions;

(d) β-(mono or di) substituted bithiophenes functionalized with a substituent containing
a stereogenic carbon atom or a stereogenic heteroatom;

(e) other (oligo)thiophenes functionalized with a substituent containing a stereogenic
carbon atom or a stereogenic heteroatom.

2. Syntheses of 3-Substituted Monothiophenes Functionalized with a Substituent
Containing a Stereogenic Center or a Stereogenic Axis
2.1. Syntheses of 3-Substituted Monothiophenes Nonfunctionalized in the Two and Five Positions

Due to the growing interest in the design of conducting polythiophenes with improved
electrical and optical properties, mechanical, chemical and thermal stability, the research
devoted to the synthesis of novel, diversely substituted monomeric units, for example those
with the chiral 2-methylbutyl group. These functions are introduced into the structures
while designing chiral nematic liquid crystals.

With a view to combining the liquid crystalline structure with a conductive poly-
thiophene backbone, 3-(S)-2-methylbutylthiophene monomer 7 was synthesized [35] by
reacting the generated from (S)-(+)-1-bromo-2-methylbutane 4 Grignard reagent 5 with 3
-bromothiophene 6 (Scheme 2) following the literature report devoted to a general method
for the alkylation and arylation of haloheterocyclic compounds, which occurs in the pres-
ence of a catalytic quantity of [NiCl2(dppp)] (where dppp stands for Ph2 P(CH2)3PPh2) [36].
Later on, this procedure, carried out with commercially available 1-bromo-2-methylbutane
(Aldrich) having [α]D = +4.5, c 5, CHCl3, was found to give thiophene 7, purified by
distillation, with [α]D = +7.37 (neat) in 58% yield [37]. There are also two other reports on
the use of this protocol [38,39] but without giving any details of yield and specific rotation.
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Scheme 2. Synthesis of 3-[(S)-2-methylbutyl]thiophene 7 by the cross-coupling reaction of (S)-(2-methylbutyl)magnesium
bromide 5 with 3-bromothiophene 6 and the subsequent electro- [35] and chemical polymerizations [37].

The monomer 7 (0.25 M solution) was oxidatively electropolymerized with an applied
potential of 5 V, in a two-electrode cell consisting of a glassy-carbon working electrode
(0.26 cm2), a platinum wire counter electrode, in a dry MeCN and the Et4NBF4 (0.25 M)
solution [35].

The chiral ordering in an aggregated conjugated poly{3-(S)-[2-methylbutyl]thiophene}
was examined too after producing the polymeric materials using the ferric chloride ox-
idative method [37]. The doping effect prior to aggregation along with the doping level
was explored to find the factors contributing to control chiral arrangement in conjugated
polymer aggregates.

Moreover, the studies on the polymerization also comprised their regioregular poly-
meric analogues. First, the synthesis of HT regioregular 2,5 coupled poly-3-(S)-2-methylbut-
ylthiophene was reported by Langeveld-Voss et al. [40]. Then, the regioregular polymer
was prepared with a Ni(dppp)Cl2 catalyst using the Grignard metathesis developed by
McCullough ][38,41] However, this procedure requires the preparation of 2,5 di brominated
precursor; therefore, this synthetic procedure will be mentioned below in the subsequent
chapter.

A recent China patent [42] lists among the product of cross-coupling of organozinc
reagents and heterocyclic (pseudo)halides, racemic 3-(1-ethyl)butylthiophene 9 formed by
the reaction of 3–bromothiophene 6 with hexan-3-ylzinc chloride 8 (Scheme 3).

Earlier, an EU patent owned by Nippon Telegraph and Telephone Corporation [43] re-
ported the preparation 3-(S)-2-methyoctylthiophene monomer 12 achieved by coupling, gen-
erated from (S)-(+)-1-bromo-2-methyloctyl 10 Grignard reagent 11 with 3-bromothiophene 6
in the presence of a catalytic quantity of [NiCl2(dppp)] (Scheme 3). A similar approach was
reported for the preparation of 3-(S)-3,7-dimethyoctylthiophene monomer 15 conducted by
reacting the Grignard reagent 14 obtained from (S)-(+)-1-bromo-3,7-dimethyloctyl 13 with
3-bromothiophene 6. Unfortunately, specific rotation data are not available (Scheme 3) [44].

The direct introduction of the substituent into the three position of the thiophene ring
can be implemented by the Suzuki cross-coupling reaction, as illustrated in the synthesis
of optically active (R)-3-(4-(4-ethyl-2-oxazolin-2-yl)phenyl)thiophene (EOPT) 18 [45].
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Scheme 3. Synthesis of 3-[(1-ethyl)butyl]thiophene 9, 3-[(S)-2-methyloctyl]thiophene 12 and 3-[(S)-3,7-dimethyloctyl]
thiophene 15 by the cross-coupling reaction of 3-bromothiophene 6 with the corresponding alkylmagnesium or alkylzinc
halides.

The reaction occurred between 3-thiopheneboronic acid 17 and the oxazoline deriva-
tive 16 (prepared independently starting from ethyl 4-iodobenzoate and (R)-2-amino-1-
butanol via an optically active hydroxy amide derivative [46]). The reaction carried out
in the presence of K3PO4 in toluene using Pd(PPh3)4 as a catalyst gave 18 (EOPT) in 85%
yield (Scheme 4) [47]. The enantiomeric excess of 18 was estimated to be greater than 99%
using europium tris[3 -(trifluoromethylhydroxymethylene)-(+)-camphorate] (Eu(tfc)3) as a
chiral shift reagent (1H NMR spectrum measured in CDCl3).
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Scheme 4. The cross-coupling of oxazoline 16 with 3-thiopheneboronic acid 17. Syntheses of the
regioregular and regiorandom poly-18.

The regioregular polythiophene derived from monomeric thiophene 18 was synthe-
sized according to a modified McCullough’s procedure when monobrominated thiophene
derivative was used as a starting material. Dehalogenative polycondensation according
to a Yamamoto protocol was used as well, successfully starting from the dibrominated
analogue of the monomer 18. It provided, however, the regiorandom polymer. The purpose
of synthesizing the two polymers that differ in the regioregularity was to compare their
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chiroptical properties and to examine the influence of the regioregularity of the main chain
on the induction of a chiral supramolecular aggregate in the chiral polythiophenes [47].

Among the optically active 3-alkylthiophene monomers, the most numerous groups
are the compounds in which the alkyl group is functionalized at the terminal carbon
atom by attaching a moiety containing a stereogenic center. The list of such compounds
opens 3-[3-[(S)-2-phenylbutoxy)]propyl]thiophene 21a and its enantiomer 21b prepared
by the reaction of the 3-(3′-thienyl)propyl toluene-p-sulfonate 19 with the enantiomers of
2-phenylbutanol 20a,b (Scheme 5) [34,48]. The monomers were next electropolymerized,
applying a current density of 2 mA cm−2 in a one-compartment three-electrode cell con-
taining the monomer and NBu4PF6 in nitrobenzene. Chiral polythiophenes, poly-21a and
poly-21b, feature a high conductivity and were able to stereoselectively recognize the chiral
anions used as doping agents during voltammetric cycles [34].
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The preparation of 3-[2-((S)-2-methylbutoxy)ethyl]thiophene 24 was, for the first time,
mentioned as early as 1994 in a paper coming from the Meijer’s group [49]. They isolated it
in 83% yield by reacting 2-(3-thienyl)ethanol 23 (obtained in 89% yield by a reduction of 3-
thiopheneacetic acid with LiAIH4) with a tosylate 22 of the commercially available optically
pure (S)-(−)-2-methyl-l-butanol 3. This protocol was later referenced, without specifying
characterization details, in three other publications by this team [40,50,51]. On the other
hand, the paper by Ochiai et al. [52] contains the full experimental details of the protocol
presented in Scheme 6. This protocol is given below. The monomer, after its conversion into
the 2,5-dibromosubstituted derivative, was used to obtain an optically active regioregular
2,5-coupled analogue, poly(3-[2-((S)-2-methylbutoxy)ethyl]thiophene), containing a 93%
HT head-to-tail linkage, according to the modified Rieke method [52]. The corresponding
regiorandom poly-(S)-24 was obtained by the FeCl3-oxidative polymerization of 24 [49].

Another example of the condensation reaction aimed at appending a chiral moiety into
the side chain of a 3-substituted thiophene derivative is the synthesis of the dextrorotatory
enantiomer of thiophene containing an amino acid residue (+)-R- 25a. The transformation
begins with the conversion of 3-thienylethanol 23 to the corresponding tosylate and follows
by the reaction with a protected unnatural amino acid, N-t-Boc-D-Ser (Scheme 7) [53].
A similar sequence of reactions using N-t-Boc-L-Ser gave the opposite enantiomer of
ethoxythiophene (−)-S-25b. Their further transformations into the corresponding methyl
esters of serine-substituted monothiophenes (+)-R-26a. or (−)-S-26b involve estrifications
using Ag2O and MeI (Scheme 7) [54].
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Scheme 7. Synthesis of 2-tert-Butoxycarbonylamino-3-(2-thiophen-3-yl-ethoxy)-propionic acid (25), its conversion to methyl
ester analogue (26) and the polymerizations using FeCl3-mediated oxidative method.

The tert-butoxycarbonyl group was removed (using a TFA/DCM solution) prior to
polymerization. The free amino acid substituted thiophene monomer (R)-25a and its methyl
ester analogue 26a or its enantiomer 26b were polymerized using a method reported by
Sugimoto et al. using chemical oxidation with FeCl3 in chloroform. The water-soluble
polymers, converted into the ammonium chloride salts, were precipitated by adding
acetone [53,54].

Synthesis of the monomers (R)-(−)-2-(3-thienyl)ethyl N-(3′,5′-dinitrobenzoyl)- α-phe-
nylglycinate 29a and (S)-(+)-2-(3-thienyl)ethyl N-(3′,5′-dinitrobenzoyl)- α-phenylglycinate
29b involves a similar approach based on the condensation of (R)-(−) or (S)-(+)-N-(3,5-
dinitrobenzoyl)- α-phenylglycine 27a or 27b with 3-(2-iodoethyl)thiophene 28a carried out
in a basic medium (Scheme 8) [55]. Their enantiomeric excesses were supported by 1H NMR
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spectra measured in the presence of Eu(tfc)3. They are commonly used as chiral selectors
in Pirkle’s stationary phases [56,57], applied in HPLC enantioselective analysis [58].

Once the monomers were isolated in good yields, namely, 51% for (R)-29a and 49% for
(S)-29b, respectively, they were polymerized by oxidative coupling with FeCl3 in CHCl3
(Scheme 8). The optical activity of the polythiophenes was maintained as evidenced by
the specific optical rotation values of [α]D

28 = −29.0 (2.5, THF) for poly-(−)-(R)-29a and
[α]D

28 = +28.4 (2.5, THF) for poly-(+)-(S)-29b.
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Scheme 9. Synthesis of selected 3-substituted (poly)thiophenes with a chiral 1,3-dioxalane moiety. 

Recently, a few racemic and optically active 2-(3′-thienyl)ethyl alkyl (aryl) sulfoxides 
39a–c were prepared by reacting racemic or diasteromerically pure O-alkyl arene(alkyl) 
sulfinates 37a–f (prepared in turn from arene(alkane)sulfinyl chlorides 35a–c and an 
appropriate racemic or optically active alcohol 36) with 2-(3′-thienyl)ethylmagnesium 
bromide 38 (Scheme 10). [60]. Moreover, sulfoxides 39a and 42 were also obtained as 
racemates via the oxidation of the corresponding sulfides: 2- (3′-thienyl)ethyl p-tolyl 41 or 
3-thienylmethyl p-tolyl 40 using a 30 wt% solution of hydrogen peroxide as an oxidizing 
reagent (Scheme 11). [60] 
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Several 3-substituted thiophenes (32a,b, 33a,b, 34b), wherein thiophene rings are
linked directly or via an alkyl spacer to a chiral acetal ring such as a 1,3-dioxalane having
two stereogenic carbon atoms, were prepared using optically active diethyl tartrate 31 and
3-thiophenecarboxaldehyde 30a or 3-thiophenepropanal 30b as starting materials. Their
synthesis is shown in Scheme 9 [59].

The compounds 32a,b and 33a,b were subjected to an anodic polymerization. It was
reported that poly-(33b) was stable toward oxidative cycling. For poly-(33), the progressive
electrochemical growth was observed in CH2Cl2 with 0.1M Bu4NBF4 as an inert electrolyte,
while no polymerization occurred using CH3CN.
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Recently, a few racemic and optically active 2-(3′-thienyl)ethyl alkyl (aryl) sulfoxides 
39a–c were prepared by reacting racemic or diasteromerically pure O-alkyl arene(alkyl) 
sulfinates 37a–f (prepared in turn from arene(alkane)sulfinyl chlorides 35a–c and an 
appropriate racemic or optically active alcohol 36) with 2-(3′-thienyl)ethylmagnesium 
bromide 38 (Scheme 10). [60]. Moreover, sulfoxides 39a and 42 were also obtained as 
racemates via the oxidation of the corresponding sulfides: 2- (3′-thienyl)ethyl p-tolyl 41 or 
3-thienylmethyl p-tolyl 40 using a 30 wt% solution of hydrogen peroxide as an oxidizing 
reagent (Scheme 11). [60] 

Scheme 9. Synthesis of selected 3-substituted (poly)thiophenes with a chiral 1,3-dioxalane moiety.

Recently, a few racemic and optically active 2-(3′-thienyl)ethyl alkyl (aryl) sulfoxides
39a–c were prepared by reacting racemic or diasteromerically pure O-alkyl arene(alkyl)
sulfinates 37a–f (prepared in turn from arene(alkane)sulfinyl chlorides 35a–c and an ap-
propriate racemic or optically active alcohol 36) with 2-(3′-thienyl)ethylmagnesium bro-
mide 38 (Scheme 10). [60]. Moreover, sulfoxides 39a and 42 were also obtained as race-
mates via the oxidation of the corresponding sulfides: 2- (3′-thienyl)ethyl p-tolyl 41 or
3-thienylmethyl p-tolyl 40 using a 30 wt% solution of hydrogen peroxide as an oxidizing
reagent (Scheme 11) [60].
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(MSH) 43, following the procedure developed by Tamura in 1972 [61] and Johnson in 1974 
[62] (Scheme 12), proceeded in an enantioselective manner, and took place with the 
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this sulfoximine, having 97% ee, showed only a very weak, almost an imperceptible cotton 
effect in the circular dichroism spectrum recorded in methylene chloride. The racemic n-
hexadecyl sulfoximine 46 was also obtained following this procedure. 
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of hydrogen peroxide.

The subsequent transformations led to the N-unprotected, optically active 2-(3′-
thienyl)ethyl (p-toluene/n-hexadecyl) sulfoximines (R)-(−)-45 and (R)-(−)-46. The im-
ination of sulfoxides (R)-(+)-39a or (R)-(−)-39c using O-(mesitylsulfonyl)hydroxylamine
(MSH) 43, following the procedure developed by Tamura in 1972 [61] and Johnson in
1974 [62] (Scheme 12), proceeded in an enantioselective manner, and took place with the
retention of the configuration at the stereogenic sulfur atom. It is interesting to note that
this sulfoximine, having 97% ee, showed only a very weak, almost an imperceptible cotton
effect in the circular dichroism spectrum recorded in methylene chloride. The racemic
n-hexadecyl sulfoximine 46 was also obtained following this procedure.
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The N functionalization of racemic n-hexadecyl-2-(3′-thienyl)ethyl sulfoximine 45
was based on its reaction with 5-bromo-5′-hexyl-2,2′-bithiophene 47 in the presence of
potassium carbonate and catalytic amounts of copper (I) iodide and N,N′-dimethylethane-
1,2-diamine (DMEDA) (Scheme 13) [60]. This protocol, leading to N-bithiophene derivative
48 constitutes a modification of the procedure described by Bolm in 2005 [63], by which
this coupling reaction was carried out with cesium carbonate as a base.
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Scheme 13. N-Bithienylation of racemic sulfoximine 45 catalyzed by Cu(I) DMEDA complex.

The monothiophenes 49–51 containing a sulfonate function attached to the thiophene
ring at the three-position through an ethylene linker were also prepared with the aim of
their usage to obtain new chiral high molecular weight analogues. The condensation of the
corresponding alkanesulfinyl chlorides 35b and 35d,e with 2-(3′-thienyl)ethanol 23 carried
out in the presence of triethylamine in an ether solution gave the sulfonic esters in 50–87%
yields (Scheme 14) [60].
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Another class of monomers designed to synthesize new chiral polythiophenes in
order to evaluate their properties are monothiophenes containing the substituent with
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racemization (Scheme 15) [64]. This procedure was simultaneously patented [65,66] and
applied for the preparation of racemic phosphine oxide rac-53.
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Following the procedure of the reaction of sodium 2-(3′-thienyl)ethoxide 23b with
tert-butylphenylposhinyl chloride 52c, the representative of the phosphonates, namely,
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racemic O-2-(3′-thienyl)ethyl tert-butylphenylphosphinate 54, was prepared in 93% yield
(Scheme 16) [64].
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The above monomers, sulfoxides 39a–c, sulfoximines (R)-(−)-45 and (R)-(−)-46, alka-
nesulfonates 49–51, phosphine oxides (−)-(S)-53a and phosphonates rac-54 were converted
into the polythiophene analogues, in most cases by chemical oxidative polymerization
according to a Sugimoto et al. protocol, or, in the case of the phosphorus based derivatives,
via both the FeCl3-promoted method and electropolymerization [64]. Iron (III) chloride
was the optimal oxidizing coupling agent, except for the polymerizations of optically
active sulfoxides. Its use for polymerizing the enantiomerically pure sulfoxides failed in
terms of isolating the optically active polymeric products. This was due to the release of
gaseous HCl during polymerization, which led to racemization. The optical properties of
the polythiophenes with different types of substitution were examined using UV–VIS and
fluorescent spectroscopy, and the circular dichroism and polarimetric measurements were
conducted to examine their chirality. The fluorescence quantum efficiency in the solutions
of the regioirregularly 2,5-coupled polythiophenes reaches 24%.

The synthesis of the 3-substituted monothiophenes containing an alkyl side chain
attached to the thiophene ring through a heteroatom was developed, as the presence of the
heteroatom directly attached to the heterocyclic ring affects the properties of the monomers
as well the products of their polymerizations.

One of the representatives is alkoxy substituted thiophene with an electro-donating
substituent, optically active (+)-3-[(S)-(2-methylbutoxy)]thiophene (TOR*) 57, which was
prepared in 67% yield by the acid catalyzed reaction of 3-methoxythiophene 55 with (S)-
(−)-2-methyl-1-butanol 3 refluxed in a toluene solution for 24 h in the presence of a catalytic
amounts of p-toluenesulfonic acid monohydrate (Scheme 17) [67].
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Scheme 17. Acid–catalyzed reaction of 3-methoxythiophene 55 with (S)-(−)-2-methyl-1-butanol 3.

The monomer (S)-57 was used to prepare novel, optically active oligothiophenes using
synthetic methods suitable for obtaining regioregular head-to-tail and head-to-head/tail-to-
tail derivatives (if starting from the bithiophene monomers). The chiral (S)-(2-methyl)butyl
moiety was introduced into the three-position of the thiophene ring through heteroatoms,
such as O as well S (present in the compound 58) to prepare oligomeric regioregular HT-
coupled oligomers being suitable models for the evaluation of the effect of the heteroatom
presence in the side chain on the macromolecular aggregation and, consequently, on the
chiroptical properties of the material in the solid state. The GRIM (Grignard metathesis)
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procedure, via a magnesium/bromine exchange, was adopted for the polymerization
under a high regio control.

In turn, the sulfur analogue of 57, optically active (+)- 3-[(S)-2-methylbutylsulfanyl]
thiophene 59, was obtained by the alkylation of potassium 3-mercaptothiophenate 58b,
prepared in situ by treating the parent 3-thiophenethiol 58a with potassium tert-butylate
in ethanol, with the 1-bromo-2-methylbutane enantiomer, (+)-(S)-4 (Scheme 18) [68]. The
monomer was, similar to its oxygen analogue, polymerized using the GRIM method.
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Scheme 18. Alkylation of potassium 3-mercaptothiophenate 58b by 1-bromo-2-methylbutane (S)-(+)-4.

A similar approach was used for the preparation of optically active (+)-3- [(S)-3,7-
dimethyloctylsulfanyl]thiophene 61 and a racemic 3-[2-butyloctyl] thioeter 62. This syn-
thetic route, reported originally by Barbarella and co-workers [69] begins with a lithium−
halogen exchange reaction of 3-bromothiophene 6 followed by quenching with sulfur to
give 3-thiophenethiol 58a, which, after its conversion into the corresponding potassium
thiolate 58b, reacted with bromoalkanes [(+)-(S)-13 or 60] to provide facile access to the
target 3-(alkylthio)thiophenes 61,62 (Scheme 19) [70].

Molecules 2021, 26, x  12 of 30 
 

 

oligomeric regioregular HT-coupled oligomers being suitable models for the evaluation 
of the effect of the heteroatom presence in the side chain on the macromolecular 
aggregation and, consequently, on the chiroptical properties of the material in the solid 
state. The GRIM (Grignard metathesis) procedure, via a magnesium/bromine exchange, 
was adopted for the polymerization under a high regio control. 

In turn, the sulfur analogue of 57, optically active (+)- 3-[(S)-2-
methylbutylsulfanyl]thiophene 59, was obtained by the alkylation of potassium 3-
mercaptothiophenate 58b, prepared in situ by treating the parent 3-thiophenethiol 58a 
with potassium tert-butylate in ethanol, with the 1-bromo-2-methylbutane enantiomer, 
(+)-(S)-4 (Scheme 18) [68]. The monomer was, similar to its oxygen analogue, polymerized 
using the GRIM method. 

 
Scheme 18. Alkylation of potassium 3-mercaptothiophenate 58b by 1-bromo-2-methylbutane (S)-(+)-4. 

A similar approach was used for the preparation of optically active (+)-3- [(S)-3,7-
dimethyloctylsulfanyl]thiophene 61 and a racemic 3-[2-butyloctyl] thioeter 62. This 
synthetic route, reported originally by Barbarella and co-workers [69] begins with a 
lithium−halogen exchange reaction of 3-bromothiophene 6 followed by quenching with 
sulfur to give 3-thiophenethiol 58a, which, after its conversion into the corresponding 
potassium thiolate 58b, reacted with bromoalkanes [(+)-(S)-13 or 60] to provide facile 
access to the target 3-(alkylthio)thiophenes 61,62 (Scheme 19) [70]. 

 
 

 
Scheme 19. Alkylation of potassium 3-mercaptothiophenate 58b by chiral bromo-alkanes (13) or 
(60) in the preparation of alkylsulfanylthiophenes and the route to their polymerization. 

In the case of sulfides 61 and 62, the dehydrohalogenative polycondensation method 
was used for their polymerization The monobrominated products were the starting 
materials for a Kumada polymerization procedure that produces highly regioregular HT 
polythiophenes in high yields In this procedure Knochel’s base [28,71] was used to 
deprotonate the monomer, and 0.5 mol % NiCl2(dppe) was applied as the catalyst. Poly-

Scheme 19. Alkylation of potassium 3-mercaptothiophenate 58b by chiral bromo-alkanes (13) or (60)
in the preparation of alkylsulfanylthiophenes and the route to their polymerization.

In the case of sulfides 61 and 62, the dehydrohalogenative polycondensation method
was used for their polymerization The monobrominated products were the starting ma-
terials for a Kumada polymerization procedure that produces highly regioregular HT
polythiophenes in high yields In this procedure Knochel’s base [28,71] was used to de-
protonate the monomer, and 0.5 mol % NiCl2(dppe) was applied as the catalyst. Poly-61
and poly-62 exhibited electrochemical behavior with reversible p-doping and dedoping
processes. The helicity of chiral polymers was examined using the CD measurements taken
in the solution and in the solid states. The CD measurements in solution showed strong
bisignate cotton effects for the π–π* transitions in poly-(S)--61, whereas no cotton effect was
observed for poly-62. The addition of MeOH, a poor solvent, to the polymers resulted in
an increased CD signal corresponding to the formation of an ordered helical aggregation.
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2.2. Syntheses of 3-Substituted Monothiophenes Functionalized in the Two Position

In this sub-class of monothiophenes substituted in the three-position with a sub-
stituent containing a stereogenic carbon atom or a stereogenic heteroatom and additionally
functionalized in the two -position, the most abundant group are those with halogen
substituents in the two- -position. Additionally, in turn, among them, 2-bromo derivatives
were the most often obtained. They are typically prepared by the bromination of the parent
3-substituted monothiophenes mentioned above with N-bromosuccinimide (NBS) under
selected conditions, as summarized in Scheme 20.
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As an example, 3-[(−) 3-(S)-3,7-dimethyoctyl]thiophene 15 was converted to (−) 2–
bromo-3-(S)-(3,7-dimethyoctyl)thiophene 63 [72–74]; (+)-3-[2-((S)-2- methylbutoxy)ethyl]
thiophene 24 to (+)-2-bromo-3-[2-((S)-2- methylbutoxy)ethyl]thiophene 64[50] [50,51,75];
(+)- 3-[(S) -2-methylbutylsulfanyl]thiophene 59 to the corresponding 2-bromo derivative
65 [67,68,70]; (+)-3- [(S)-3,7-dimethyloctylsulfanyl]thiophene 61 to 2-bromo derivative
66 [70] and (R)-3-(4-(4-ethyl-2-oxazolin-2-yl)phenyl)thiophene (EOPT) 18 to EOPT-Br 67
(Scheme 20) [47].

An interesting synthesis of (S)-(1)-2-bromo-3-[2-[4-[N-methyl-N-(3,7-dimethyloctyl)
amino]phenyl]ethenyl]thiophene 70 was achieved by the coupling of the aldehyde 68 with
2-bromothiophenephosphonate 69 under a Wittig–Horner reaction (Scheme 21). 1H NMR
spectroscopy confirmed that trans-70 is formed exclusively [76]. The regioregular poly-
thiophene poly-70 was prepared by the polycondensation of 70 via a Stille coupling with
Pd(PPh3)4 as a catalyst. Their physicochemical measurements indicated that the sidechain
influences on the spectroscopic (absorption, emission) and electrochemical behavior and
that the sidechain chirally stacks in conditions in which the polymer backbone aggregates.
This indicates the ability of inducing a (chiral) lamellar organization of conjugated moieties,
present in their sidechain.
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The selective iodination of optically active thiophenes 7 and 24 was elaborated
while synthesizing (S)-(+)-2-iodo-3-(2-methylbutyl)thiophene 71 [39] and (S)-2-iodo- 3-
[2-methylbutoxy)ethyl]thiophene 72 [49]. The iodination of the optically active 3-[(S)-
(+)-2-methylbutyl]thiophene 7 followed the method of Suzuki [77] (Scheme 22). The
monoiodo-substituted thiophene (S)-71 was used to prepare the terthiophene derivative,
which served as a monomeric unit in the formation of the copolymer poly-71 via the
FeCl3-mediated oxidative coupling.

2-((S)-2-Methylbutoxy)ethyl]thiophene 24 was iodinated at the two-position using
I2, in HNO3, to give (S)- 2-iodo- 3-[2-methylbutoxy)ethyl]thiophene 72 in 47% yield after
distillation (Scheme 23). The latter was transformed into the polymeric analogue poly-(S)-
72 using McCullough’s method. The corresponding regiorandom isomer of poly-72 was
also obtained by the FeCl3-mediated oxidative polymerization of 24 at −20 ◦C.
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2.3. Syntheses of 3-Substituted Monothiophenes Functionalized in the Two and Five Positions

In this sub-class of monothiophenes substituted in the three-position with a sub-
stituent containing a stereogenic carbon atom or a stereogenic heteroatom, the halogen-
functionalized compounds in the two- and five-positions of the thiophene ring consti-
tute the most abundant group. Additionally, in turn, among them, dibromo derivatives
were most often prepared. They are prepared most easily by the dibromination of the
parent 3-substituted using N-bromosuccinimide (NBS) or bromine. In this manner, 3-
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[(−) 3-(S)-3,7-dimethyoctyl]thiophene 15 was converted to -(−) 2,5 –dibromo-3-(S)-(3,7-
dimethyoctyl)thiophene 73 (Scheme 24, Entry 1) [44]. Unfortunately, specific rotation data
are not available.
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Similarly, (+)-3-[2-((S)-2- methylbutoxy)ethyl]thiophene 24 was converted to (+)-2,5-
dibromo-3-[2-((S)-2- methylbutoxy)ethyl]thiophene 74 (Scheme 24, Entry 2) [50,52].

An analogous reaction of optically active 3-[2-(1- methyloctyloxy)ethyl]thiophene
75 afforded either the monobromothiophene 75 or dibromothiophene 77, dependent
on the amount of NBS used (Scheme 24, Entry 3) [78]. Fully regioselective dibromi-
nation was again observed for 3-[2-methylbutylsulfanyl]thiophene 59, giving the cor-
responding 2.5-dibromo derivative 78 (Scheme 24, Entry 4) [67,68,70,79]; (+)-3- [(S)-3,7-
dimethyloctylsulfanyl]thiophene 61, leading to 2,5-dibromo derivative 79 (Scheme 24, Entry
5) [80] and (+)-3-[(S) -2-methylbutoxyl]thiophene 57, giving the corresponding 2.5-dibromo
derivative 80 (Scheme 24, Entry 6) [67].

The sequential halogenation of the 3-substituted monothiophenes was also conducted.
Thus, 2,5-dibromo-(R)-3-(4-(4-ethyl-2-oxazolin-2-yl)phenyl)thiophene (EOPT-Br2) 81 was
obtained by the subsequent bromination of (R)-67 (EOPT-Br) at the five-position of the
thiophene ring (Scheme 25) under similar conditions [47,61,81]. In turn, (+)-2-bromo-5-iodo-
3-((S)-3,7- dimethyloctyl)thiophene (S)-82 was prepared by the iodination of 2-bromo-3-((S)-
3,7-dimethyloctyl)thiophene (S)-63 with iodine in the presence of iodobenzene diacetate.
(Scheme 25) [22,73,82–84].

The other synthetic modifications concern the functionalization of the terminal reactive
groups attached to the side chains in the three positions of the thiophene ring. This strategy
is exemplified by the reaction of 2,3,5-trisubstituted monothiophenes having a functional
group in the three-position permitting a coupling reaction with a chiral moiety, as illustrated
in Scheme 26. The coupling reaction of 2,5-dibromothiophene-3-carboxylic acid 83 or
2,5-dibromothiophene-3-acetic acid 84 with 10-(4-(4′-(4′ ′-(2-fluorooctyloxy)phenylcarbony-
loxy))-biphenoxy)decylol 85 occurred in the presence of dicyclohexylcarbodiimide (DCC)
and 4-dimethyloaminopyridine (DMAP). The debrominative polycondensation of the
resulting monomers 86, 87 using the Ni zerovalent catalyst and the bis-chelating bipyridine
ligand was applied for the preparation of the polymers, containing liquid crystalline side
chains, poly-86 and poly-87 [85].
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A similar esterification reaction of 2,5-dibromothiophene-3-carboxylic acid 83 and (S)-
1,1,1-trifluoro-undecan-2-ol 98 was found to afford the chiral ester 89, while the Mitsunobu
reaction of 2,5-dibromothiophene-3- carboxylic acid 83 and (S)- 2-octanol 90 gave the
corresponding ester 91, as shown in Scheme 27 [86]. The stereogenic center in (S)-2-
octanol 90 was converted into (R)-configuration in the ester 91, having [α]D = −15.49,
without racemization, since this reaction occurs with the SN2-type Walden inversion
(Scheme 27) [87].
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Sugimoto protocol via the oxidative method. Interestingly, the UV–vis spectrum of 
PDMOT showed the absorption band at a shorter wavelength (λmax), 318 nm in 
chloroform, compared to monoalkyl-substituted polythiophenes. It was suggested that it 
could be due to the electronic effects of the electron donating alkyl side chains or due to 
their steric demands. It was assumed that the steric effects of the two branched chiral alkyl 
side chains in the polythiophene are responsible for an unusual CD spectrum and the 
significant thermo- and solvato-driven effects observed in the CD spectra. 

Scheme 27. Esterification of 2,5-dibromothiophene-3-carboxylic acid 83 with optically active alcohols 88 and 90. Copoly-
merization reaction via Stille coupling method.

The monomer 89 was used for copolymerization with 2,5-bistannylated thiophene or
2′,5′’-distanyllated bithiophene via a Pd-catalyzed Stille polycondensation reaction. The
chiral aggregation for the obtained polymers, poly-89a and poly-89b, was investigated
using CD spectroscopy measurements.

2,5-Dibromo-3-(6-bromohexyl)thiophene 92 reacted with permetylated 6-O-monohy-
droxy-α-cyclodextrin 93 in the presence of sodium hydride to give the bulky permethyl-α-
cyclodextrin 94 in which the thiophene ring is attached through a hexamethylene linker
(Scheme 28) [88].
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3. Syntheses of 3,4-Disubstituted Monothiophenes

The first dialkyl-substituted chiral polythiophene, PDMOT: poly-{3,4-bis[(S)-2-methy-
loctyl]thiophene}, poly-96 was synthesized in 2002 [89]. The synthesis of its precursor, the
monomer 96: 3,4-bis[(S)-2-methyloctyl]thiophene, was thereby developed and reported
therein. It comprised the Kumada type coupling of 3,4-dibromothiophene 95 with (S)-
2-methyloctylmagnesium bromide catalyzed by a Ni(II) catalyst to provide the product
in 21% yield (Scheme 29). The precursor 96 was polymerized according to the Sugimoto
protocol via the oxidative method. Interestingly, the UV–vis spectrum of PDMOT showed
the absorption band at a shorter wavelength (λmax), 318 nm in chloroform, compared
to monoalkyl-substituted polythiophenes. It was suggested that it could be due to the
electronic effects of the electron donating alkyl side chains or due to their steric demands.
It was assumed that the steric effects of the two branched chiral alkyl side chains in the
polythiophene are responsible for an unusual CD spectrum and the significant thermo-
and solvato-driven effects observed in the CD spectra.
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Scheme 29. The approach to (poly)3,4-bis[(S)-2-methyloctyl]thiophene.

While exploring the EDOT (ethylenedioxythiophene) derivatives, it was shown that
the Mitsunobu reaction was an efficient route for the synthesis of mono- and disubstituted
EDOTs and 3,4-propylenedioxythiophenes (ProDOTs) [90,91]. However, the one drawback
it suffered from was a moderate yield, which prevailed in the case of the Mitsunobu
reaction for synthesizing disubstituted EDOTs.

Later, the same research group demonstrated the high yielding alternative for the syn-
thesis of the EDOT monomers achieved by transetherification of 3,4-dimethoxythiophene
103 with (chiral) glycols 104 [92]. The chiral 3,4-ethylenedioxythiophenes EDOTs, having
two substituents at the ethylene bridge, containing two stereogenic centers in their units,
were designed to ensure high regioregularity in the subsequent polymerization to produce
chiral PEDOTs. In fact, it was also demonstrated that the stereochemistry of the monomers
affected the electronic properties of the corresponding chiral PEDOT derivatives.

The general synthetic protocol comprises the reactions of 3,4-dimethoxythiophene 97
with glycol derivatives 98a–d catalyzed by p-toluenesulfonic acid (Scheme 30).
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Scheme 30. Novel EDOTs 99b–d synthesis via the acid-catalyzed transetherification reaction and
their use to obtain the corresponding PEDOTs.

The reaction yield was lowered (20%) when (meso)-2,3-butanediol 98a was used in
preparing EDOT 99a, (entry 1, Table 1). The stereochemistry of the starting 1,2-diols
did not affect the yields in forming the resulting EDOTs in which the configurations are
fully retained (entries 2–4: 73–82%; entries 5–9: 52–68%). All novel disubstituted EDOT
derivatives 98a,d were polymerized to PEDOTs using potentiodynamic electrooxidation.

A similar method, based on the transetherification of diols with 3,4-dimethoxythiophene
97, was also applied for the synthesis of monomers 102a,b, enantiomerically pure disub-
stituted 3,4-propylenedioxythiophenes containing (2S)-methylbutyl and (2S)-ethylhexyl
sidechains [93].
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Table 1. Transetherification reaction of 3,4-dimethoxythiophene 97 and (chiral) diols 98a–d to (enan-
tiomerically pure) disubstituted EDOTs 99a–d.

Glycol Deriv. EDOT Deriv. Yield [%]
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A similar method, based on the transetherification of diols with 3,4-
dimethoxythiophene 97, was also applied for the synthesis of monomers 102a,b, 
enantiomerically pure disubstituted 3,4-propylenedioxythiophenes containing (2S)-
methylbutyl and (2S)-ethylhexyl sidechains [93]. 

The procedure used for the synthesis of monomeric 3,4-propylenedioxythiophenes 
was modified in respect to a protocol for the racemic analogues described earlier [94]. The 
chiral alcohols, (2S)-methylbutanol 100a and (2S)-ethylhexanol 100b, were converted into 
the corresponding tosylates. The resulting products reacted with diethyl malonate anion 
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The procedure used for the synthesis of monomeric 3,4-propylenedioxythiophenes
was modified in respect to a protocol for the racemic analogues described earlier [94].
The chiral alcohols, (2S)-methylbutanol 100a and (2S)-ethylhexanol 100b, were converted
into the corresponding tosylates. The resulting products reacted with diethyl malonate
anion to give malonic acid esters. Upon reduction with LiAlH4, the corresponding di-
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ols 101a,b were obtained. Transetherification of the latter with 3,4-dimethoxythiophene
97 afforded oxidatively polymerizable ProDOT-((2S)-methylbutyl)2 (102a) and ProDOT-
((2S)-ethylhexyl)2 (102b) (Scheme 31). To obtain the corresponding polymers with enan-
tiomerically pure sidechains, bromination with NBS preceded a nickel-catalyzed Grignard
metathesis polymerization. The optical properties of the polymer poly-102b were stud-
ied using UV–vis absorption, fluorescence and CD spectroscopy, and compared to the
chiral methylbutyl derivative poly-102a. The aggregation process was followed by CD
spectroscopy, which indicated that the two polymer forms chiral helical aggregates were
similar to other chiral alkyl polythiophenes. Notably, the polymer poly-102b was recog-
nized to have a fluorescence with a high quantum yield of 0.43 in xylene solution, while in
the xylene/DMFmixture, along with a small decrease in the fluorescence quantum yield
down to 0.28, a red-shift of the absorbance in the UV–vis spectrum was observed. Upon
the addition of the poor solvent, a red-shift of the absorption spectrum and the vibronic
features suggested more ordered, planar chains.
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Scheme 31. Synthesis of chiral 3,4-propylenedioxythiophenes ProDOTs 102a,b from enantiomerically pure (2S)-
methylbutanol 100a and (2S)-ethylhexanol 100b.

Among the class of π-conjugated polymers, polythiophenes with two alkylsulfanyl
substituents in the β positions were also subject to detailed research. This class of polymers
are expected to act as sensors for palladium or ruthenium by the quenching of their
fluorescence to a greater extent than the quenching observed for nonthio functionalized
polythiophenes.

The representative for the studies was 3,4-bis(3,7- dimethyloctylthio)thiophene, 104,
with a structure designed to possess well solubilizing chains attached to sulfur atoms,
which was first synthesized and was then polymerized by oxidative coupling with iron(III)
chloride, to give polythiophene derivative poly-104 (Scheme 32) [95].
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In the further studies, chiral bis-alkyloxo-substituted 111 and bis-alkylthio poly-
thienylethynylene 112 derivatives have been synthesized to examine their affinity to coor-
dinate transition metals and the influence of aggregation on the quenching of fluorescence
upon coordination to metals [95]. The synthetic pathway started with the iodination of
105 and 106 at the two- and five-position by N-iodosuccinimide (NIS). The iodinated prod-
ucts, 107 and 108, were acetylated by a reaction with trimethylsilylacetylene catalyzed
by tetrakis(triphenylphosphine)palladium(0) and copper(I) iodide. The TMS-protected
intermediate was treated with tetrabutylammonium fluoride to remove the silyl group to
give 109 and 110.

These monomers, 109 and 110, and iodinated monothiophene monomers 107 and 108
were subjected to Pd-catalyzed polycondensation to give the corresponding polymers 111
and 112 (Scheme 33).
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Scheme 33. Synthesis of monomers: 3,4-bis(3(S),7-dimethyloctyloxy)-2,5-diiodothiophene 107, 3,4-
bis(3(S),7-dimethyloctylthio)-2,5-diiodothiophene 108, 3,4-bis(3(S),7-dimethyloctyloxy)-2,5-diethy-
nylthiophene 109, 3,4-bis(3(S),7-dimethyloctylthio)-2,5-diethynylthiophene 110 and the products of
their copolymerization 111 and 112.

4. Syntheses of β-Substituted Bithiophenes Functionalized with a Substituent
Containing a Stereogenic Carbon Atom or a Stereogenic Heteroatom

The polyfluorene–thiophene copolymers have attracted much attention due to their
optical and electrical properties. One of the components in the π-conjugated co-polymer,
a polyfluorene derivative, is responsible for high photoluminescence quantum yields,
good solubility and an interesting thermotropic liquid crystalline nature. The second
component, polythiophene derivative, provides good processability and unique properties
that are tunable by various side chains. The polyfluorene–thiophene copolymers, such
as: poly[9,9-dihexylfluorenealt-(3-{2-[(S)-(+)-1-methyloctyloxy]ethyl}thiophene)] (113) and
poly[9,9-dihexylfluorene-alt-(3-{2-[(S)-(+)-1-methyloctyloxy]ethyl}-2,2′-bithiophene)] (114)
(Figure 1) [78], having chiral side chains located, in each of the model compound, in a
different distance from the fluorene units, were obtained and screened for their optical
properties. The synthesis of 113 and 114 was achieved via the Pd catalyzed Suzuki coupling
method by reacting dibromides 77 and 124, respectively, with 9,9-dihexylfluorene-2,7-
bis(trimethylene boronate) (Scheme 34). Both copolymers exhibited a solvatochromism
that was related to the strong self-organization of the copolymers. In the circular dichroism
spectra, strong bisignate Cotton effects were observed in the methanol/chloroform mixed
solutions.
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Figure 1. Structures of copolymers with the chiral side chains.

The monomers for 113 and 114, 2,5-dibromo–3-{2-[(S)-(+)-1-methyloctyloxy]ethyl}
thiophene 77 and 2,5-dibromo-3-{2-[(S)-(+)-1-methyloctyloxy]ethyl}2,2′-bithiophene 117,
respectively, were synthesized as shown in Scheme 34 [78,96].
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Scheme 34. Synthesis of 2,5-dibromo-3-{2-[(S)-(+)-1-methyloctyloxy]ethyl}-2,2′-bithiophene (117) as a precursor for copoly-
merization with 9,9-dihexylfluorene-2,7-bis(trimethylene boronate).

The β,β’-Disubstituted bithiophene with two (S)-2-methylbutylsulfanyl substituents
was prepared and applied as a monomer for chemical (FeCl3) or electrochemical poly-
merization, leading to a regioregular head-to-head/tail-to-tail poly(β,β’-disubstituted
bithiophene) [97].

The synthesis of (+)-4,4′-bis[(S)-2-methylbutylsulfanyl]-2,2′-bithiophene 120 (Scheme 35)
comprised the bromine–lithium exchange when 4,4′-dibromo-2,2′-bithiophene 118 [98] was
treated with butyl lithium, followed by a reaction with (+)-bis[(S)-2-methylbutyl]disulfide
119.
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Scheme 35. Synthesis of monomer 120 and its conversion to poly[4,4′-bis[(S)-2-methylbutylsulfanyl]-2,2′-bithiophene
poly-120.
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The synthesis of the modified bithiophenes, bearing one-alkylsulfanyl substituent in
the β-position and one other substituent in the β’-position, was further developed [68]. The
purpose of these studies was to gain a better insight into the reactivity of β-alkylsulfanyl-
substituted bithiophenes as they were converted into the octithiophene derivatives via
one-pot oxidative coupling with FeCl3.

Among the designed structures of chiral unsymmetrical β-alkylsulfanyl bithiophenes
are 4-bromo-4′-[(S)-2-methylbutylsulfanyl]-2,2′-bithiophene 124 and 4-iodo-4′-[(S)-2-methy-
lbutylsulfanyl]-2,2′-bithiophene 125, which were synthesized as shown in Scheme 36.
The Stille-type coupling between a tin- (122) and a halo-derivative (121) was applied to
obtain the intermediate bithiophenes 123. Tert-butylammonium fluoride was used for the
desilylation to form compound 124, while 58% hydroiodic acid was the desilylating agent
and allowed the bromide to be replaced with iodide at once to give compound 125.

Molecules 2021, 26, x  23 of 30 
 

 

Scheme 35. Synthesis of monomer 120 and its conversion to poly[4,4′-bis[(S)-2-methylbutylsulfanyl]-2,2′-bithiophene 
poly-120. 

The synthesis of the modified bithiophenes, bearing one-alkylsulfanyl substituent in 
the β-position and one other substituent in the β’-position, was further developed [68]. 
The purpose of these studies was to gain a better insight into the reactivity of β-
alkylsulfanyl-substituted bithiophenes as they were converted into the octithiophene 
derivatives via one-pot oxidative coupling with FeCl3. 

Among the designed structures of chiral unsymmetrical β-alkylsulfanyl bithiophenes 
are 4-bromo-4′-[(S)-2-methylbutylsulfanyl]-2,2′-bithiophene 124 and 4-iodo-4′-[(S)-2-
methylbutylsulfanyl]-2,2′-bithiophene 125, which were synthesized as shown in Scheme 
36. The Stille-type coupling between a tin- (122) and a halo-derivative (121) was applied 
to obtain the intermediate bithiophenes 123. Tert-butylammonium fluoride was used for 
the desilylation to form compound 124, while 58% hydroiodic acid was the desilylating 
agent and allowed the bromide to be replaced with iodide at once to give compound 125. 

S
S

S

Br

124

S

S

Br SiMe3 S

Br

Me3Sn SiMe3

S
S

S

Br

Me3Si
SiMe3

(Bu) 4N
F

S
S

S

I

125

HI (57%)
121 122 123

S
S

S

X
4

poly-124, X=Br
poly-125, X=I

Sugimoto
method

FeCl3

CHCl3:
MeNO2 (1:1)

 
Scheme 36. Synthesis of chiral unsymmetrically substituted bithiophenes serving as monomers for octithiophene 
analogues poly-124 and poly-125. 

5. Syntheses of Other Thiophenes Functionalized with a Substituent Containing a 
Stereogenic Carbon Atom or a Stereogenic Heteroatom 

The transformations of the chiral monothiophene 7 into 2-iodo-3-[(S)-(+)-2-
methylbutyl]thiophene (+)-(S)-71 followed by the coupling with 2,5-dihalogenated 
thiophene provided 3,3′′-di[(S)-(+)-2-methylbutyl]-2,2′:5′,2′′-terthiophene, which served as 
a precursor to a new regioregular optically active polymer synthesized by FeCl3 oxidative 
coupling polymerization (Scheme 37) [39]. 
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5. Syntheses of Other Thiophenes Functionalized with a Substituent Containing a
Stereogenic Carbon Atom or a Stereogenic Heteroatom

The transformations of the chiral monothiophene 7 into 2-iodo-3-[(S)-(+)-2-methyl-
butyl]thiophene (+)-(S)-71 followed by the coupling with 2,5-dihalogenated thiophene
provided 3,3′ ′-di[(S)-(+)-2-methylbutyl]-2,2′:5′,2′ ′-terthiophene, which served as a precur-
sor to a new regioregular optically active polymer synthesized by FeCl3 oxidative coupling
polymerization (Scheme 37) [39].
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The synthesis of chiral (R)- and (S)-copolymers consisting of poly(p-terphenylene)s and
poly(bithienylene-phenylene)s has been developed [99]. The polymers were distinguished
by valuable fluorescent and photo responsive properties. Upon irradiation of ultraviolet
and visible light, the polymers showed reversible quenching and emitting behaviors
as a result of the photo-chemical isomerization of the dithienylethene fragments. The
precursor of these polymers is the monomer (R)-129, the synthetic route of which is shown
in Scheme 38.
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Scheme 38. Synthesis of monomer (R)-129 and the routes to the copolymerizations via the Suzuki or Stille coupling methods.

The chiral fragment was delivered by a 2-methyloctyl chain appended to the hydroxyl
of the 4-hydroxybenzoic acid. For its introduction, ethyl ester of the 4-hydroxybenzoic acid
was coupled with (S)-2-nonanol under the Mitsunobu reaction conditions to obtain (R)-126.

The hydrolysis of ethyl-4-[(R)-1-methyloctoxy]benzoate (R)-126 gave a free carboxylic
function. The benzoic acid derivative (R)-127 thus formed, reacted with the dithienylethene
derivative 128 via coupling between the hydroxy group and the carboxyl group of (R)-
127, which was carried out in the presence of dicyclohexylcarbodiimide (DCC) and 4-
(dimethylamino)pyridine (DMAP), leading to the formation of the monomer (R)-129. The
copolymerizations occurred through a Suzuki coupling reaction between (R)-136 and
4,4′-biphenyldiboronic acid bis(propyl glycol)cyclic ester in the presence of Pd(PPh3)4 or
through a Stille coupling between (R)-129 and 5,5′-bis-trimethylstannyl-2,2′-bithiophene,
catalyzed by Pd2(dba)3 (2-furyl)3P, to give poly-129a or poly-129b, respectively.
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The axial stereogenicity was introduced into the skeleton of a π-conjugated copoly-
mer by a new molecular building block with versatile synthetic handles, a tetrasubsti-
tuted adamantane derivative 130, synthesized from achiral 2,6-adamantanedione and
4-bromocatechol. Thus, the formed racemic bromide 130 was further converted into the
electroactive monomers 131 and 132 after adopting the Suzuki coupling methodology
(Scheme 39). The structures of the two monomers differed in terminal thienyl units, the
first of those contained the monothiophenes at the ends of the core, while the second
contained the terminal bithiophene units. The racemic electroactive polymers built from
axially stereogenic adamantyl segments, were synthesized by electropolymerization of the
monomers 131 and 132, respectively [100].
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Scheme 39. Synthesis of thienyl-based monomers 131 and 132 containing axially chiral adamantyl segments as their core. 

6. Conclusions 
In summary, this mini-review discusses the synthetic routes to mono- or bithiophene 

derivatives containing substituent(s) with a chiral element (stereogenic center or chiral 
axis) that can then serve as substrates in the polymerization reaction. We hope that the 
protocols for the synthesis of chiral monomeric thiophenes presented in this article will 
help practitioners of organic chemistry to design an appropriate pathway to obtain new 
valuable thiophene derivatives as chiral precursors of conjugated (co)polymers. The 
review covers the synthetic routes to derivatives that are functionalized at the β (β’) 
positions of the thiophene rings and those that are functionalized at one or both of the α 
positions. This division is due to the fact that, depending on the polymerization method 
under consideration, differently substituted mono- or bithiophenes are needed. The 
intended second part of the review will discuss various polymerization methods, the 
choice of which depends on the ease of access to the optically active monomeric substrate 
and the laboratory conditions allowing the selected polymerization technique to be used 
from among the following: McCullough’s approach, the Grignard metathesis (GRIM) 
reaction, the Rieke zinc coupling reaction, the Yamamoto condensation, the 
dehydrohalogenative polycondensation, the Kumada catalyst transfer condensation 
polymerization (KCTCP), the FeCl3-mediated polymerization (chemical oxidative 
polymerization), other transition metal catalyzed methods based on the Stille, Suzuki 
cross-coupling reactions or electropolymerization. 
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6. Conclusions

In summary, this mini-review discusses the synthetic routes to mono- or bithiophene
derivatives containing substituent(s) with a chiral element (stereogenic center or chiral
axis) that can then serve as substrates in the polymerization reaction. We hope that the
protocols for the synthesis of chiral monomeric thiophenes presented in this article will
help practitioners of organic chemistry to design an appropriate pathway to obtain new
valuable thiophene derivatives as chiral precursors of conjugated (co)polymers. The review
covers the synthetic routes to derivatives that are functionalized at the β (β’) positions of
the thiophene rings and those that are functionalized at one or both of the α positions. This
division is due to the fact that, depending on the polymerization method under considera-
tion, differently substituted mono- or bithiophenes are needed. The intended second part
of the review will discuss various polymerization methods, the choice of which depends on
the ease of access to the optically active monomeric substrate and the laboratory conditions
allowing the selected polymerization technique to be used from among the following:
McCullough’s approach, the Grignard metathesis (GRIM) reaction, the Rieke zinc coupling
reaction, the Yamamoto condensation, the dehydrohalogenative polycondensation, the
Kumada catalyst transfer condensation polymerization (KCTCP), the FeCl3-mediated poly-
merization (chemical oxidative polymerization), other transition metal catalyzed methods
based on the Stille, Suzuki cross-coupling reactions or electropolymerization.
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