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Abstract. The heterogeneous nuclear RNP (hnRNP) 
A1 protein is one of the major pre-mRNA/mRNA 
binding proteins in eukaryotic cells and one of the 
most abundant proteins in the nucleus. It is localized 
to the nucleoplasm and it also shuttles between the 
nucleus and the cytoplasm, The amino acid sequence 
of A1 contains two RNP motif RNA-binding domains 
(RBDs) at the amino terminus and a glycine-rich do- 
main at the carboxyl terminus. This configuration, 
designated 2 × RBD-Gly, is representative of perhaps 
the largest family of hnRNP proteins. Unlike most nu- 
clear proteins characterized so far, A1 (and most 2x  
RBD-GIy proteins) does not contain a recognizable 
nuclear localization signal (NLS). We have found that 

a segment of ca. 40 amino acids near the carboxyl 
end of the protein (designated M9) is necessary and 
sufficient for nuclear localization; attaching this seg- 
ment to the bacterial protein B-galactosidase or to 
pyruvate kinase completely localized these otherwise 
cytoplasmic proteins to the nucleus. The RBDs and 
another RNA binding motif found in the glycine-rich 
domain, the RGG box, are not required for A1 nuclear 
localization. M9 is a novel type of nuclear localization 
domain as it does not contain sequences similar to 
classical basic-type NLS. Interestingly, sequences 
similar to M9 are found in other nuclear RNA-binding 
proteins including hnRNP A2. 

T 
HE heterogeneous nuclear RNP (hnRNP) ~ A1 protein 
is an abundant nuclear protein and is one of the major 
pre-mRNA binding proteins (Pifiol-Roma et al., 1988; 

reviewed in Cobianchi et al., 1990; Dreyfuss et al., 1993). 
A1 binds with high affinity to sequences that resemble pre- 
mRNA 3' and 5' splice sites (Swanson and Dreyfuss, 1988; 
Burd and Dreyfuss, 1994a). A1 has an effect on alternative 
splicing in vitro and in vivo as the amount of A1 relative to 
that of the splicing factor SF2/ASF determines the utilization 
of alternative 5' splice sites (Mayeda and Krainer, 1992; Fu 
et al., 1992; C~tceres et al., 1994; Yang et al., 1994), al- 
though it does not seem to be essential for constitutive splic- 
ing (Ben-David et al., 1992). One of the most intriguing 
properties of A1 is its cellular localization and transport. A1 
is a nuclear protein but it is not confined to the nucleus, 
rather it shuttles between the nucleus and the cytoplasm 
(Pifiol-Roma and Dreyfuss, 1992). Furthermore, its nuclear 

Address all correspondence to G. Dreyfuss, Howard Hughes Medical Insti- 
tute, University of Pennsylvania School of Medicine, Clinical Research 
Building, Room 328, 422 Curie Blvd., Philadelphia, PA 19104-6148. Ph: 
(215) 898-0398. Fax: (215) 573-2000. 

1. Abbreviations used in this paper: Gly, glycine; HA, hemaglutinin; 
hnRNP, heterogeneous nuclear RNP; HPABP, human poly(A)-tail mRNA 
binding protein; NLS, nuclear localization signal; PCR, polymerase chain 
reaction; PK, pyruvate kinase; polII, polymerase II; RBD, RNA-binding 
domains. 

localization requires RNA polymerase II (POlID transcrip- 
tion since in the absence of polII transcrpfion A1 that is ex- 
ported from the nucleus remains in the cytoplasm (Pifiol- 
Roma and Dreyfuss, 1991; Pifiol-Roma and Dreyfuss, 1992; 
Pifiol-Roma and Dreyfuss, 1993). By immunofluorescence 
microscopy, A1 is detected only in the nucleus, presumably 
because the return of A1 to the nucleus is normally very 
rapid. While in the cytoplasm A1 can bind mRNA, and 
therefore it is likely to have functions in the cytoplasm (e.g., 
in mRNA localization and stability), and it may alsoplay an 
important role in the transport of mRNA from the nucleus 
to the cytoplasm. Importantly, recent findings indicate that 
this pattern of localization and transport is not unique to A1, 
but is found for many of the other pre-mRNA binding pro- 
teins (Pifiol-Roma, S., and G. Dreyfuss, unpublished re- 
sults). The amino acid sequence of A1 from mammals and 
amphibians has been determined (Williams et al., 1985; 
Cobianchi et al., 1988; Buvoli et al., 1988; Kay et al., 1990; 
Good et al., 1993) and it contains two RNP motif RNA- 
binding domains (RBDs; Dreyfuss et al., 1988; Bandziulis 
et all, 1989; Kenan et al., 1991; Burd and Dreyfuss, 1994b) 
at the amino terminus and a glycine-rich domain at the car- 
boxyl terminus. This structure, designated 2x RBD-Gly, is 
representative of perhaps the largest family of hnRNP pro- 
teins (Matunls et al., 1992; Dreyfuss et al., 1993; Burd and 
Dreyfuss, 1994b). A1 also contains another motif found in 
many RNA-binding proteins, an arginlne- and glycine-rich 
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domain that contains a cluster of the tripeptide repeat and 
termed the RGG box (Kiledjian and Dreyfuss, 1992). This 
motif has been demonstrated to have RNA binding activity 
(Kilejian and Dreyfuss, 1992). Unlike most nuclear proteins 
characterized so far, the A and B group hnRNP proteins do 
not contain recognizable nuclear localization signals (NLSs) 
which generally resemble either the single basic domain SV- 
40 large T-antigen NLS (Kalderon et al., 1984; for review 
see Nigg, 1990) or the double basic (bipartite) domain 
nucleoplasmin NLS (Robbins et al., 1991; reviewed in Ding- 
wall and Laskey, 1991). However, other hnRNP proteins, 
such as the C group and U proteins, contain candidate NLSs. 
It is likely that the C group and U proteins are imported to 
the nucleus by mechanisms similar to those used by other nu- 
clear proteins that contain similar basic NLSs. On the other 
hand, the mechanism and pathway of the nuclear import of 
the A and B group proteins may be different from those used 
by other nuclear proteins that contain classical types of 
NLSs. We therefore set out to determine the sequence within 
A1 that localizes it to the nucleus. Here we report that a se- 
quence of the carboxyl terminus of A1 is necessary and 
sufficient for the nuclear localization of this protein and it 
can completely localize a large heterologous bacterial pro- 
tein, ~-galactosidase, the cytoplasmic enzyme pyruvate ki- 
nase, and the mRNA poly(A)-binding protein to the nucleus. 
Interestingly, similar sequences to the nuclear localization 
domain of A1 are found in several other nuclear RNA-bind- 
ing proteins including A2, and the sequence is highly con- 
served in vertebrates as Xenopus laevis ALIA2 proteins con- 
tain a similar domain. 

Materials and Methods 

Plasmid Constructions 
The eDNA encoding human hnRNP A1 (pBSO1; Buvoli et al., 1990) was 
a kind gift from Dr. Silvano Riva (CNR, Pavia, Italy). cDNAs encoding 
human hnRNP Cl and mRNA poly(A)-binding protein (HPABP) were de- 
scribed previously (Swanson et al., 1987; C-6riach et al., 1994a). Epitope 
tagging of hnRNP AI, hnRNP CI, and HPABP was performed as described 
by Koludziej and Young (1991) using the eukaryotic expression vector 
pHHSI (Siomi et al., 1993) which was derived from pcDNA I (Invitrogen 
San Diego, CA) by insertion ofa 72-bp BstXI fragment encoding a 9-amino 
acid epitope from the influenza virus hemaglutinin (HA) protein with an 
initiator methionine followed by Sal I and EcoRI restriction sites. The HA 
epitope for the 12C.A5 anti-HA monoclonal antibody (Niman et al., 1983) 
was placed at the N-termini of all constructs. 

HA-tagged hnRNP A1 with the entire protein-coding region (wild-type) 
was constructed using the polymerase chain reaction (PCR). A 34-base syn- 
thetic single-stranded DNA PCR primer (5'-A1) that included 9 bases to cre- 
am a SalI site and 25 bases complementary to positions +1 through +25 
was synthesized. The 5 '-AI primer, in conjunction with a primer (3 '-A1) that 
included 9 bases to create NotI site and 25 bases complementary to the se- 
quence encoding the carboxyl terminal end of hnRNP A1, was used to prime 
a PCR using plasmid pBSO1 as template DNA. The amplified fragment was 
digested with SalI and Not  and ligated into SalLNotI-digested pHHSI, 
resulting in plasmid pl6FA1. The NH2-terminal deletion mutants Nd97, 
Ndll2, Nd149, Nd155, and Nd186 were also generated by PCR using 
primers that included 9 bases to create a SalI site and 25 bases complemen- 
tary to the positions indicated and a primer 3'-A1. The COOH-terminal de- 
letion mutants of hnRNP Al were constructed as follows: plasmid pl6FA1 
was digested at its unique NotI site, and then exonuclease III and SI nuclease 
digestion (Guo and Wu, 1983; Siomi et al., 1990) were performed to create 
deletions in the 3' portion of the hnRNP AI coding region using double- 
stranded nested deletion kit (Pharrnacia, Piscataway, NJ). After nuclease 
digestion, a synthetic Hpd linker (TTAAGTrAACTTAA; Pharmacia) was 
ligated at the terminus. Deletion fragments were then digested with Hpal 

and Sail, and inserted into pHHSI that had been digested with Notl and 
treated with Klenow fragment to create blunt end and then digested with 
SalI. To determine exact nucleotide endpoints, clones were sequenced using 
T3 primer. 

HA-tagged wild-type hnRNP C1 and its NH2-terndnal deletion (Nd87) 
were generated by PCR as described above for hnRNP AI constructs. Syn- 
thetic 5' PCR primers that included a SalI site and 25 bases complementary 
to sequences encoding the NH2-terminal end of hnRNP C1 and the NH2- 
terminal end of the auxiliary domain, in conjunction with a 3' primer 
that included a NotI site and 25 bases complementary to the sequence en- 
coding the carboxyl terminal end of hnRNP C1, were used to prime PCRs 
using plasmid pHC12 (Swanson et al., 1987) as template DNA. The 
amplified fragments were digested with SalI and NotI and ligated into 
SalI-NotI-digested pHHSI, resulting in plasmids pl6FC1 and p16Nd87, re- 
spectively. The COOH-terminal deletion mutants of hnRNP CI were con- 
structed using plasmid pl6FC1 as described for hnRNP Al deletions. 

HA-tagged wild-type HPABP (G6rlach et al., 1994a) was constructed 
using PCR-generated fragment as described above. PABP4 × RBDs was 
also PCR-generated using the 5'primer that included a SalI site and 25 bases 
complementary to positions +1 through +25 and the 3' primer that in- 
cluded NotI site, a termination codon and 25 bases complementary to the 
sequence encoding the end of the four RNA-binding domains. PABP-Gly 
was also generated by PCR in several steps involving an overlap extension 
protocol (Horton et al., 1990). 

The ~-galactosidase expression vector (pl6/~-Gal) was constructed by in- 
serting a HindlII-BamHI fragment from pCHI10 (Hall et al., 1983: Clon- 
tech, Palo Alto, CA) into pcDNAI that has been digested with HindlII and 
BamI-II. ~-Gal Al and/3-Gal M1 were PCR-generated by annealing a primer 
carrying, in series, a EcoRI site and 20 bases corresponding to the human 
hnRNP A1 eDNA (pBSO1) and a 3' primer (3'-Al). The amplified fragments 
were digested with EcoRI and Not  and ligated into EcoRI-NotI-digested 
pl6/3-GaiA1./~-Gal M2 to M4 were constructed as follows; plasmid pl6~- 
GalA1 was digested at its unique EcoRI site, and then treated with nucleases 
as described for hnRNP A1 deletions. After nuclease digestion, a synthetic 
EcoRI linker (GGAATTCC) was ligated at the terminus. Deletion fragments 
were then digested with EcoRI and Notl, and inserted into pl6~-Gal that 
has been digested with EcoRI and Not.  To determine the exact nucleotide 
endpoints, clones were sequenced using a primer of 20 nucleotides spanning 
the region 50-70 nucleotides upstream of the EcoRI site of the lacZ gene. 
/~-Gal M5 to M8 were constructed as described for hnRNP Al COOH- 
terminal deletion mutants. 

Myc-tagged pyruvate kinase (PK)-A1 fusions were constructed as fol- 
lows: synthetic 5' PCR primer that included an EcoRI site which corre- 
spends to codon 12 of chicken muscle pyruvate kinase, in conjunction with 
a 3' primer that included a Not  site and 25 bases complementary to the 
sequence encoding the carboxyl terminal end of PK, were used to prime 
PCR using the PK eDNA-containing plasmid, RLPK (a gift from Dr. Wil- 
liam Lee, University of Pennsylvania, Philadelphia, PA; Dang and Lee, 
1988) as template DNA. The amplified fragment was digested with EcoRI 
and Not  and ligated into EcoRI-NotI-digested pcDNA3 (Invitrogen). The 
resulting plasmid containing PK eDNA under the control of the CMV early 
promoter was cut at the BstXI and EcoRI sites and iigated to a double- 
stranded oligonucleotide encoding the peptide sequence MEQKLISEEDL 
to create an epitope tag at the amino terminus. This sequence is the epitope 
for the 9El0 anti-myc monoclonal antibody (Evan et al., 1985). TO fuse 
portions of Al to the 3' end of the PK eDNA, we generated various KpnI- 
Nofl fragments of Al by PCR as described above. These KpnI-NotI frag- 
ments were subcloned into the KpnI and NotI sites of the myc-tagged 
pcDNA3-PK. The KpnI site corresponds to codon 443 of PK (Roberts et 
al., 1987; Dang and Lee, 1988). 

Cell Culture and Transfection 
Monkey kidney COS-1 cells were grown in Dulbecco's modified Eagle's 
medium (DME; GIBCO BRL, Galthersburg, MD) supplemented with 10 % 
FCS (GIBCO BRL). Cells grown on glass coverslips in 30 nun dishes were 
transfected with 5/zg DNA (all plasmids were purified by Cs-EtBr density 
gradient centrifugation) by the calcium phosphate co-precipitation tech- 
nique with the following modifications: a total of 5/~g of plasmid DNA was 
added to 250 ml of Hepes-buifered saline (140 mM NaCI, 1.5 mM 
Na2HPO4, 25 mM Hepes, pH 7.05) and precipitated by adding 16.5 pl of 
2 M CaCI2 with constant stirring. After incubating the cells with the co- 
precipitate for 4-5 h, cultures were washed twice with 2 ml DME (without 
FCS), and then were incubated with fresh DME and FCS. Cells were fixed 
for immunofluorescence assays 48 h after transfection. 
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Figure/. Structure and subcellular location ofhnRNP C1 deletions. 
(A) Immunofluorescence micrographs showing the subcellular lo- 
cation of the hnRNP C1 variants illustrated in B. Representative 
micrographs of the immunofluorescence analysis are shown. (B) 
Summary of immunofluorescence analyses. The RNA-binding do- 
main (RBD) is represented by open box, in which the conserved 
RNP1 is indicated by the small black box and RNP 2 by slashed 
box. The acidic auxiliary domain is indicated by the stippled area. 
The predicted amino acid sequence at and around the putative nu- 
clear localization sequence of the hnRNP C1 is shown. The amino 
acid sequences similar to a bipartite NLS motif are underlined. 
COS1 cells were transfected with plasmids encoding the HA-tagged 
wild-type hnRNP C1 and its deletions, and the subcellular distribu- 
tion of the proteins was determined 48 h later by indirect immu- 
nofluorescence using the anti-HA monoclonal antibody (12CA5) as 
detailed in Materials and Methods. Cells exhibited either nuclear 
and cytoplasmic (N/C) or nuclear (N) fluorescence. 

lmmunofluorescence Microscopy 

Indirect immunofluorescence analysis was carried out as described for hu- 
man HeLa cells (Choi and Dreyfuss, 1984) with the following modifica- 
tions: cells were fixed with 2% formaldehyde (Polysciences, Warrington, 
PA) in PBS for 30 min at room temperature followed by 3 min in acetone 
at -20°C. Anti-HA tag staining was performed by incubation for 1 h at 
room temperature with 1:1,500 12CA5 anti-HA mAb (ascites fluid diluted 
in PBS with 3 % BSA). Cells were then washed three times with PBS and 
incubated for 1 h at room temperature with 1:1,500 fluorescein-conjngated 

anti-mouse antibody (Cappel Laboratories, Cochranville, PA) in PBS con- 
taining 3 % BSA. After washing three times, coverslips were inverted and 
mounted on glass microscope slides. Anti-~-galactosidase staining was 
using mouse monoclonal antibody to F~cherichia coli ~-galactosidase 
(Boehringer Mannheim Biochemicals, Indianapolis, IN; 1:1,500 in PBS 
with 3% BSA) as the primary antibody. Immunottuorescent visualization 
of the PK-A1 fusion proteins was achieved in an identical manner to that 
of the 12CA5 antibody using a monoclonal anti-m3~ 9El0 antibody (1:1,500 
dilution in PBS with 3 % BSA). 
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Figure 2. Structure and subcellular location of hnRNP AI dele- 
tions. (A) Photomicrographs showing the subcellular location of the 
hnRNP A1 deletion mutants illustrated in B. (B) Structure of 
hnRNP A1 and its deletions. The two RNA-binding domains are in- 
dicated by shaded boxes and the glycine-rich auxiliary domain is 
indicated by the stippled area. Plasmids encoding HA-tagged 
hnRNP A1 deletions were transfected into COS1 cells, and the sub- 
cellular distribution of the proteins was determined 48 h later as de- 
scribed in the legend to Fig. 1. Cells exhibited either nuclear (N) 
or nuclear and cytoplasmic (N/C) fluorescence. 

Gel Electrophoresis and Immunoblotting 
COS-1 cells were transfected with 10/~g plasmid DNA per 30 mm petri dish 
as described above. Cells were harvested 48 h after transfection by scraping 
in SDS sample buffer. Samples were separated on a 12% SDS-polyacryl- 
amide gel and electrotransferred to nitrocellulose membrane as described 
previously (Siomi et al., 1993). The membrane was blocked with 5% dried 
milk powder in PBS for 1 h, 9El0 anti-myc tag antibody (1:1,500 ascites 
fluid) was added and incubated for additional 1 h at room temperature. 
After five washes in PBS with 0.05% NP-40, the blot was incubated with 

peroxidase-conjugated goat anti-mouse IgG (Jackson Immuno Research 
Laboratories, 1:10,000) for 1 h at room temperature, washed five times in 
PBS/0.05 % NP-40, and developed with an enhanced chemiluminescence 
Western blotting detection system (Amersham International, Buckingham- 
shire, UK). 

Results 

To determine the sequence in A1 that localizes it to the nu- 
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Figure 3. Structure and subeellular location of HPABP fusion pro- 
teins. (A) Subcellular location of HPABP-hnRNP A1 Gly fusion 
protein. COS1 cells were transfected with the plasmids encoding 
deleted or fusion proteins illustrated in panel R Forty eight hours 
later the cells were fixed, and the HA-tagged proteins were visual- 
ized by immunofluorescence microscopy as described in the legend 
to Figure 1. (B) Structure of an HPABP-hnRNP A1 Gly domain fu- 
sion protein. The four open boxes represent the four RNA-binding 
domains present in the HPABP (G-6rlach et al., 1994a). The open 
diamond represents the proline-rich auxiliary domain of HPABP. 
The symbols C and N/C refer to cytoplasmic or nuclear and cyto- 
plasmic localization, respectively. 

cleus, parts of A1 were cloned as fusion proteins with the 
influenza HA peptide (Kolodziej and Young, 1991) at the 
amino terminus to provide an epitope tag for detection of 
the expressed polypeptides in transfected cells by immu- 
nofluorescence microscopy. All the constructs were con- 
firmed by DNA sequencing and expression of proteins of 
the expected size, amount, and immunologic reactivity were 
confirmed by immunoblotting. For reference, we carried out 
similar experiments on the hnRNP C1 protein which con- 
tains a candidate bipartite basic NLS (amino acids 144 to 
157). As expected, the entire C1 protein fused to HA local- 
ized entirely to the nucleus (Fig. 1). Amino terminal deletion 
of the RNA-binding domain of hnRNP C1 (G6rlach et al., 
1994b) showed that the carboxyl terminal auxiliary domain 
by itself, Nd87, localized to the nucleus. Thus the RNA- 
binding activity of C1 is not required for its nuclear localiza- 
tion. Carboxyl terminal deletions indicated that the sequence 
between amino acids 145 and 175 are necessary for nuclear 
localization, in good agreement with NLS deduced from the 
protein sequence. 

The Carboxyl Terminal Region of  hnRNP A1 Contains 
the Determinant for Nuclear Localization 

HnRNP A1 is distinguished from most other nuclear pro- 
teins by the absence of a short, highly basic nuclear localiza- 
tion sequence and by its transcription-dependent nuclear lo- 
calization (reviewed in Pifiol-Roma and Drefuss, 1993). To 
identify the regions of A1 important for nuclear localization, 
we constructed a series of amino terminal and carboxyl ter- 
minal deletions. The primary sequence of wild-type A1 is 
shown schematically in Fig. 2 B and Fig. 6. The major char- 

acteristics of this protein are two RNA-binding domains 
within the amino terminus, a stretch rich in glycine and argi- 
nine residues (RGG box: Kiledjian and Dreyfuss, 1992) in 
the central region, and a glycine-rich (Gly) domain at the 
carboxyl terminus. Like hnRNP C1, the entire hnRNP A1 
protein tagged with HA also completely localized to the nu- 
cleus (Fig. 2). The carboxyl domain by itself (Nd97 to 
Nd186) also showed exclusively nuclear staining but the two 
amino terminal RBDs (Cd142), which efficiently bind RNA 
(data not shown; Riva et al., 1986; Cobianchi et al., 1990), 
and all other carboxyl terminal deletions did not localize to 
the nucleus (Fig. 2). We therefore, concluded that the nu- 
clear localizing sequence of A1 resides in the carboxyl part 
(Gly domain) of the protein. 

Further evidence that the RBDs of A1 have no role in the 
localization of A1 to the nucleus and that the Gly domain of 
A1 is sufficient for nuclear localization was obtained by 
constructing a human poly(A)-tail mRNA binding protein 
(HPABP; G6dach et al., 1994a) that contains the A1 Gly do- 
main instead of the normal, proline-rich carboxyl domain 
(Adam et al., 1986; Sachs et al., 1986), (Fig. 3). HA-tagged 
PABP is localized to the cytoplasm and appears to be ex- 
cluded from the nucleus (Fig. 3). This distribution is identi- 
cal to that of endogenous PABP (G6rlach et al., 1994a). De- 
letion of the proline-rich carboxyl domain of PABP (4x 
RBDs) causes a mixed distribution such that a proportion of 
the cells show nuclear fluorescence (this may reflect the dis- 
tribution of poly(A) RNAs), suggesting that the proline-rich 
auxiliary domain may be responsible for cytoplasmic con- 
finement of PABP. The fusion protein between the four 
RBDs of PABP and the Gly domain of A1 is localized to the 
nucleus in contrast to the wild-type and proline-rich car- 
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boxyl domain-deleted PABP (4x RBDs) (Fig. 3). This ex- 
periment also demonstrated the capacity of the A1 Gly do- 
main to localize to the nucleus other RBDs than those found 
in A1, and a heterologous protein larger than A1. 

A Domain in the Carboxyl Region of  A1 Localizes 
Heterologous Proteins to the Nucleus 

To further delineate the sequence responsible for the nuclear 
localization of A1 and to obviate the concern of diffusion of 
small proteins into the nucleus, we fused the A1 glycine-rich 
carboxyl domain and parts of it to /3-galactosidase (Mr 
116,000) and carried out transfection experiments and de- 

Figure 4. Structure and subcellular distribution of B-galactosidase- 
hnRNP A1 fusion derivatives. (A) Subcellular location of B-galac- 
tosidase-hnRNP A1 fusion proteins. COS1 cells were transfected 
with the plasmids encoding the fusion proteins illustrated in B. 48 h 
later the cells were fixed and then examined by indirect immunoflu- 
orescence using anti-B-gaiactosidase antibody. WT refers to B-gal- 
A1. (B) Structure of B-gaiactosidase-hnRNP A1 chimeric proteins. 
The chimeric proteins contain a constant portion of B-galactosidase 
at the amino terminus and the entire A1 or its deleted sequences 
at the carboxyl terminus, fl-Galactosidase is represented by the 
hatched box. Numbers at the fusion points between B-galactosidase 
and hnRNP AI portions indicate amino terminal amino acid posi- 
tions of hnRNP A1 moieties. The/3-galaetosidase portion in the fu- 
sion proteins consists of 1004 residues. Assessment of the fluores- 
cence staining was as described in the legends to Figs. 1-4. The 
symbol N>C refers to predominantly nuclear staining accompanied 
by some cytoplasmic staining. 

tected the expressed proteins with anti-fl-galactosidase anti- 
bodies. Bacterial /3-galactosidase is a well-characterized 
reporter for nuclear localization (Btirglin and De Robertis, 
1987; Siomi et al., 1988; see also Silver, 1991 for review). 
fl-gal-A1 completely localized to the nucleus whereas 
/3-galactosidase by itself was mostly cytoplasmic (Fig. 4). 
These data suggest that nuclear import of A1 is an active 
transport because the size of the fusion protein is well beyond 
the reported diffusion limit for the nuclear pores (Dworetzky 
et al., 1988; Peters, 1986). The Gly domain and amino ter- 
minal deleted portions of this domain up to amino acid resi- 
due 252 (Fig. 4), act as targeting signals capable of directing 
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Figure 5. Structure, immunoblotting analysis and subcellular location of pyruvate kirmse-hnRNP A1 fusion derivatives. (A) Subcellular 
location of pyruvate kinase-A1 fusion proteins. Myc-tagged pyruvate kinase-A1 fusion constructs were transfected into COS-I cells. The 
subcellular localization of each protein was determined using anti-myc monoclonal antibody. (B) Immunoblotting analysis of pyruvate 
kinase-A1 fusion proteins. Lysates from transiently transfected COS-I cells were analyzed by Western blotting using the anti-myc epitope 
antibody as a probe. Molecular weight standards are indicated on the left in kD. (C) Structure of pyruvate kinase-A1 fusion proteins. 
A series of fusion constructs similar to those described in Fig. 4 were constructed using chicken muscle pyruvate kinase in place of B-galac- 
tosidase. Note that the constructs were made using the KpnI site in PK which truncates the protein at amino acid 443, hence, PK-M series 
of constructs are slightly smaller than WT PK. The myc epitope was placed at the NH2 termini of all constructs. 

Siomi and Dreyfuss Nuclear Localization of hnRNP A1 557 



Figure 6. Functional domains of the hnRNP A1. (A) The structural 
organization of the hnRNP A1 is schematically represented with 
functional domains that have been mapped previously and in the 
present work. Functional domains are indicated by RBD (RNA- 
binding domain), RGG (RGG box; amino acids 194-234) and nu- 
clear localization domain (M9). The RNA-binding domains are 
represented as described in the legend to Fig. 1. M9 is the smallest 
segment of hnRNP A1 which completely localizes pyruvate kinase 
to the nucleus. (B) Amino acid sequence of the hnRNP A1 protein 
and location of the functional domains. (C) An hnRNP AI-like mo- 
tif occurs in the Gly domains of other nuclear RNA-binding pro- 
teins. Sequence alignment of the nuclear localization domain of 
hnRNP A1 (M9) with the corresponding domains of other nuclear 
RNA-binding proteins. Conserved sequences in the hnRNP A 
groups from mammals and Xenopus are shaded. Protein sequences 
were obtained from the following references: human hnRNP A1 
(Cobianchi et ai., 1988); human hnRNP A2 (Burd et al., 1989); 
Xenopus bnRNP A1 and A2 (Good et al., 1993). 

/~-gal to the nucleus. ~Gal-M4, however, has some cytoplas- 
mic staining. The fusion proteins with the carboxyl-terminal 
deletions caused a decrease in the efficiency of nuclear tar- 
geting (data not shown) as expected from the results of car- 
boxyl terminal deletions of HA-A1. The ~-galactosidase fu- 
sion proteins clearly demonstrate the ability of a small 
portion of the carboxyl region of A1 to confer nuclear ac- 
cumulation of a large heterologous protein that is normally 
found in the cytoplasm. 

The Region of A1 Which Is Necessary 
and SujOicient for Nuclear Import Comprises a 
40-Amino Acid Domain Near the Carboxyl Region 
of the Protein 
We wished to define further the sequences within the car- 
boxyl portion of A1 that are necessary for its nuclear local- 
ization. The last 60 amino acids of A1 have been shown 
above to be sufficient to localize E. coli O-galactosidase to 
the nucleus. However, the results of Kalderon et al. (1984) 
have questioned the suitability of this protein as a reporter 
for nuclear localization sequences; despite its large size and 

bacterial origin, E. coli/3-galactosidase may be able to par- 
flatly localize to the nucleus of some eukaryotic cells. Thus, 
this bacterial protein may contain a partially functional NLS. 

In order to avoid this possibility, we constructed gene fu- 
sions between portions of A1 and chicken muscle pyruvate 
kinase eDNA, whose encoded protein is stable and excluded 
from the cell nucleus (Kalderon et al., 1984; Richardson et 
al., 1986). Portions o r a l  were fused to the 3' end of the myc- 
tagged PK eDNA (Fig. 5). Each gene fusion was expressed 
in COS-1 cells, and immunoblotting analysis demonstrated 
that a protein of the predicted sized was produced, and little, 
if any, degradation was apparent (Fig. 5). 

Fusion proteins with NH2-terminal deletions up to resi- 
due 252 (PK-M4) were nuclear in localization as judged by 
immunofluorescence with anti-myc antibody, supporting 
the data obtained with/3-galactosidase fusion experiments. 
Pyruvate kinase bearing the M4 portion of A1 appears to be 
more completely localized to the nucleus than is ~-galac- 
tosidase, for reasons we do not understand. Further dele- 
tions resulted in a protein (PK-M5) which was also com- 
pletely localized to the nucleus. It should be noted that the 
fusion proteins showing nuclear localization, except PK-wild 
type A1 fusion, showed nonhomogeneous nuclear accumula- 
tion in some cells. 

Fusion proteins with carboxyl terminal deletions demon- 
strated that while the last 15 amino acids of the protein (PK- 
M6 and PK-M9) were not essential for nuclear localization, 
further deletions resulted in A1 fusion proteins that were no 
longer completely localized to the nucleus. From these ex- 
periments, we conclude that the amino acids comprising M9 
(boxed sequence in Fig. 6) are necessary and sufficient for 
complete nuclear localization of a heterologous protein that 
is otherwise cytoplasmic. It is possible that a few additional 
amino acids at the amino and carboxyl ends of M9 can also 
be removed without loss of nuclear localization, as we have 
not carried out further single amino acid deletions. 

Discussion 

By transfection of DNAs encoding epitope-tagged cytoplas- 
mic proteins fused to portions of A1 and using an im- 
munofluorescence microscopy assay we have found that a 
segment of 40 amino acids near the carboxyl terminus of A1 
is necessary and sufficient for nuclear localization. HnRNP 
A1 and C1 differ in the requirements for their nuclear local- 
ization; A1 requires ongoing RNA polII transcription for nu- 
clear localization whereas C1 does not. This suggests that a 
mechanistic difference exists concerning the subcellular 
trafficking of these hnRNP proteins (Pifiol-Roma and Drey- 
fuss, 1993). Nuclear entry of hnRNP C1 is mediated by the 
well characterized NLS pathway whereas nuclear localiza- 
tion of hnRNP A1 occurs by a novel mechanism. 

The assay for nuclear localization of a series of hnRNP A1 
deletions and fusions to/~-galactosidase and pyruvate kinase 
determined that neither the two RBDs nor an RGG box, the 
two types of RNA-binding elements which were previously 
found to mediate the RNA-binding activity of this protein, 
are required for nuclear localization. The results from the fu- 
sion of carboxyl terminal hnRNP A1 fragments to pyruvate 
kinase demonstrate that the sequences spanning the region 
from amino acids 264 to 305 are responsible for nuclear lo- 
calization of hnRNP A1. This segment of A1 (termed M9, 
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Fig. 6) does not contain any short basic stretches similar to 
the basic type NLS previously identified in large T of SV-40 
or a bipartite NLS previously found in nucleoplasmin (for 
reviews see Nigg, 1990; Forbes, 1992) and therefore is a 
novel type of nuclear localization sequence. The results of 
a search for proteins containing regions of similarity to the 
nuclear localization domain of hnRNP A1 are presented in 
Fig. 6. Similar amino acid sequences are found in the hnRNP 
A/B groups from mammals and amphibians. 

Thus far, two other proteins whose nuclear localization is 
mediated by unusually large sequences rather than short ba- 
sic NLSs have been described, namely the trans-acting pro- 
tein Tax of human T-cell leukemia virus type I (Smith and 
Greene, 1992) and the snRNP protein UIA (Kambach and 
Mattaj, 1992). Neither of these have significant sequence 
similarity to the NLS of hnRNP A1. The U1A NLS is very 
large (more than 100 amino acids) but does contain several 
basic amino acid clusters which bear a resemblance to the 
SV-40 T antigen class of NLSs. In the case of Tax, the amino 
terminal 48 residues comprise a functional NLS which con- 
tains a zinc finger-like cysteine-rich sequence. 

Specific protein-protein interactions have been shown to 
contribute to the nuclear localization of several proteins in- 
cluding adenovirus encoded DNA polymerase (Zhao and 
Padmanabhan, 1988) and the pancreas-specific transcription 
factor PTF1 (Sommer et al., 1991). It is possible that hnRNP 
A1 could be transported to the nucleus by complex formation 
through the Gly domain with a protein that contains a classi- 
cal NLS (piggyback transport). Alternatively, hnRNP A1 
protein may be targeted to the nucleus by a mechanism inde- 
pendent of that which targets classical NLS-bearing pro- 
teins. The import of m3GpppN-containing snRNPs is kinet- 
ically non-competitive with the SV-40 T-antigen-like import 
pathway (Fischer and Lithrmann, 1990; reviewed in Gold- 
farb and Michaud, 1991), suggesting that multiple nuclear 
targeting mechanisms exist. It will be of interest to test 
whether free m3GpppG dinucleotide and/or T-antigen NLS 
peptide compete nuclear import of hnRNP A1. Whether the 
components of the classical NLS pathway for nuclear import 
are used by hnRNP A1 or not, it is clear that some compo- 
nent(s) of the A1 import pathway is unique, since A1 import 
is dependent on RNA pollI transcription. Furthermore, it is 
possible that A1 import is subject to different regulatory 
mechanisms than classical basic NLS-bearing protein import. 

It has been shown that ImRNP A1 shuttles between the nu- 
cleus and cytoplasm and can be cross-linked to mRNA in the 
cytoplasm (Pifiol-Roma and Dreyfuss, 1992, 1993), suggest- 
ing that a mechanism exists that regulates the nuclear re- 
accumulation of hnRNP A1 by, for example, monitoring the 
release of the mRNAs in the cytoplasm. Identifying the com- 
ponents of the transport machinery with which the nuclear 
localization domain of hnRNP A1 interacts will be important 
for determining the mechanism of transcription-dependent 
localization of RNA-binding proteins and of the nucleo-cyto- 
plasmic shuttling of these proteins. 
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