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Cooler canopy leverages sorghum 
adaptation to drought and heat 
stress
Aliza Pradhan1, Lalitkumar Aher1, Vinay Hegde2, Krishna Kumar Jangid1 & Jagadish Rane1*

In the present study, individual and combined effects of drought and heat stress were investigated 
on key physiological parameters (canopy temperature, membrane stability index, chlorophyll 
content, relative water content, and chlorophyll fluorescence) in two popular sorghum cultivars 
(Sorghum bicolor cvs. Phule Revati and Phule Vasudha) during the seedling stage. Estimating canopy 
temperature through pixel-wise analysis of thermal images of plants differentiated the stress 
responses of sorghum cultivars more effectively than the conventional way of recording canopy 
temperature. Cultivar difference in maintaining the canopy temperature was also responsible for 
much of the variation found in critical plant physiological parameters such as cell membrane stability, 
chlorophyll content, and chlorophyll fluorescence in plants exposed to stress. Hence, the combined 
stress of drought and heat was more adverse than their individual impacts. The continued loss of 
water coupled with high-temperature exposure exacerbated the adverse effect of stresses with a 
remarkable increase in canopy temperature. However, Phule Vasudha, being a drought-tolerant 
variety, was relatively less affected by the imposed stress conditions than Phule Revati. Besides, the 
methodology of measuring and reporting plant canopy temperature, which emerged from this study, 
can effectively differentiate the sorghum genotypes under the combined stress of drought and heat. 
It can help select promising genotypes among the breeding lines and integrating the concept in the 
protocol for precision water management in crops like sorghum.

Climate change is projected to raise the occurrence and distribution of abiotic stresses, posing a severe threat 
to crop production and food security1,2. Abiotic stresses, in particular, drought and heat, are the significant fac-
tors limiting the crop yield in arid and semi-arid regions, where sorghum (Sorghum bicolor (L.) Moench) is an 
essential component of the cropping systems3. It is considered the fifth major cereal crop and holds significant 
global importance for its use as food, feed, industry raw material and bio-energy production4. However, most of 
the sorghum producing regions often experience high temperature (heat stress) combined with irregular water 
availability (drought stress), and the events are likely to be higher in terms of their frequency and severity than 
previously anticipated5,6. Under natural crop growing conditions, concurrent occurrence of moisture deficit and 
high temperature can adversely affect plant growth, development and yield performance, especially in tropical 
and sub-tropical climates7–10. Therefore, it is crucial that both drought and heat stress should be considered 
simultaneously as their combined impact is different than their individual occurrences11,12.

It is well documented that the effects of drought, heat, and their combination varies among different crops 
as well as different genotypes within a specific crop/plant species12,13. The combined stress due to drought and 
heat had a significantly higher damaging impact than each of its individual stress components in wheat, sor-
ghum, barley, and maize14–18. Much of the impact due to stress results from an effect on crucial physiological 
processes such as canopy temperature, membrane stability, chlorophyll content, tissue water retention, and 
photosynthesis as they are directly involved in maintaining the photosynthetic potential and primary produc-
tion of assimilates12,14,19. In general, change in canopy temperature is one of the primary and rapid physiological 
responses when plants are subjected to high temperature and drought, as reported in wheat20. Since transpiration 
plays a key role in leaf water status and leaf temperature variations, canopy temperature has been established 
as an indicator to represent the capability of the plants to balance tissue moisture loss and protection from 
overheating20,22. Heat stress results in higher stomatal conductance as the plant tries to maintain a cooler canopy 
by transpiration, while drought has the opposite impact of preventing moisture loss23. The photosynthesis gets 
affected by elevated leaf temperature in response to high ambient temperature only or in combination with 
drought due to reduced stomatal conductance as in cotton24 and Nicotiana tabacum25. Stress-induced decrease 
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in photosynthesis has also been attributed to either Rubisco destabilization or PS II damage26. Enhanced Rubisco 
activity was reported in response to heat stress, whereas it reduced in response to drought and their combined 
stress condition27. These results suggest that maintenance of enabling canopy temperature for optimum photo-
synthetic efficiency is vital for crop acclimation to a combination of drought and heat stress.

Further, the stress sensitivity of plants is determined by their developmental stages. Early-season drought 
coupled with elevated temperature can cause impaired seedling growth and establishment28,29. Currently, there 
is a lack of information on the effects of drought, heat, and their interaction during the seedling establishment 
stage, particularly in cultivars released for the arid and semi-arid region. An insight into these aspects can provide 
a benchmark for further improvement in the abiotic stress tolerance of sorghum.

Hence, the present study was mainly focused on understanding the independent and combined effects of 
drought and heat stress on canopy temperature and its association with other vital physiological parameters of 
two popular sorghum cultivars (Phule Vasudha and Phule Revati) during the seedling stage. The study aimed 
to test the hypothesis that cooler canopy is more critical when sorghum plants are exposed to both drought 
stress and high temperature than when any one of them occur during seedling stage. Hence, the key objective 
of this research was to assess cultivar variation in maintaining the canopy temperature under elevated ambient 
temperature with or without soil moisture depletion and its relation with vital physiological processes such as 
cell membrane stability, chlorophyll content, tissue water retention, and PS-II activity.

Results
The present study aimed at the individual and combined effects of drought and heat stress on critical physiological 
traits. It was primarily focused on canopy temperature dynamics, cell membrane stability, chlorophyll content, 
tissue water content, and sensitivity of PS-II. Though the data were recorded on the third, fifth and seventh days 
after the imposition of stress treatments, and there was no significant effect of treatments on day three and day 
five (data not reported); hence the data of day seven were analyzed and reported. This section has been organ-
ized to explain the hypothesis that variation in plant canopy temperature can explain the effects of differential 
responses to drought, heat, and their combination in sorghum cultivars.

Comparative response of canopy temperature to stress treatments.  Analysis of canopy tempera-
ture pixels differentiated the cultivars more effectively than the conventional approach of average temperature. 
As shown in Fig. 1, compared to control, the average canopy temperature was significantly higher under all the 
stress conditions, irrespective of cultivars. However, there was no clear differentiation among the stress condi-
tions. In contrast, pixel-wise analysis of canopy temperature notably, hot pixels showed a much clear response 
of cultivars to imposed stress conditions (Fig. 2). The effect of heat on canopy temperature was more conspicu-
ous than that of drought when assessed separately. However, the combined effect of drought and heat on the 
enhancement of canopy temperature was comparatively higher than any of the stress imposed individually. 
The significant negative impact of stress conditions was found on the cultivars with Phule Revati following 
an increasing trend of C < D < HT < HT + D, whereas in Phule Vasudha, it was C < D ~ HT < HT + D (Fig. 2b). 

Figure 1.   Canopy temperature of Phule Revati and Phule Vasudha under control (C), drought (D), heat (HT), 
and heat + drought (HT + D) stress treatments. The data represent mean values ± SE (n = 8). Bars with different 
letters indicate significant differences (P < 0.05).
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However, under similar stress conditions, Phule Vasudha had the ability to keep its canopy relatively cooler as 
compared to Phule Revati.

Comparative response of membrane stability index, chlorophyll content, and relative water 
content to stress treatments.  Mean values for physiological traits revealed stress-specific responses of 
plants. The membrane stability was highly affected by heat stress. Compared with control, high temperature 
stress independently or in combination with drought reduced membrane stability index to the extent of 25 to 
30% (Table 1). The leaf chlorophyll content of sorghum cultivars decreased under stress treatments as com-
pared with control. However, the adverse effects of high temperature were more damaging for chlorophyll than 
drought stress. Compared with control, total chlorophyll content was reduced by 44% under combined heat and 
drought stress, 36% under heat, and 20% under drought, respectively. A similar trend was found for chlorophyll 
a and b. Between the cultivars, the reduction values for chlorophyll content and MSI were more severe for Phule 
Revati than for Phule Vasudha. Further, drought stress alone reduced the RWC by 25%, and the damage was 
enhanced (41%) in combination with heat stress. However, both the cultivars maintained a similar level of tissue 
hydration (Table 1).

Comparative response of chlorophyll fluorescence to stress treatments.  Chlorophyll fluores-
cence measurement indicating the PS-II maximum quantum efficiency (Fv/Fm) ranged from 0.78 to 0.50 under 
the stress treatments (Fig. 3). Drought, heat, and combined stress decreased Fv/Fm by 15, 22, and 38%, respec-
tively, compared with the control and averaged across the cultivars. Under control conditions, the cultivars 
were not significantly different for Fv/Fm, and the average value was around 0.77. Overall, the combined stress 

Figure 2.   Canopy temperature of Phule Revati and Phule Vasudha under control (C), drought (D), heat (HT), 
and heat + drought (HT + D) stress at (a) analyzed values of all the pixels (b) hot pixels and (c) cool pixels of the 
segmented images of plants as explained in material and methods. Each box indicates the interquartile range of 
canopy temperature under a particular treatment, with the horizontal line representing the median. The notch 
displays the confidence interval around the median and if the notches of two boxes do not overlap, it indicates 
the significant difference (P < 0.05).

Table 1.   Effect of stress treatment on chlorophyll content, membrane stability index, and relative water 
content of Phule Revati and Phule Vasudha. The data represent mean values ± SE (n = 8). Values with different 
letters indicate a significant differences with P < 0.05.

Treatments

Chlorophyll a (mg g−1 FW) Chlorophyll b (mg g−1 FW) Total chlorophyll (mg g−1 FW)
Membrane stability index 
(MSI) (%)

Relative water content (RWC) 
(%)

Phule Revati
Phule 
Vasudha Phule Revati

Phule 
Vasudha Phule Revati

Phule 
Vasudha Phule Revati

Phule 
Vasudha Phule Revati

Phule 
Vasudha

Control (C ) 2.17 ± 0.09a 2.16 ± 0.03 a 0.66 ± 0.03 a 0.70 ± 0.03 a 2.83 ± 0.12 a 2.86 ± 0.06 a 50 ± 5 a 55 ± 2 a 82 ± 2 a 85 ± 3 a

Drought (D) 1.49 ± 0.05b 1.88 ± 0.11 a 0.46 ± 0.02 b 0.66 ± 0.04 a 1.95 ± 0.07 b 2.54 ± 0.15 a 41 ± 1 b 51 ± 2a 59 ± 5 b 65 ± 5 b

Heat (HT) 1.03 ± 0.07 c 1.49 ± 0.09 ab 0.41 ± 0.01 c 0.58 ± 0.09 ab 1.44 ± 0.08 c 2.07 ± 0.18 ab 35 ± 2 c 44 ± 2 ab 79 ± 2 a 83 ± 3 a

Heat + drought 
(HT + D) 0.88 ± 0.04 c 1.30 ± 0.02 b 0.39 ± 0.04 c 0.49 ± 0.02 b 1.37 ± 0.08 c 1.79 ± 0.04 b 31 ± 1 d 40 ± 3 abc 41 ± 6 c 57 ± 7 c
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of drought and heat decreased Fv/Fm by 33% in Phule Revati (highest decline). In contrast, the lowest reduction 
(13%) in Fv/Fm was reported under drought stress in Phule Vasudha, as compared to the control. Phule Vasudha 
showed a clear trend of reduction in PSII quantum efficiency with the highest decline under HT + D (27%) 
followed by HT (17%), D (13%) as compared to control. However, in Phule Revati, though the highest reduc-
tion was seen under HT + D (33%), both drought and heat had a comparable negative impact (20% reduction) 
compared to control.

Association between canopy temperature and relative water content with other physiological 
variables.  Pearson correlation coefficient computed for each pair of the traits investigated in this experiment 
revealed a close association among the traits. However, the variation in critical physiological parameters could 
be explained more effectively by canopy temperature as depicted by the higher significant correlation values  
(p < 0.001) with the studied physiological parameters (Fig. 4). In addition, Fig. 5a,b revealed that canopy tem-

Figure 3.   Quantum efficiency of PS II (Fv/Fm) of Phule Revati and Phule vasudha under control (C), drought 
(D), heat (HT), and heat + drought (HT + D) stress at (a) 5th day after stress treatment and (b) 10th day after 
stress treatment. The data represent mean values ± SE (n = 8). Different small letters above the bars indicate 
significant differences (P < 0.05).

Figure 4.   Scatterplots of each pair of traits recorded in the experiment. Pearson correlation is displayed on the 
right.
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perature was negatively related to the studied parameters and could explain 81% variation in quantum efficiency, 
73% variation in total chlorophyll content, and 60% of the variation in membrane stability index of the sorghum 
cultivars whereas variation explained by RWC was substantially less in most cases than that described by canopy 
temperature (Fig. 5c).

Discussion
Drought, heat, and a combination of both, applied at seedling establishment stage of sorghum cultivars, was 
sufficient enough to elucidate differential responses of physiological traits viz., canopy temperature, chlorophyll 
fluorescence, chlorophyll content, relative water content, and leaf membrane stability at seventh day after treat-
ment imposition. This is in concurrence with earlier findings on grain sorghum that abiotic stress, including 
drought and heat, affects physiological traits on day seven3,30.

The focus of this study was on canopy temperature, as it is one of the crucial parameters suggested to assess 
the plant responses to stresses imposed by elevated ambient temperature and soil moisture depletion20. This can 
be attributed to the transpiration process regulated by stomatal mechanisms and plants’ capacity to extract soil 
moisture. Previously, infrared guns and, recently, thermal imaging systems have been employed to monitor the 
canopy temperature of crop plants21. In most cases, the average temperature values provided by these instru-
ments are used to assess plants’ responses. The average values may not appropriately represent the whole plant 
canopy temperature as the leaves may get differentially warmed as per their position in the canopy profile and 
age. We attempted to bridge this gap. Our experiments revealed that estimation of canopy temperature through 
pixel-wise analysis of thermal images of plants can provide better insight and differentiate both treatment and 
genotype effects with greater resolution when plants are subjected to stresses caused by heat and drought indi-
vidually or in combination. This is evident from the linear increase in the canopy temperature represented by 
the average temperature values of hot pixels in the segmented image of the plant in response to the rise in the 
level of stress caused individually or in combination (Fig. 3). Hence, the average of hot pixels was considered for 
further analysis of treatment and genotype effects on critical physiological parameters.

Response of critical physiological parameters to imposed stress conditions.  One of the primary 
impacts of stresses such as drought and heat on plants is damage to cell membranes crucial for normal cell 
functions. Hence cell membrane stability has been widely used to assess stress responses of crop plants12. As 
expected, the combined drought and heat stresses decreased membrane stability, leaf chlorophyll and relative 
water content to a greater extent than by their independent occurrence in both the cultivars. Similar reports 
of membrane damage caused by drought31 and high-temperature stress30 have been attributed to the reactive 
oxygen species (ROS) accumulation, which also triggers degradation of chlorophyll in leaves32. Chlorophylls are 
the primary photosynthetic pigments located in chloroplasts’ thylakoid membranes. In general, an appropriate 
balance between chlorophyll synthesis and degradation enables plants to maintain a nearly constant concentra-
tion in plant leaves33,34. However, exposure of plants to abiotic stresses, including drought and heat, leads to leaf 
chlorosis and senescence, primarily owing to its chlorophyll content reduction35. In our study, chlorophyll a, 

Figure 5.   Coefficient of determination (R2) computed to reveal association among variables (A) RWC (%) 
and Canopy Temperature (°C) (B) Fv/Fm, Total Chlorophyll (mg/g fresh weight) and MSI(%) versus Canopy 
Temperature (°C) and (C) Fv/Fm, Total Chlorophyll (mg/g fresh weight) and MSI (%) versus RWC (%).
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chlorophyll b, and total chlorophyll content was remarkably reduced by both independent and combined stress 
conditions. Though drought and the high temperature share some common mechanisms, the former stress 
mainly affects the photosynthetic pigments as well as the membranes of thylakoid36–38, while the latter primar-
ily affects the chlorophyll biosynthesis, resulting a reduction in the chlorophyll content39. Thus, low chlorophyll 
content in the plants might be attributed to either reduced rate of chlorophyll biosynthesis or due to its acceler-
ated degradation caused by drought and high temperature. Further, relative water content, an indicator of plant 
water status, was generally affected by drought and mostly independent of temperature under optimum soil 
moisture. However, high temperatures exacerbated the impact of drought on RWC when water was withheld, 
and these results agree with previous reports40.

Reduction in photosynthesis efficiency in response to the drought in plants38 can be partially attributed to 
reduced CO2 availability after stomatal closure for saving water. This process makes the plant more susceptible 
to photodamage41,42. A decline in maximum quantum efficiency (Fv/Fm) is a good indicator of photoinhibition 
impairment when plants are exposed to various environmental stresses, including drought and heat43,44. High 
temperature stress damages the photosynthesis process by impairing the photosynthetic pigments45 decreasing 
the photosystem II activity46–48 and disturbing the RuBP regeneration capacity49. However, combined drought 
and high temperature stresses adversely affect protein structure and functions, electron transport, and release 
of ions from the protein-binding sites15,50,51.

A substantial decrease in PS-II efficiency revealed by the stress-induced changes in Fv/Fm in our experiment 
could be primarily attributed to a rise in leaf temperature resulted from drought and high temperature stress 
(Fig. 6). Our study confirms earlier observations that damage to the cell membrane and a decrease in chlorophyll 
content could be the primary causes of the decline in PS-II efficiency. The variations in these parameters could be 
explained by variation in canopy temperatures (Fig. 2a,b) with greater certainty. Relatively, the weaker correla-
tion between RWC and other parameters hints that plants like sorghum maintain their tissue water content at a 
level essential for normal functioning even when exposed to soil moisture stress. However, combined stress due 
to the drought and the heat led to reduced tissue water content beyond the threshold, nearly 50% of the optimal 
tissue water content that caused extensive damage to the PS-II system.

Cultivar effects on canopy temperature and other drought and heat stress induced physio-
logical responses.  The primary response of majority of the plants to heat and drought stress is stomatal 
closure to avoid moisture loss through transpiration. Exposure to drought and heat stress causes a significant 
decrease in the leaf water potential as well as the transpiration rate, which ultimately increases the leaf and 
canopy temperature52. However, the genotypes that can get adapted to drought stress by conserving the soil 
moisture at the initial growth phases through optimal transpiration and then use it effectively for keeping the 

Figure 6.   Schematic diagram of the impact of individual and combined effects of drought and heat stress 
on canopy temperature and other critical physiological parameters in sorghum. Values represent the pearson 
correlation coefficient between the respective pair of traits (as depicted in Fig. 4). In this figure, the studied 
parameters viz., RWC, total chlorophyll, MSI and Fv/Fm are represented as physiological processes i.e. tissue 
desiccation, impaired chlorophyll synthesis/degradation, cell membrane instability and decrease in PS-II 
efficiency, respectively.
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canopy cool until the grain filling stage53. We applied the improved approach involving the average of tem-
peratures of hot pixels in the canopy instead of an average of pixels of the whole plant for effective detection of 
stress-induced changes in sorghum cultivars. Among the sorghum cultivars, Phule Vasudha had a more remark-
able ability to keep its canopy cool than Phule Revati under the imposed stress treatments. Similar findings on 
differential response of genotypes within a specific plant species to a combination of drought and heat stress are 
reported20,54. Phule Vasudha, being a drought-tolerant variety, might have the ability to balance between con-
serving moisture and protecting from overheating.

In contrast, Phule Revati might have lower stomatal conductance, owing to higher canopy temperature and 
hotter plant canopy. Water relations in both cultivars adjusted to high temperature when the soil moisture level 
at field capacity was maintained, whereas elevated temperature interacted strongly with moisture deficit condition 
and exacerbated its impact when water was withheld55,56. The more severe impact of combined drought and heat 
stress on leaf temperature than their individual impacts are in agreement with24,25,51. Similarly, under combined 
stress, reduction in quantum efficiency was higher than that of independent drought or high-temperature stress 
events in both the cultivars, but the level of damage was lesser in Phule Vasudha than in Phule Revati. The reduced 
values of Fv/Fm in the leaves of Phule Revati indicated that both drought and heat, independently and in com-
bination, caused a great extent of photoinhibition in photosystem II units of this cultivar in contrast to Phule 
Vasudha. These interpretations derive support from previous reports about reducing photosynthetic efficiency 
under drought and heat stress when imposed either individually or in combination14,51,57–59.

Drought tolerant crops like sorghum prioritize the establishment of their root system during depletion of soil 
moisture coupled with high temperature which is common in semiarid regions. Early establishment can enable 
the plants to explore the soil moisture from deeper layers of soil profile. This can be indirectly reflected by canopy 
temperature of plants since transpiration is the major cause of changes in leaf water status and leaf temperature60. 
Since maintenance of a cool canopy is a promising trait for identifying drought tolerance10, there is high certainty 
that the seedling stage screening reported in this study will have implications for other critical stages of growth.

Conclusion
This study revealed that estimation of canopy temperature based on hotter pixels of thermal images of plants can 
differentiate the stress responses of sorghum cultivars more effectively than the average temperature. Comparison 
of two cultivars of sorghum differing in maintaining their canopy coolness indicated that primarily the canopy 
temperature and then the tissue hydration level reduced the photosynthetic efficiency of plants by impairing 
cell membrane stability and reducing chlorophyll content when exposed to stresses. Hence, the combined effect 
of drought and the high temperature was more prominent than their individual effects as the continued loss of 
water coupled with high-temperature exposure exacerbated the adverse impact of stresses with a remarkable 
increase in canopy temperature and reduction in the tissue water content to nearly 50% of the optimal level. The 
improved method that emerged from this study to differentiate the sorghum genotypes under combined stress of 
drought and high temperature can be helpful in the selection of promising genotypes among the breeding lines 
and in integrating the concept in the precision water management in crops like sorghum.

Materials and methods
Plant materials.  Two sorghum cultivars, Phule Vasudha (RSV/423/SPV 1704) and Phule Revati (RSV 
1006/SPV 1830), popularly grown under rainfed conditions in arid and semi-arid regions of India, were used 
in this study. While Phule Vasudha is a drought-tolerant variety, no such information is available on abiotic 
stress tolerance for Phule Revati. Quality seeds were obtained from the sorghum improvement project at MPKV, 
Rahuri, India.

Experimental setup and growth conditions.  This research was conducted at the control environmen-
tal facility of the ICAR-National Institute of Abiotic Stress Management (NIASM), Baramati, India (18° 09′ 
30.62" N latitude; 74° 30′ 03.08" E longitude; MSL 570 m altitude) in a completely randomized design. Plants 
were grown in plastic pots (diameter 30 cm and height 42 cm) filled with 14 kg clay loam soil (72% clay, 24.4% 
and 4% silt) having pH 8.4, EC 0.24 dSm-1, organic carbon 6.3 g kg-1, 170 kg nitrogen, 17 kg phosphorous, and 
140 kg potash ha-1. Ten seeds per pot were sown at a depth of 3–4 cm. A week after emergence, they were thinned 
to six seedlings per pot and maintained at normal conditions until they were shifted to the greenhouse for stress 
treatments 15 days after emergence. The plants were exposed to drought stress [D] by shifting in the greenhouse 
with regular day/night (35/20 °C) temperature, and maintaining the moisture content at 15% field capacity. Heat 
stress [HT] was imposed by shifting plants to the greenhouse with 40/25 °C day/night temperature and regular 
irrigation (i.e., 50% of field capacity) while a set of pots were kept with soil moisture level at 15% field capacity 
to impose a combination of heat and drought stress [HT + D] in the same greenhouse. The non-stressed plants 
[C] were maintained with regular irrigation and 35/20 °C (day/night) temperature. The water holding capac-
ity of the pot containing 14 kg of soil was predetermined following a gravimetric method61. The stress period 
was for a week, and each treatment had eight replicated pots. Every alternate day, plants in each greenhouse 
were randomly shifted to avoid any positional effect within the chamber. In order to impose the drought stress 
resulting from soil (potting mix) moisture deficit, the greenhouses were set at high relative humidity (RH) to 
avoid the stress occurring from rapid evapotranspiration under elevated air temperatures. Both the greenhouses 
were maintained at 65–70% RH and 450–750 µmol m-2 s-2 PAR. After stress treatment, all pots were kept in one 
greenhouse and were held at a day/night temperature of 35/20 °C and regular irrigation. The pots were kept 
weed-free throughout the experiment, and no disease or pest incidences were reported; hence no such measures 
were taken.
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Data collection.  There were eight pots per treatment per cultivar in each replication, and each pot had six 
seedlings. Fully emerged third leaf at the top of randomly selected seedlings of each pot were chosen for measur-
ing canopy temperature, membrane stability index, chlorophyll content, relative water content, and chlorophyll 
fluorescence. All data were collected on an alternate day, from the start of the experiment for seven days and all 
the methods were performed in accordance with the relevant guidelines and regulations.

Canopy temperature.  Thermal images with spatial resolution of 768 × 576 pixels were acquired between 13 and 
14 h for measuring canopy temperature of plants under each treatment with a thermal imager (Vario CAM hr. 
inspect 575, Jenoptic, Germany) of 0.01 °C thermal resolution that operates in the wavelength range of 8–14 μm. 
A wet cloth was used to ensure the contrasting background to enable segmentation of plant canopy during the 
image analysis. The ambient temperatures during the measurements were nearly constant at 35 °C in C and D 
while it was 40 °C in HT and HT + D treatments respectively. The captured radiometric images were saved and 
within each thermal image, the areas of interest for analysis was selected to account plant canopy area to the 
extent possible using “IRBIS 3.1 professional” software (Variocam, Jenoptic, Germany). Provision in the software 
to segment plant from the background was used and temperature revealed by every pixel in the segmented image 
was considered for data analysis and analyzed using R programme. Deviating a bit from conventional way of 
measurements of average canopy temperature of the cultivars under each treatment, we considered temperature 
values of every pixel in the segmented image to interpret response of canopy temperature as well as its influence 
on physiology of plants (Fig. 7). An average of 50% of the pixels either hot or cool with median value as center of 
measure were computed separately in the each of the segmented images.

Leaf membrane stability index.  The membrane stability index (MSI) was estimated by harvesting one fully 
expanded third leaf at the top of four plants under each replication per cultivar. Collected leaves of all the treat-
ments were cut into small discs (1 cm2 size) and 0.5 g of it was placed in test tubes having10 mL of double 
distilled water and set in duplicates. One set was maintained at 40 °C for 30 min, and another set was kept in a 
hot water bath of 100 °C for 15 min. Their electrical conductivity (C1 and C2, respectively) were measured by a 
conductivity meter (Adawa-260, Thermo Scientific, USA), and calculation of MSI was done using the formula, 
MSI (%) = 1 − C1/C2 × 10062.

Chlorophyll content.  Fully expanded third leaves at the top of each plant from all treatments were collected, and 
the DMSO method was followed for estimating the chlorophyll content. Leaf samples (25 mg each) were cut into 
fine strips/ pieces and kept in a test tube containing 5 mL of DMSO. Afterward, the test tubes were incubated in 
the dark at 37 °C for 24 h for chlorophyll extraction. An aliquot of 3 mL was used for spectrophotometric (UV-
1800, Shimadzu, Japan) measurement at 649 and 665 nm to determine chlorophyll a, chlorophyll b, and total 
chlorophyll contents63.

Figure 7.   Conventional versus suggested way of analyzing thermal images of canopy temperature.
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Relative water content.  Fully expanded third leaf at the top of each plant from all treatments was cut, and the 
fresh weight (FW) was measured immediately. Then, leaves were kept in distilled water under average room 
temperature for four hours, and their turgid weight (TW) was measured. Afterward, the same set of leaves were 
put in a drying oven at 60 °C for 48 h and weighed to obtain dry weight (DW). Finally, the relative water content 
(RWC) of the leaves was estimated using the equation, RWC (%) = (FW − DW)/ (TW – DW) × 10064.

Chlorophyll fluorescence measurement.  Chlorophyll fluorescence analysis investigates plant photosynthetic per-
formance as it indicates the status of PSII that drives photosynthesis65. A sampling of fully expanded third leaves 
at the top was carried out at around 09:00 h from each replication, and samples were then transferred to a dark 
room and were adapted and stabilized for the next one h under dark. Dark-acclimatized and stabilized samples 
were collected, and chlorophyll fluorescence was recorded on each sample with the help of an imaging fluorom-
eter instrument (Handy FluorCam, P.S.I., Brno, Czech Republic) as reported in66. Fluroscence was detected by a 
high-sensitivity charge coupled device camera and it was driven by FluroCam software package (FluorCam 7 ver-
sion 1.2.5.3). First, non-actinic measuring flashes provided by super-bright light-emitting diodes (LEDs) were 
used to obtain the dark-adapted fluorescence level (F0) images. Next, the maximum fluorescence level (Fm) was 
measured through an 800-ms duration pulse of saturating light radiation [2,500 µmol (photon) m-2 s-1] gener-
ated by a halogen lamp. Indicator of chlorophyll fluorescence, i.e., maximal photochemical efficiency of PSII (Fv/
Fm), was calculated as (Fm – F0)/Fm where variable fluorescence (Fv) represents the difference between Fm and F0.

Statistical analysis.  Statistical analyses were executed with general linear models (GLMs) using the “Agri-
colae” package of R (R Development Team, 2011). The experimental setup was a completely randomized design. 
Plants were selected randomly for treatments as well as kept randomly within the greenhouses. The physiologi-
cal parameters were measured in randomly selected plants from each replication under each treatment. For 
all the data, an estimate of variability was shown by the standard error, and significance of variable means was 
performed by the Least Significant Difference (LSD) test at 5% probability level. Wilcoxon test was performed 
for showcasing the differential response of canopy temperature to imposed stress conditions67. Besides, correla-
tion analysis was done to relate the canopy temperature, and relative water content and their relationship with 
membrane stability index, total chlorophyll content and chlorophyll fluorescence.

Data availability
All the relevant data supporting the conclusions of this study are included within the article.
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