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Abstract

Objective: Using the Twente Medical Systems international B.V. (TMSi) electromyography

(EMG) system, active signal shielding was applied to clean signals and create data without inter-

ference and cable movement artifacts. TMSi, used in high-density surface EMG pattern recogni-

tion, controls myoelectric rehabilitation robots, yet few have studied how active signal shielding

influences pattern recognition. This study aimed to investigate how active signal shielding used

within the TMSi influenced motion pattern recognition.

Methods: Surface EMG of dominant side forearm and hand muscles was studied in eight healthy

participants. The common component’s influence was accessed by the classification performance

of wrist and hand functional movements.

Results: The classification performance of EMG signals with the common component was obvi-

ously lower than signals without the common component using one to five electrodes.

Conversely, a higher motion classification performance was achieved using signals with the

common component using over 12 electrodes. Optimal channel distribution was examined

based on the sequential feed-forward selection method, showing that the common component

affected the optimal channel location.

Conclusions: Active signal shielding in the TMSi improved classification accuracy in motion

pattern recognition when over 12 electrodes were used. The optimal channel distribution was

related to the common component when using the TMSi.
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Introduction

Surface electromyography (EMG), which
represents the electrical activity of muscles,
has been frequently used to control myo-
electric prostheses, assistive skeletons, and
rehabilitation robots for many years.1–3 In
recent years, surface EMG with a large
number of recording electrodes [or high-
density (HD) surface EMG] technology
has been developed and combined with pat-
tern recognition analysis to assess myoelec-
tric control. Previous studies show that
satisfactory classification accuracies can be
achieved from several different movements
using HD surface EMG signals.4,5

However, surface EMG recordings often
have low signal-to-noise ratios (SNRs) due
to noise contamination that hinders the
classification accuracy of fine movements.6

A special design called active signal shield-
ing technology has been applied to clean
signals to remove interference and cable
movement artifacts. In Refa and Porti
EMG recording systems,7 all EMG record-
ing channels are amplified against the
common component, which is defined as
the average value of surface EMG signals
in all connected inputs. Refa and Porti
EMG recording systems are widely applied
in HD surface EMG pattern recognition
to control myoelectric rehabilitation
robots.3,5,8 Despite encouraging applica-
tions using HD surface EMG recording,
few have studied the influence of the
reduced common component on classifica-
tion accuracy in pattern recognition when
using these EMG recording systems.

In addition, the data processing is time
consuming and impractical for clinical

implementation when using a large
number of electrodes. Thus, most of the
previous studies suggested that several
appropriate EMG channels and the optimal
placement locations of electrodes should be
selected for practical myoelectric control
instead of using all channels.9–11 A previous
study using the Twente Medical Systems
international B.V. (TMSi) system demon-
strated that the determination of the appro-
priate number of EMG electrodes and their
locations were affected by both participant
specifics and different feature sets.11

However, few studies have reported the
influence of the reduced common compo-
nent on the optimal placement locations
of electrodes in pattern recognition when
using the TMSi recording system.

The purpose of this study was to assess
the effect of the common component on the
classification accuracy and optimal place-
ment locations of electrodes in pattern rec-
ognition with healthy participants. We
examined whether the classification accuracy
would be affected by the common component
using a different number of optimal channels.
Furthermore, the optimal electrode locations
of the surface EMG signals with or without
the common component were compared,
which can potentially help to select the suit-
able electrode number and location for pat-
tern recognition when using the system to
reduce the common component.

Materials and methods

Participants

Eight healthy volunteers (one female and
seven males) without known neuromuscular
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disorders volunteered to participate in the
study. The study was approved by the
Committee for the Protection of Human
Subjects at the University of Texas Health
Science Center at Houston and TIRR
Memorial Hermann Hospital (Houston,
TX, USA). All procedures conformed to
the Declaration of Helsinki, and all partic-
ipants signed the informed consent prior to
any experimental procedures.

Description of the common component
problem

In the TMSi EMG recording system,
active signal shielding technology was
applied to clean signals and remove
interference and cable movement artifacts.
As an introduction of the TMSi system,
the mean value, which was defined as the
common component (xcommon), can be writ-
ten as:7

xcommonðiÞ ¼
Xn

c¼1

xcðiÞ=n i 2 ½1;L� (1)

where L is the length of the dataset in a
channel, and n is the channel number. The
common component would be calculated
and reduced from each channel in the
EMG recording.

Experiment protocols

Each participant was seated upright in a
height-adjustable chair with the right fore-
arm resting on a customized apparatus. The
wrist was held naturally, the elbow joint
was flexed approximately 90�, and the
shoulder was slightly abducted (45�) and
flexed (30�). Prior to the EMG recording,
the skin treatment was prepared by cleaning
the superficial skin with adhesive paste to
ensure good contact and low baseline
noise, and the skin was then cleaned with
water after removing the remains. In the
experiment, each participant was asked to

use the right arm to perform seven wrist
and hand functional movements, including
the sphere grip, key pinch, fine pinch, hand
opening, thumb extension, OK sign, and
three-finger extension (Figure 1).

Each participant was then asked to
maintain each movement for 6 s with
moderate force and to repeat this eight
times. A 10-s rest period was allowed
between two movements in a trial. In addi-
tion, to avoid muscle fatigue, each partici-
pant was allowed sufficient rest between
trials.

EMG acquisition

HD surface EMG signals consisting of 58
channels were collected from the forearm
and hand muscles of each healthy partici-
pant. Among all of the 58 electrodes, 48
electrodes were placed in a 6� 8 grid for-
mation over the forearm (Figure 2). Eight
electrodes in each row were equally spaced
and secured with medical tape as a round
group. Six round groups were attached par-
allel around the forearm at different loca-
tions from approximately 12.5% to 75%
for every 12.5% of the entire distance
from the medial epicondyle of the humerus
to the ulnar styloid. In addition, nine elec-
trodes were placed on hand muscles, with
every three electrodes targeting the first
dorsal interosseous (FDI) muscles, the
thenar muscles, and the hypothenar
muscles, respectively. In the experiment, a
single electrode defined as the reference
electrode was connected in the 58th channel
and placed on the ulnar styloid to record
the negative value of the common
component.

A ground electrode in the Refa 136
system was placed on the ulnar styloid.
A single reference electrode, which was con-
nected to the 58th channel as mentioned
above, was placed beside the ground elec-
trode on the ulnar styloid to record the
common component signals. The surface
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EMG signals were recorded and amplified
by the Refa 136 EMG Recording System
(TMS International BV, the Netherlands).
The sampling rate was 2048Hz per channel,
and a band pass filter was set for 20
to 500Hz.

Data analysis

Prior to the analysis, potential power line

interference in the surface EMG data were

eliminated by a spectrum interpolation

algorithm.12 The onset and offset of each

Figure 2. An example of the electrode locations for a 58-channel surface EMG recording.

Figure 1. Seven wrist and hand functional movements.
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movement segment were marked by experi-
enced researchers manually and simulta-
neously applied to all 57 channels. The
data analysis consisted of two stages.

The first stage generated the required
datasets from the Refa 136 data for
common component analysis. First, the
signal from the reference channel, which
was considered to be the negative value of
the common component, was subtracted
from each channel to recover the original
surface EMG signals. Second, when consid-
ering several represented channels for clinic
practice other than the entire channel set
(which is necessary owing to optimal chan-
nel selection, as introduced below), the
common component of several channels
selected by specified algorithms was calcu-
lated and reduced from the original signal
in each selected channel. The common com-
ponent of selected channels was defined as
the selected common component compared
with the global value for all channels.

In a second step, the three datasets (the
signal without the common component,
with the global common component, and
with the selected common component)
were processed, and their performance in
pattern recognition was compared. To max-
imally utilize the continuous signal in the
segment, an overlapping analysis window
with a time length of 256 ms and an incre-
ment of 64 ms was applied to obtain more
training samples. Two commonly used time
and frequency domain feature series were
then computed independently and provided
to a pattern recognition classifier in each
analysis widow. The time domain feature
series, which has been shown to be simple
and effective in many studies, contained
four time-domain statistics of EMG signals,
including the mean absolute value (MAV),
the number of zero crossing (ZC), slope
sign change (SSC), and waveform length
(WL).13,14 In addition, the frequency
domain feature series consisted of
sixth-order autoregressive (AR) model

coefficients combined with root mean
square (RMS). Then m-dimensional feature
series (m¼ 1 for TDþARþRMS) was
extracted in each analysis window of the
segments in each channel. The features of
the analysis windows in different channels
at the same period were considered as a
complete feature series and concatenated.
The final feature vector, which was sent to
the classifier, was constructed by combining
m� n feature sets, where n was the number
of channels, and m was the length of
features.

The uniform uncorrelated linear discrim-
inant analysis was then adopted for feature
dimension reduction. A linear discriminant
analysis (LDA) algorithm was used to build
the classifier in this study, because its low
computational cost and effectiveness in
myoelectric classification have been demon-
strated in many previous studies.

Channel selection method

In the study, the sequential feed-forward
selection (SFS) algorithm as well as the
arithmetic sequence (AS) method were
applied on the three datasets to form select-
ed channel sets. The SFS algorithm, which
has been proven to be effective in our pre-
vious studies, is a global algorithm that
chooses the most informative channels
based on empirical classification
results.9,11,15 In the first iteration of the
SFS method, the optimal channel that had
the highest classification accuracy was
selected among all of the channels. Then,
for the next iteration, another channel
that could achieve the maximum classifica-
tion performance combined with the select-
ed channels was added. This procedure was
repeated until the number of “optimal”
electrodes cumulated to a desired number,
and a resulting list of channels was
obtained. However, the optimal channel
set would be variable for different datasets.
To compare the classification performance
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in uniform selected channels, the AS was
used to select optimal channels as well.

Alternatively, the AS is a direct channel
selection method that is based on the arith-
metical average of the channel index. All of
the selected electrodes were added based on
their index relative to other selected chan-
nels. Each increase in the number of select-
ed channels being analyzed required a new
set of evenly distributed channels that were
equidistant from each other. In the study,
the 29th channel, which was the point of
bisection in 57 channels, was first employed
as the selected channel. Then, the points of
trisection (19th and 39th channels) instead
of the 29th channel were selected to update
the channel list for the next iteration.
Similar to the SFS method, the procedure
was repeated until the desired number was
achieved.

Performance evaluation

The influence of the common component
was assessed by the resultant classification
accuracy in selected optimal channels.
A two-fold cross-validation scheme was
used in the study to evaluate the classifica-
tion performance. The datasets within half
segments were assigned as the training data-
set, and the remaining half segments were
used as the testing dataset. Then, the clas-
sification accuracy of a movement was cal-
culated by the mean value of the percentage
of correctly classified windows in all of the
analysis windows of the testing dataset in
cross-validation. The classification accura-
cies of seven movements were further aver-
aged to form the global classification
accuracy of all movements. Finally, the
global classification accuracy of the data-
sets without the common component was
compared with the datasets with the
global common component as well as the
selected common component. In addition,
the common component influence on the
optimal electrode location was assessed by

comparing the location of the SFS optimal

channels for different datasets.

Statistical analysis

The statistical analysis was performed using

SPSS (SPSS Inc., 2007, Chicago, IL, USA).

The Shapiro–Wilk test was used to test for

possible deviations from the assumption of

normality, and Student’s paired t-test was

used to investigate side-to-side differences

for the examined parameters if data were

normally distributed, while the Wilcoxon

signed-rank test was used for non-
normally distributed data.

Results

Influence of the common component

based on the SFS method

The influence of the common component

was assessed by the resultant classification
accuracies, as shown in Figure 3, where the

classification accuracies achieved from the

three datasets with TDþARþRMS feature

sets were compared. We observed that the
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Figure 3. Classification accuracy of seven
movements based on the sequential feed-forward
selection (SFS) electrode list. The electrode
numbers were increased based on the SFS
electrode list. Triangle with a solid line: signal with
global common component from all 57 channels.
Circle with a dashed line: signal without common
component. Cross with a dash-dotted line: signal
with selected common component following the
channel list.
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datasets with the global common compo-
nent achieved the best performance among
the three datasets (67.40� 4.32% to 94.42
� 2.96%, mean� standard deviation). By
sequentially adding the selected channels,
the classification accuracy of the datasets
with the selected common component dra-
matically increased, gradually exceeded the
datasets without the common component,
and then approached a maximum value
(14.29� 1.9� 10�15% to 92.34� 3.48%),
which was slightly lower than the datasets
with the global common component. The
classification accuracy of the datasets with
the global common component was signifi-
cantly higher than others with an electrode
number from 2 to 15 (with the global
common component vs. without the
common component: P¼ 0.05, 0.001, 0.001,
0.01, 0.01, 0.01, 0.02, 0.02, 0.01, 0.02, 0.02,
0.03, 0.02, 0.02; with the global common
component vs. with the selected common
component: P¼ 0.001, 0.001, 0.001, 0.001,
0.001, 0.001, 0.001, 0.001, 0.001, 0.002,
0.002, 0.005, 0.01, 0.01). The classification
accuracy of the datasets with the selected
common component was significantly lower
than without the common component
(P¼ 0.012, <0.05) when the electrode
number was five, but the difference was not
statistically significant (P¼ 0.40, >0.05)
when the electrode number was 12.

Influence of the common component on

the optimal distribution of channels

For each participant, we further investigat-

ed the optimal channel distribution based

on the SFS method for three datasets. An

example of the optimal channel distribution

using the SFS method for three datasets is

compared in Figure 4.
From Figure 4, it is seen that the distri-

bution of optimal channels varied with the

three datasets. It was noted that the loca-

tion of the first selected channel (channel 1),

which had the highest classification accura-

cy in all channels, was always similar for all

datasets. However, for the same partici-

pants, the location of selected channels

(channels 2–15) might be partly or

completely different for the three datasets.

This finding showed that as an alternative,

the common component would affect the

optimal channel distribution.

Influence of the common component

based on AS method

To investigate the influence of the common

component on the uniform channel distri-

bution, the classification accuracies of the

three datasets based on the AS method

were computed (Figure 5).

Figure 4. Optimal channel distribution for a participant. a: Channel distribution of original dataset without
common component. b: Channel distribution of dataset with the selected common component. c: Channel
distribution of dataset with the global common component.
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It was observed that the datasets with the

global common component maintained the

best performance among the three datasets.

With an increase in channel number, the

datasets with the selected common compo-

nent tended to approach similar or slightly

higher classification performance compared

with the datasets without the common com-

ponent. The classification accuracy of the

signal with the selected common component

(85.85� 4.72%) was slightly higher than the

signal without the common component

(84.74� 4.47%). Similarly, the classification

accuracy of the datasets with the selected

common component was significantly lower

than without the common component

(P¼ 0.035, <0.05) when the electrode

number was seven, but the difference was

not statistically significant (P¼ 0.12, >0.05)

when the electrode number was 12.

Discussion

This study investigated the influence of the

common component on the classification

performance in limited channels for healthy

participants. The main findings of the pre-
sent study include the following: (1) satis-
fied classification accuracy in seven
movements’ pattern recognition could be
maintained with 12 selected channels in
our study; (2) the classification accuracy
of the signal with the common component
was lower compared with the signal without
the common component when the electrode
number was limited (<5); (3) the common
component improved the classification per-
formance when the number of surface
EMG electrodes was sufficient (i.e., >12);
(4) the distribution of the optimal channels
was related to the common component
when using the TMSi system.

Generally, more electrophysiological
information is captured using more surface
EMG channels, which improves the classi-
fication performance of pattern recognition
used to control a myoelectric rehabilitation
robot. However, this is not only complex
for clinical implementation but also
increases the cost of data processing for
the EMG-controlled systems with a large
electrode number. Previous studies sug-
gested that the number of EMG channels
could be reduced while maintaining high
classification accuracy.9,11,16 For example,
Zhou et al. reported that it was possible
to achieve satisfactory classification perfor-
mance with four to nine bipolar electrodes.
Another study indicated that 90% of the
maximum accuracy could be maintained
with eight selected channels.14 Huang
et al. reported that 12 selected channels
were sufficient to extract neural control
information such as HD surface EMG
recording. However, the number of EMG
channels that can maintain high classifica-
tion accuracy in pattern recognition could
not been confirmed. It is necessary to deter-
mine an appropriate number of electrodes
and their locations for pattern recognition
in the clinical setting while maintaining high
classification accuracy. Two methods,
including SFS and AS, were adopted to
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Figure 5. Classification accuracy of the seven
movements based on the arithmetic sequence (AS)
method. The number of electrodes was increased
based on the electrode list, which was determined
by the AS method. Triangle with a solid line: signal
with global common component from all 57 chan-
nels. Circle with a dash line: signal without common
component. Cross with a dash line: signal with
selected common component following the
channel list.
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select channels in our study. The SFS
method was used to select the appropriate
EMG channels with the highest classifica-
tion performance and has been considered
an effective method in previous studies. In
this study, we found that 12 EMG channels
might be sufficient to achieve a proper
motion classification performance. This
finding is consistent with the conclusions
obtained by Zhou and Huang.9 Compared
with SFS, the AS method provided the uni-
form selected channels for three datasets.
The results of the AS method also con-
firmed that 12 electrodes were suitable for
selecting EMG channels.

While the TMSi system has been widely
used in previous studies,17–20 no studies
have analyzed the influence of the
common component that is caused by the
TMSi system on the classification of move-
ments. Thus, three datasets, including the
original dataset, the dataset with the
global common component, and the dataset
with the selected common component were
constructed to assess the influence of the
common component. By examining the
classification performance of these three
datasets, we found that the signals with
the global common component had the
highest classification performance of all
datasets. This may suggest that the
common component improves classification
accuracy when the channel number is suffi-
cient. Furthermore, the classification accu-
racy of the datasets with the selected
common component was lower when the
channel number was less than five and
higher when the channel number was
above 12 compared with the original signals
in both the SFS and AS results. When the
channel number was small, the common
component reduction would reduce the
amplitude or even the quality of the record-
ing data. However, much redundant infor-
mation, which was unnecessary for pattern
recognition, was contained in the HD sur-
face EMG recordings. When the channel

number was sufficient, the common compo-
nent reduction would help to clean and
reduce this redundant information.
Meanwhile, the ground and other
common noise sources were reduced as
well. This finding showed that the channel
number should be maintained at 12 for sat-
isfactory classification performance in the
clinical setting when using systems with
the common component. In addition,
these results indicated that the common
component reduced the classification per-
formance when the channel number was
limited and improved the classification per-
formance when the channel number was
sufficient.

We also analyzed the distribution of the
optimal EMG channels using SFS for three
datasets. The results of the current study
are consistent with the previous findings
that the optimal EMG channels were differ-
ent for each participant. In addition, the
distributions of the optimal EMG channels
were different for the three datasets. This
finding showed that the optimal distribu-
tion of EMG channels was influenced by
the common component as well.
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