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ABSTRACT Robust population pharmacokinetic (PK) data for fluconazole are
scarce. The variability of fluconazole penetration into the central nervous system
(CNS) is not known. A fluconazole PK study was conducted in 43 patients receiv-
ing oral fluconazole (usually 800 mg every 24 h [q24h]) in combination with am-
photericin B deoxycholate (1 mg/kg q24h) for cryptococcal meningitis (CM). A
four-compartment PK model was developed, and Monte Carlo simulations were
performed for a range of fluconazole dosages. A meta-analysis of trials reporting
outcomes of CM patients treated with fluconazole monotherapy was performed.
Adjusted for bioavailability, the PK parameter means (standard deviation) were
the following: clearance, 0.72 (0.24) liters/h; volume of the central compartment,
18.07 (6.31) liters; volume of the CNS compartment, 32.07 (17.60) liters; first-
order rate constant from the central to peripheral compartment, 12.20 (11.17)
h�1, from the peripheral to central compartment, 18.10 (8.25) h�1, from the cen-
tral to CNS compartment, 35.43 (13.74) h�1, and from the CNS to central the
compartment, 28.63 (10.03) h�1. Simulations of the area under concentration-
time curve resulted in median (interquartile range) values of 1,143.2 (range,
988.4 to 1,378.0) mg · h/liter in plasma (AUCplasma) and 982.9 (range, 781.0 to
1,185.9) mg · h/liter in cerebrospinal fluid (AUCCSF) after a dosage of 1,200 mg
q24h. The mean simulated ratio of AUCCSF/AUCplasma was 0.89 (standard devia-
tion [SD], 0.44). The recommended dosage of fluconazole for CM induction ther-
apy fails to attain the pharmacodynamic (PD) target in respect to the wild-type
MIC distribution for C. neoformans. The meta-analysis suggested modest im-
provements in both CSF sterility and mortality outcomes with escalating dosage.
This study provides the pharmacodynamic rationale for the long-recognized fact
that fluconazole monotherapy is an inadequate induction regimen for CM.
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Mortality from cryptococcal meningitis remains unacceptably high. More than 90%
of the estimated 223,100 annual incident cases of cryptococcal meningitis occur

in Sub-Saharan Africa and Asia-Pacific regions (1). The most effective regimen for
induction is amphotericin B deoxycholate and flucytosine (2, 3). However, access to
these drugs is limited in many regions where the burden of cryptococcal meningitis is
greatest (4, 5). In these settings, high-dose fluconazole is used for induction mono-
therapy, despite consistent evidence of reduced survival in comparison to that with
other agents and combinations (6–8).

Fluconazole was discovered by Pfizer, Inc. (Sandwich, United Kingdom) in 1978 (9).
The objective was to discover an orally bioavailable agent for the treatment of invasive
mycoses with a lower propensity to develop resistance than flucytosine (9). Fluconazole
inhibits cytochrome P450-dependent demethylation of lanosterol in the ergosterol
biosynthetic pathway (10). The ratio of the area under the concentration-time curve
(AUC) to the MIC is the pharmacodynamic (PD) index that best links drug exposure of
fluconazole with the observed antifungal effect (11, 12).

Successful antimicrobial therapy within the central nervous system depends on the
achievement of effective drug concentrations within relevant subcompartments that in-
clude the cerebrum, meninges, and cerebrospinal fluid (CSF) (13). Fluconazole has a low
molecular weight (approximately 300 g/mol), is weakly protein bound, and is not known to
be a substrate for central nervous system (CNS) efflux pumps (14, 15). Its ability to partition
from the endovascular compartment into the CNS has been established in laboratory
animal models (16, 17) and clinical studies (18, 19). Brain/plasma penetration ratios of up to
1.33 have been reported in humans (19). However, there is a surprising paucity of popu-
lation pharmacokinetic (PK) data for fluconazole in all clinical contexts. Furthermore, the
extent and variability of penetration into the CNS are not known.

The primary aim of this study was to quantify the extent and variability of CNS
penetration of fluconazole in adults with cryptococcal meningitis. We developed a
population PK model that quantified the interindividual variability in drug exposure in
plasma and cerebrospinal fluid (CSF). We investigated the impact of a range of clinically
relevant covariates on fluconazole PK. Monte Carlo simulation was used to assess the
implications of PK variability in terms of achieving fluconazole PD targets. Finally, we
conducted a meta-analysis of clinical trials of fluconazole monotherapy to estimate the
contribution of dosage to clinical outcome.

RESULTS
Patients. A total of 43 patients (23 from Vietnam and 20 from Uganda) were

recruited over an 11-month period between January and November 2016. Twenty-two
patients (52%) were female. Patient characteristics (overall median [range]) were the
following: age, 33 years (20 to 73 years); weight, 48 kg (32 to 68 kg); body mass index
(BMI), 18 kg/m2 (12 to 25 kg/m2); creatinine at enrollment, 70 �mol/liter (37 to 167
�mol/liter); and estimated glomerular filtration rate (eGFR) using the Cockcroft-Gault
equation, 84.8 ml/min/1.73 m2 (35.4 to 146.7 ml/min/1.73 m2). The baseline creatinine
concentration was significantly lower in Vietnamese patients than in Ugandan patients
(median, 56 versus 79 �mol/liter; P value, 0.02). However, this did not manifest as a
significant difference in eGFR due to different age, sex, and weight profiles between the
two patient populations. There were no statistically significant differences between
ethnic groups for other demographic variables. The demographic data are shown by
ethnicity and for the study population as a whole in Table 1.

Pharmacokinetic data. The final data set included 312 plasma observations and 52
CSF observations from the Vietnamese cohort. From the Ugandan cohort, the data set
included 196 plasma observations and 115 CSF observations. A single CSF observation
from one Ugandan patient was excluded because no fluconazole was detectable in an
isolated sample after 13 days of therapy. This was inconsistent with results from other
patients and could not be verified. The mean numbers of plasma samples and CSF
samples per patient were 11.8 and 3.9, respectively. Figure 1 shows the raw plasma and
CSF concentration-time profiles from study participants.
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Population pharmacokinetic analysis. The final mathematical model was a linear
model comprised of an absorption compartment, central compartment, peripheral
compartment, and CSF compartment. The fit of the final model to the clinical data was
acceptable. The mean parameter estimates better fitted the data than medians and
were used to calculate Bayesian estimates of drug exposure for each individual patient.
A linear regression of the observed-versus-predicted fluconazole concentrations in
plasma after the Bayesian step was given by the following calculation: observed
fluconazole concentration � 1.03 � predicted fluconazole concentration � 0.27 (r2 �

0.80). For the observed-versus-predicted fluconazole concentrations in CSF, the linear
regression was given by the following: observed fluconazole concentration � 1.03 �

predicted fluconazole concentration � 0.07 (r2 � 0.81) (Fig. 2 and Table 2). The mean
weighted population bias values for fluconazole concentrations in plasma and CSF
were 0.20 and �0.30, respectively. The bias-adjusted population imprecision values in
plasma and CSF were 2.21 and 1.55, respectively. The population PK parameter esti-
mates for the final model are shown in Table 3.

Covariate investigation. Multivariate linear regression of each subject’s covariates
versus the Bayesian posterior parameter values revealed a weak relationship between
patient weight and estimated volume of distribution (slope, 0.22; 95% confidence
interval (CI) for the slope, �0.06 to 0.51; P value, 0.05). Incorporation of weight into the
PK model was therefore explored. However, values for log likelihood, Akaike informa-
tion criterion (AIC), and population bias and imprecision were comparable between the
two models. The simple base model was therefore used to describe the data and for the

TABLE 1 Patient demographics

Demographic or clinical characteristica

Value for the group

P valuegVietnam Uganda Combined

Sexb

No. of males 13 8 23
No. of females 10 12 20

Age (yr)c 0.75
Mean 38 33 35
Median 33 33 33
Range 20–73 24–50 20–73

Weight (kg)d 0.23
Mean 46 49 48
Median 45 49 48
Range 32–68 35–60 32–68

BMI (kg/m2)e 0.73
Mean 18 18 18
Median 18 18 18
Range 12–25 15–22 12–25

Creatinine (�mol/liter)b 0.02
Mean 67 81 74
Median 56 79 70
Range 37–167 43–145 37–167

eGFR (ml/min/1.73 m2)f 0.10
Mean 88.3 80.7 84.7
Median 84.8 81.4 84.8
Range 35.4–136.1 49.8–146.7 35.4–146.7

aBMI, body mass index; eGFR, estimated glomerular filtration rate, by Cockcroft-Gault equation.
bn � 43.
cn � 31.
dn � 41.
en � 35.
fn � 33.
gP value for difference between Vietnam and Uganda groups by Mann-Whitney test of significance.
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subsequent simulations. The model comparisons and the fit to data are summarized in
Table 2.

There was no relationship between the Bayesian estimates of clearance and volume
and the covariate of either ethnicity or sex in the base model. The mean (95% CI)
clearance was 0.74 liters/h (0.64 to 0.83 liters/h) and 0.71 liters/h (0.59 to 0.82 liters/h)
for Vietnamese and Ugandan patients, respectively (P � 0.51). The mean (95% CI)
volume was 16.88 liters (14.33 to 19.44 liters) and 19.44 liters (16.88 to 22.0 liters) for
Vietnamese and Ugandan patients, respectively (P � 0.16). In males, the mean (95% CI)
clearance was 0.79 liters/h (0.67 to 0.90 liters/h). In females, clearance was 0.66 liters/h
(0.57 to 0.75 liters/h) (P � 0.09). In males, the mean (95% CI) volume was 18.07 liters
(15.47 to 20.67 liters). In females, the mean volume was 18.07 liters (15.41 to 20.73 liters)
(P � 0.97).

Fluconazole penetration into the CSF. There was large variability in the AUCs
generated from each patient’s posterior estimates. The 38 patients who received 800
mg of fluconazole q24h had a median (interquartile range [IQR]) AUC from 144 to 168
h after treatment initiation (AUC144 –168) of 945.4 (799.2 to 1,139.8) mg · h/liter in plasma
(AUCplasma) and 784.2 mg · h/liter (615.9 to 879.4) in CSF (AUCCSF). From these posterior
estimates, the mean ratio of AUCCSF/AUCplasma was 0.82 (standard deviation, 0.22).

Monte Carlo simulation was used to estimate the distribution of drug exposure for
dosages of 400 mg, 800 mg, 1,200 mg, and 2,000 mg q24h of fluconazole (Fig. 3). PK
variability was marked, both in plasma and CSF. After administration of a dosage of
1,200 mg of fluconazole q24h, the median (IQR) simulated plasma AUC144 –168 was
1,143.2 (988.4 to 1,378.0) mg · h/liter and the CSF AUC144 –168 was 982.9 (781.0 to
1,185.9) mg · h/liter. The mean simulated ratio of AUCCSF/AUCplasma was 0.89 (SD, 0.44).

Probability of target attainment analysis. Monte Carlo simulation was used to
predict the probability of achieving a total drug AUC/MIC ratio of �389.3 in plasma.
This PD target was shown in a murine model of cryptococcal meningitis to be
associated with a stasis endpoint (i.e., no net change in fungal density at the end of the
experiment compared with that at treatment initiation) (11). Only 61% of simulated

FIG 1 Fluconazole concentrations in 43 patients. Black diamonds represent plasma concentrations. White triangles represent CSF
concentrations.
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patients receiving 1,200 mg of fluconazole q24h achieved this PD target when the MIC
for the infecting strain was 2.0 mg/liter. For MICs of �4.0 mg/liter, �1% of simulated
patients administered 1,200 mg q24h achieved the PD target (Fig. 4).

Meta-analysis of clinical outcome data. A systematic review identified 163 rele-
vant manuscripts, of which 11 were duplicates. After reviewing titles and abstracts, 28
studies were deemed potentially relevant for inclusion in the meta-analysis. Detailed
examination of these studies resulted in the ultimate inclusion of 12 papers describing
clinical outcomes from cryptococcal meningitis treated with fluconazole monotherapy.
In total, 28 patients in 1 study received 200 mg of fluconazole q24h (20), 19 patients in
2 studies received 400 mg of fluconazole q24h (7, 21), 97 patients in 3 studies received
800 mg q24h (22–24), 113 patients in 4 studies received 1,200 mg q24h (8, 23–25), and
1 study described outcomes of 16 patients on 1,600 mg (24) and 8 patients on 2 g of
fluconazole q24h (24). All included patients were HIV positive. Baseline characteristics
and reported clinical outcomes are presented in Table 4.

The final model suggests that the combination of dose and baseline fungal burden
explains the total heterogeneity in the estimated proportion of patients with sterile CSF
after 10 weeks of treatment (P value for residual heterogeneity, 0.64). However, there

FIG 2 Scatter plots showing observed-versus-predicted values for the chosen population pharmacokinetic model after the Bayesian step. (A) Population predicted
concentration of fluconazole in plasma. R2 � 0.49; intercept, 2.89 (95% CI, 0.51 to 5.27); slope, 0.89 (95% CI, 0.82 to 0.97). (B) Individual posterior predicted concentration
of fluconazole in plasma. R2 � 0.80; intercept, 0.27 (95% CI, �1.08 to 1.62); slope, 1.03 (95% CI, 0.98 to 1.07). (C) Population predicted concentration of fluconazole
in CSF. R2 � 0.46; intercept, 3.39 (95% CI, �0.09 to 6.87); slope, 1.03 (95% CI, 0.87 to 1.2). (D) Individual posterior predicted concentration of fluconazole in CSF. R2 �
0.81; intercept, �0.07 (95% CI, �1.97 to 1.84); slope, 1.03 (95% CI, 0.95 to 1.10). Circles, dashed lines, and solid lines represent individual observed-predicted data points,
line of identity, and the linear regression of observed-predicted values, respectively. FLC, fluconazole; CI, confidence interval.
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was not a significant relationship between dose and CSF sterility at 8 to 10 weeks (P
value, 0.45). After adjustment for dose, the test for residual heterogeneity in both 2- and
10-week mortality was not significant (P values, 0.70 and 0.22, respectively), indicating
that dose alone adequately explained total heterogeneity in mortality outcomes at
both time points. For both 2- and 10-week mortality outcomes, there was a nonsig-
nificant trend toward reduced mortality with escalating dosage (Fig. 5).

DISCUSSION

Fluconazole is the only drug available for induction therapy for cryptococcal men-
ingitis in many regions of the world where the incidence of disease is highest. An
accumulating body of evidence suggests that fluconazole is a suboptimal agent for this
indication (26). While this has long been recognized, an explanation for the relatively
poor efficacy of fluconazole is absent. This study presents a uniquely comprehensive
clinical data set describing the PK of fluconazole. It provides robust estimates of CNS
penetration and the variability of those estimates. A high degree of CNS partitioning
has been observed in previous clinical studies with fluconazole (19, 27). Distribution
into the CNS is facilitated by low molecular weight, low protein binding, and moderate
lipophilicity (15, 28). Fluconazole has proven activity against Cryptococcus neoformans
(29, 30). This study provides a further understanding as to why, despite these attributes,
fluconazole is inferior to amphotericin B deoxycholate as an agent for induction
monotherapy for cryptococcal meningitis (6–8).

In contrast to previous studies of fluconazole PK (31–33), our data do not suggest a

TABLE 2 Evaluation of the predictive performance of the considered and final models

Model and measured
compartmenta Log likelihood AICb Population bias

Population
imprecision

Linear regression of
observed-predicted values for
each patient

P valuedR2c Intercept Slope

Model 1
Plasma �2,451 4,928 0.20 2.21 0.80 0.27 1.03 0.56
CSF �0.30 1.55 0.81 �0.07 1.03

Model 2
Plasma �2,413 4,854 0.36 2.38 0.80 0.01 1.03
CSF �0.41 1.81 0.80 0.89 1.01

aModel 1 did not include any covariates. Model 2 incorporated a function to scale the volume of distribution in central compartment to patient weight.
bAIC, Akaike information criterion.
cRelative to the regression line fitted for the observed-versus-predicted values after the Bayesian step.
dComparison of the joint distribution of population parameter values for each model.

TABLE 3 Population parameter estimates from the final 4-compartment pharmacokinetic
model

Parametera Mean Median SD

Ka (h�1) 8.78 1.73 11.98
SCL/F (liters/h) 0.72 0.65 0.24
Vc/F (liters) 18.07 17.41 6.31
Kcp (h�1) 12.20 8.36 11.17
Kpc (h�1) 18.10 18.34 8.25
ICgut (mg) 34.67 49.99 22.74
ICcentral (mg) 35.86 49.98 19.67
ICCNS (mg) 31.06 49.96 23.47
ICperipheral (mg) 34.29 49.96 13.21
Kcs (h�1) 35.43 42.55 13.74
Ksc (h�1) 28.63 29.04 10.03
Vcns/F (liters) 32.07 30.49 17.60
aSCL, clearance; Vc, volume of distribution in central compartment; F, bioavailability; Kcp, first-order rate
constant from the central to peripheral compartment; Kpc, first-order rate constant from the peripheral to
central compartment; IC, initial condition in the respective compartment; Kcs, first-order rate constant from
the central to CNS compartment; Ksc, first-order rate constant from CNS to central compartment; Vcns,
volume of distribution in CNS compartment.
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significant relationship between fluconazole clearance and creatinine clearance nor
between patient weight and volume of distribution. The reason for this is not imme-
diately clear but may relate to the relatively narrow range of creatinine clearance in our
population and the fact that the vast majority of patients in our cohort had low body
weight, with the range of this covariate also being relatively narrow.

The PK model suggests that current regimens of fluconazole are inadequate for
induction therapy for cryptococcal meningitis. This has routinely been ascribed to the

FIG 3 AUC distributions in 5,000 simulated patients at escalating fluconazole dosages. Light gray bars indicate simulated plasma AUC144 –168. Dark
gray bars indicate simulated CSF AUC144 –168.

FIG 4 Probability of pharmacodynamic target attainment in plasma as a function of isolate MIC and
fluconazole dosage. Each line represents the proportion of 5,000 simulated patients that achieve the PD
target at the respective dosage (in milligrams) of fluconazole. The PD target was a plasma AUC/MIC ratio
of �389.3. Bars show the proportion of WT strains of C. neoformans at the indicated MIC.
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overly simplistic notion that fluconazole is a fungistatic agent. Our analyses provide
further insight into the limitations of this drug. Previous estimates of fluconazole
CNS/plasma partition ratios have ranged from 0.52 to 1.33 (18, 19, 27, 34). We have
extended these estimates by rigorously quantifying the marked variability in the CSF
PK. This variability has consequences at both microbiological and clinical levels. Sub-
optimal exposure of fluconazole promotes the expansion of intrinsically resistant
cryptococcal subpopulations present at the initiation of therapy (35). In addition, the
evolution of C. neoformans during therapy to become increasingly triazole resistant has

FIG 5 Meta-analysis of clinical trials of fluconazole monotherapy showing dose-adjusted effects on
2-week mortality (A) and 10-week mortality (B). Right-hand columns provide observed and estimated
proportions of patients dead at the indicated time.

Plasma and CSF Pharmacokinetics of Fluconazole Antimicrobial Agents and Chemotherapy

September 2018 Volume 62 Issue 9 e00885-18 aac.asm.org 9

https://aac.asm.org


been demonstrated in clinical studies (36, 37). To be clinically effective, adequate
concentrations of drug must be present at the site of infection for long enough to exert
an antimicrobial effect on both susceptible and resistant subpopulations. The present
analysis demonstrates the challenges in achieving that aim.

At the recommended fluconazole dosage of 1,200 mg q24h, the probability of PD
target attainment (PTA) bisects the MIC distribution for wild-type (WT) C. neoformans
isolates. This is consistent with the findings of Sudan et al. (11). Approximately half of
patients will fail therapy because they are not able to generate the drug exposure
required to prevent progressive fungal growth. Since clinical PK-PD targets are not
available for fluconazole in cryptococcal meningitis, we have used a target derived from
a murine study (11). This assumes that CNS partitioning is the same in mice and
humans. The cerebrum/plasma AUC ratio in the murine study was 46.9% (11). It is
conceivable that this is in keeping with our CSF/plasma AUC ratio of 82% though clearly
it would be preferable to have clinical PK-PD targets defined. Nevertheless, our PTA
analysis is supported by the 53% 10-week mortality outcomes for patients receiving
1,200 mg of fluconazole q24h, estimated in the meta-analysis. Importantly, such PTA
analyses are based on an AUC/MIC of 389.3, which is more than an order of magnitude
greater than the AUC/MIC ratio required for Candida albicans (12).

Progressive escalation of the dosage of fluconazole is not likely to be an effective
strategy for improving cryptococcal meningitis induction therapy. The drug expo-
sure required to reliably treat isolates with MICs of �4.0 mg/liter is difficult to
achieve and potentially toxic. Our meta-analysis suggests that escalating dosages of
fluconazole do not increase the proportion of patients with sterile CSF at 10 weeks.
Dosages of 2,000 mg q24h do not appear to significantly improve 10-week mortality
outcomes in comparison to a dose of 1,200 mg q24h. The AIDS Clinical Trials Group
(ACTG) study (https://clinicaltrials.gov/show/NCT00885703) is investigating the use of
higher dosages of fluconazole (1,600 mg and 2,000 mg q24h) for the treatment of
cryptococcal meningitis in HIV-infected individuals, and results are pending. The addition of
flucytosine to high-dose fluconazole (�1,200 mg q24h) for cryptococcal meningitis in-
creases antifungal activity and improves mortality outcomes (8, 24), suggesting that com-
bination therapy is required to optimize antifungal activity in fluconazole-containing reg-
imens.

In summary, this study provides part of the pharmacodynamic rationale for the
long-recognized fact that fluconazole monotherapy is an ineffective induction
regimen for cryptococcal meningitis. We have developed a fluconazole population
PK model that suggests that approximately half of patients with cryptococcal
meningitis caused by WT strains of C. neoformans will be undertreated by currently
recommended dosages of fluconazole for induction therapy. In doing so, we have
addressed a knowledge gap regarding the reason for the inferiority of this drug for
cryptococcal meningitis. There is a pressing need for improved provision of afford-
able combination treatments and development of more effective drugs.

MATERIALS AND METHODS
Clinical pharmacokinetic studies. Patients from whom plasma and CSF samples were obtained for

this PK study have been described previously (38). Briefly, adult patients (n � 3) were initially recruited
from a multicenter randomized controlled trial of adjuvant dexamethasone in HIV-associated cryptococ-
cal meningitis. The trial is reported elsewhere (International Standard Registered Clinical Number
59144167) (38). Following the early cessation of this trial, patients were recruited from a prospective
descriptive study at the same sites (n � 40). Study sites were The Hospital for Tropical Diseases in Ho Chi
Minh City, Vietnam, and Masaka General Hospital, Uganda. The study protocols were approved by the
relevant institutional review boards and regulatory authorities at each trial site and by the Oxford
University Tropical Research Ethics Committee.

Fluconazole was administered orally. In cases where the conscious level of the patient did not enable
oral administration, fluconazole was administered via nasogastric tube. The majority of patients received
800 mg of fluconazole q24h. Two patients received one-off doses of 400 mg q24h. Two received one-off
doses of 600 mg q24h. One patient’s regimen of 800 mg of fluconazole q24h was escalated to 1,200 mg
q24h for 6 days from day 8 of treatment. All patients received combination therapy with amphotericin
B deoxycholate at 1 mg per kg infused over 5 to 6 h.
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Measurement of fluconazole concentrations. Fluconazole concentrations were measured using a
validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology (1260 Agilent
UPLC [ultra-performance liquid chromatograph] coupled to an Agilent 6420 Triple Quad mass spectrom-
eter; Agilent Technologies UK, Ltd., Cheshire, United Kingdom). Briefly, fluconazole was extracted by
protein precipitation; 300 �l of cold methanol containing the internal standard fluconazole-D4 at 0.625
mg/liter (TRC, Canada) was added to 10 �l of sample (plasma or CSF). The solution was vortex mixed for
5 s and filtered through a Sirocco precipitation plate (Waters, Ltd., Cheshire, United Kingdom). Super-
natant (150 �l) was transferred to a 96-well auto sampler plate, and 3 �l was injected on an Agilent
Zorbax C18 Rapid Resolution High Definition (RRHD) column (2.1 by 50 mm; particle size, 1.8 �m) (Agilent
Technologies UK, Ltd., Cheshire, United Kingdom).

Chromatographic separation was achieved using a gradient consisting of 70% A/30% B (0.1% formic
acid in water as mobile phase A and 0.1% formic acid in methanol as mobile phase B). The organic phase
was increased to 100% over 90 s, with an additional 90 s of equilibration.

The mass spectrometer was operated in multiple-reaction-monitoring scan mode in positive polarity.
The precursor ions were 307.11 m/z and 311.1 m/z for fluconazole and the internal standard, respectively.
The product ions for fluconazole were 220.1 m/z and 238.1 m/z; for the internal standard the product ions
were 223.2 m/z and 242.1 m/z. The source parameters were set as follows: capillary voltage, 4,000 V; gas
temperature, 300°C; and nebulizer gas, 15 lb/in2.

The standard curve for fluconazole encompassed the concentration range of 1 to 120 mg/liter and
was constructed using blank matrix. The limit of quantitation was 1 mg/liter. In plasma, the intraday
coefficient of variation (CV) was �3.4%, and the interday CV was �6.7% over the concentration range of
1 to 90 mg/liter. In CSF, the intraday CV was �5.2%, and the interday CV was �5.3% over the same
concentration range.

Population pharmacokinetic modeling. The concentration-time data for fluconazole in plasma and
CSF were analyzed using the nonparametric adaptive grid (NPAG) algorithm of the program Pmetrics
(39), version 1.5.0, for the R statistical package, version 3.1.1. The initial PK mathematical model fitted to
the data contained four compartments and took the following form:

dX(1)

dt
� �Ka � X(1) (1)

dX(2)

dt
� Ka � X(1) � �Kcp � Kcs �

SCL

V � � X(2) � Ksc � X(3) � Kpc � X(4) (2)

dX(3)

dt
� Kcs � X(2) � Ksc � X(3) (3)

dX(4)

dt
� Kcp � X(2) � Kpc � X(4) (4)

Y(1) � X(2) ⁄ V (5)

Y(2) � X(3) ⁄ Vcns (6)

where equations 1, 2, 3, and 4 describe the rate of change in amount of drug in milligrams in the gut,
central, CSF, and peripheral compartments, respectively. Ka is the absorption rate constant from the gut
to the central compartment. X(1), X(2), X(3), and X(4) are the amounts of fluconazole (in milligrams) in the
gut, central (c), CSF (s) and peripheral compartments (p), respectively. Kcp, Kpc, Kcs, and Ksc represent
first-order transfer constants connecting the various compartments. SCL is the first-order clearance of
drug (liters/hour) from the central compartment. V is the volume of the central compartment. The CSF
compartment [X(3)] has an apparent CSF volume (Vcns), given in liters. Equations 5 and 6 are the output
equations describing fluconazole levels in the central and CSF compartments, respectively. The output
in each compartment is denoted Y.

Model error was attributed separately to process noise (including errors in sampling times or dosing)
and assay variance. Process noise was modeled using lambda, an additive error term. The data were
weighted by the inverse of the estimated assay variance.

The data for some patients indicated that they had taken fluconazole at an undocumented time prior
to study enrollment since there was detectable drug in the first PK sample. To accommodate this,
nonzero initial conditions of all four compartments were estimated in the structural model. A switch was
coded whereby the parameterized estimate of each initial condition was multiplied by a binary covariate
equal to 1 when fluconazole was detected in the first PK sample or by 0 when no fluconazole was
detected in the first PK sample.

Population pharmacokinetic covariate screening. The impacts of patient weight, BMI, sex, eth-
nicity, and baseline eGFR on the PK of fluconazole were investigated. Bidirectional stepwise multivariate
linear regression was employed to assess the relationship between each covariate and the Bayesian
estimates for volume of distribution and clearance from the central compartment from the standard
population PK model. Covariates that were retained with significant multivariate P values (�0.05) in the
regression model were explored individually. The relationship between retained continuous covariates
and Bayesian estimates of PK parameters was explored using univariate linear regression. The difference
between Bayesian estimates of volume and clearance according to categorical covariates (sex and
ethnicity) was compared using a Mann-Whitney test.

Population pharmacokinetic model diagnostics. The fit of the model to the data was assessed by
visual inspection of diagnostic scatterplots displaying observed-versus-predicted values before and after
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the Bayesian step. Linear regression was performed, and the coefficient of determination, intercept, and
regression slope were noted for each model. In addition, the log-likelihood value, Akaike information
criterion (AIC), mean weighted error (a measure of bias), and bias-adjusted, mean weighted squared error
(a measure of precision) were calculated and compared for each model.

Monte Carlo simulation and calculation of probability of target attainment. Monte Carlo
simulation (n � 5,000) was performed in Pmetrics (39). The support points from the final joint density
were used. For the simulations, the initial conditions of all compartments were defaulted to zero.
Fluconazole was administered at a range of dosages: 400 mg q24h, 800 mg q24h, 1,200 mg q24h, and
2,000 mg q24h. The plasma and CSF AUC values for fluconazole were calculated using trapezoidal
approximation after the sixth dose, from 144 to 168 h after treatment initiation.

Wild-type fluconazole MIC data were obtained from a previously published collection of 5,733 C.
neoformans isolates estimated using Clinical and Laboratory Standards Institute (CLSI) methodology (40).
The modal MIC was 4 mg/liter (1,629 of 5,733 strains; 28%). Almost half of strains had MICs of �4 mg/liter
(2,834 of 5,733 strains; 49%). The epidemiological cutoff value for C. neoformans versus fluconazole was
8 mg/liter. This collection of strains included molecular types VNI to VNIV, and the patterns of MIC
distribution were comparable across all molecular types (40). The proportion of simulated patients that
would achieve a previously published plasma AUC/MIC target of 389.3 was determined. This target was
defined as the magnitude of drug exposure required for fungal stasis (defined as prevention of
progressive fungal growth) in a murine study that employed CLSI methodology (11). To our knowledge,
no CSF PK/PD target has been defined in preclinical or clinical studies of fluconazole for cryptococcal
meningitis. In the present study, the probability of attaining this plasma PK/PD target was examined at
each simulated fluconazole dose.

Meta-analysis of clinical outcome data. The AUC/MIC target used in the probability of target
attainment analysis was derived from murine studies. To enhance clinical relevance, we sought PD data
from humans. The PD data from patients in the present PK study are confounded by the coadministration
of amphotericin B deoxycholate. For this reason, a search for clinical trials of fluconazole monotherapy
for cryptococcal meningitis was performed. The electronic databases Pubmed and Medline were
searched on 31 January 2018 using the terms “fluconazole” and “cryptococcal meningitis.” Preclinical
studies and case reports were excluded. To reduce potential heterogeneity, only studies of HIV-positive
participants were included in the meta-analysis. Baseline variables were chosen a priori for extraction
from the studies if they had previously been determined to have a significant impact on clinical outcome.
These were mental status, CSF fungal burden, and patient age (6, 41). Where it was not reported, baseline
CSF fungal burden was extrapolated from CSF cryptococcal antigen titer according to a correlation
published by Jarvis et al. (6).

For consistency with the literature, we collected data on clinical outcomes commonly presented in
cryptococcal meningitis trials: CSF sterility at 8 to 10 weeks, 2-week mortality, and 10-week mortality.
Mixed-effects meta-analysis adjusted for fluconazole dosage was performed. Fungal burden in CSF, CD4
count, and proportion of patients with reduced Glasgow coma score (GCS) at baseline were explored to
assess the degree to which these modifiers accounted for interstudy heterogeneity in clinical outcome.
The mixed-effects model took the form: 	i � 
0 � 
1Zi1 � . . . � 
1Zij � ui, where 	i is the corresponding
(unknown) true effect of the ith study, Zij is the value of the jth moderator variable for the ith study with
corresponding model coefficients 
, and ui are study-specific random effects such that ui � N(0,�2). Here,
N indicates that the random effects are normally distributed, 0 is the mean of the random effects, and
�2 denotes the amount of residual heterogeneity, estimated using the DerSimonian-Laird estimator (42).
Additional model parameters were estimated via weighted least squares with weights relative to the
estimated �2. The null hypothesis H0:�2 � 0 was tested using Cochran’s Q-test, and model parameters were
tested with the Wald-type test statistic.
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