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Abstract: Hepatic stellate cells (HSC) are the major cellular drivers of liver fibrosis. Upon liver
inflammation caused by a broad range of insults including non-alcoholic fatty liver, HSC trans-
form from a quiescent into a proliferating, fibrotic phenotype. Although much is known about
the pathophysiology of this process, exact cellular processes which occur in HSC and enable this
transformation remain yet to be elucidated. In order to investigate this HSC transformation, we
employed a simple, yet reliable model of HSC activation via an increase in growth medium serum
concentration (serum activation). For that purpose, immortalized human LX-2 HSC were exposed
to either 1% or 10% fetal bovine serum (FBS). Resulting quiescent (1% FBS) and activated (10% FBS)
LX-2 cells were then subjected to in-depth mass spectrometry-based proteomics analysis as well as
comprehensive phenotyping. Protein network analysis of activated LX-2 cells revealed an increase
in the production of ribosomal proteins and proteins related to cell cycle control and migration,
resulting in higher proliferation and faster migration phenotypes. Interestingly, we also observed a
decrease in the expression of cholesterol and fatty acid biosynthesis proteins in accordance with a
concomitant loss of cytosolic lipid droplets during activation. Overall, this work provides an update
on HSC activation characteristics using contemporary proteomic and bioinformatic analyses and
presents an accessible model for HSC activation. Data are available via ProteomeXchange with
identifier PXD029121.
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1. Introduction

Liver fibrosis is the replacement of parenchymal liver tissue by non-parenchymal scar
tissue [1]. This process mostly occurs due to liver inflammation from alcohol abuse [2],
viral infection [3], or a non-alcoholic fatty liver [4]. In early stages, liver fibrosis is reversible
upon treatment of the underlying etiology [5]. If left untreated liver fibrosis can progress
to more severe conditions like cirrhosis and liver cancer [6]. However, there is still no
approved treatment for the progression of fibrosis other than the removal of the source of
inflammation [7].

Most fibrotic tissue generation can be attributed to a specialized cell type in the liver,
the hepatic stellate cells (HSC) [8]. Under healthy liver conditions, these non-parenchymal
cells merely act as a storage buffer for retinol (vitamin A), which is deposited as retinylesters
in cytosolic lipid droplets (LD) [9]. Upon sustained liver inflammation, HSC transform
from a quiescent (resting) phenotype towards a myofibroblast-like phenotype [1]. This
transformation, termed “activation”, is a key event in liver fibrosis [10]. HSC display
distinct characteristic changes during activation, which allows them to proliferate at an
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increased rate [11], migrate [12] towards the site of liver damage, lose their LD and increase
their production of fibrotic proteins [13]. If we can improve our understanding of the
cellular and molecular processes involved in HSC activation, we might identify targets to
revert HSC to their quiescent phenotype, therefore alleviating fibrosis in a damaged liver.

Immortalized human HSC cell lines, which closely reflect primary HSC in vivo, are
widely available [14]. These cell lines allow for accessible in-depth mechanistic investiga-
tions without the use of cancer cell lines or animal models. Often these HSC cell lines are
treated with CCl4 or TGF-β to induce activation in vitro [15]. We chose a well described
HSC cell line developed in 2005, termed Lieming Xu 2 (LX-2) [16], which displays a low
activation (quiescent) state under low serum conditions [17]. The addition of serum acti-
vates LX-2 cells [17–19], making it an accessible model for studying HSC activation without
the need for CCl4 or TGF-β. It is noteworthy to add that LX-2 cells never achieve a fully
quiescent state when grown on plastic dishes [16].

Using several in vitro assays combined with proteomic and ontological characteri-
zation of LX-2 cells, we here report an in-depth analysis of serum LX-2 activation. We
demonstrate that the phenotype of serum activated LX-2 cells is in line with other activation
techniques and provide a comprehensive overview of changes that occur on protein expres-
sion level during the process of activation. Lastly, we highlight the underlying metabolic
changes during HSC activation, such as deregulation of lipid and cholesterol metabolism.

2. Results
2.1. Hepatic Stellate Cells Are Activated by Fetal Bovine Serum

The LX-2 cell line shows characteristic features of primary HSC in vivo and displays a
quiescent phenotype in growth medium with low serum concentrations but gets activated
in high serum concentrations [16]. We here employed this easy and robust approach to
study changes between quiescent and activated LX-2 cells.

We treated LX-2 cells with either 1% or 10% FBS for 24 h. Their activation status was
confirmed by investigation of α-smooth muscle actin (α-SMA; Figure 1), a protein highly
expressed in activated HSC which enhances the contractility of cells [20] and has been
prominently featured as a reliable marker for HSC activation [20–22].

Indeed, we observed a strong upregulation in α-SMA protein expression upon in-
creased serum concentration in the growth medium (Figure 1A). We next investigated
whether the serum activation of LX-2 cells was reversible. For this, we incubated LX-2 cells
in 10% FBS containing DMEM for 24 h, replaced the media with 1% FBS containing DMEM
for additional 24 h and subsequently analyzed the expression of α-SMA. Figure 1B suggests
that LX-2 cells can switch back from their activated to their quiescent state, depending on
the serum concentration in the medium. In addition to α-SMA, activated HSC produce
increased amounts of extracellular matrix (ECM) proteins, such as collagen [23,24]. Collagen
1 α1 (COL1A1) is frequently used as a marker for fibrosis [25] and therefore can also be
used to indicate the activation status of HSC. Correspondingly, LX-2 cells indeed showed
increased deposition of COL1A1 protein upon serum activation for 24 h (Figure 1C).

2.2. Serum Activated Hepatic Stellate Cells Show a Phenotype Characteristic of Activated Hepatic
Stellate Cells

We next analyzed the phenotype of activated LX-2 cells. During activation, HSC
transform into a myofibroblast-like phenotype, which is accompanied by an increased
growth rate [11], enhanced migration [12], and the loss of LD volume [26]. We saw enhanced
growth of LX-2 cells upon an increase in serum concentration after 48 h (Figure 2A).
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Figure 1. LX-2 HSC activation by serum. (A) α-SMA protein expression of LX-2 cells under low (1% FBS) or high (10% 
FBS) serum concentration. Vinculin was used as loading control. (B) α-SMA protein expression of LX-2 cells incubated in 
10% FBS for 24 h, then for additional 24 h in either 1% FBS (10% FBS to 1 % FBS) or 10% FBS (10% FBS to 10% FBS). Vinculin 
was used as loading control. (C) COL1A1 protein expression of LX-2 cells under low (1% FBS) or high (10% FBS) serum 
concentration. One additional band can be seen at ~200 kDa, which was not used for quantification. Loading control was 
β-actin. ** p < 0.01; *** p < 0.001, unpaired t-test, two-sided. 
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enhanced growth of LX-2 cells upon an increase in serum concentration after 48 h (Figure 
2A). 

Furthermore, we tested the migratory properties of activated LX-2 cells. We first 
performed a gap closure assay (scratch assay) where LX-2 cells must migrate in order to 
close a gap between confluent cell batches. To suppress serum-driven proliferation effects, 
we pre-incubated both conditions in 1% FBS and replaced the growth media by fresh 1% 
or 10% FBS containing DMEM at timepoint 0 h. We then monitored migration of cells for 
the period of only 14 h during which no growth difference was observed (Figure 2A). The 
difference in growth was prominent only after 48 h in culture (Figure 1A). As expected, 
serum activated LX-2 cells migrated faster, leading to quicker gap closure (Figure 2B). 
Faster migration was further corroborated by performing a transwell migration assay. For 
this purpose, LX-2 cells were seeded onto porous transwells at 1% or 10% FBS. Serum 
activated LX-2 cells showed enhanced migration to the lower side of the membrane after 
24 h (Figure 2C). 

We also investigated whether serum activation of LX-2 cells was accompanied by 
loss of LD. In order to induce LD formation, LX-2 were first incubated in 200 µM oleic 
acid at 1% FBS for 24 h and then treated with either 1% or 10% FBS containing DMEM for 
additional 48 h. We observed a decline in LD volume in serum activated LX-2 cells (Figure 

Figure 1. LX-2 HSC activation by serum. (A) α-SMA protein expression of LX-2 cells under low (1% FBS) or high (10% FBS)
serum concentration. Vinculin was used as loading control. (B) α-SMA protein expression of LX-2 cells incubated in 10%
FBS for 24 h, then for additional 24 h in either 1% FBS (10% FBS to 1 % FBS) or 10% FBS (10% FBS to 10% FBS). Vinculin
was used as loading control. (C) COL1A1 protein expression of LX-2 cells under low (1% FBS) or high (10% FBS) serum
concentration. One additional band can be seen at ~200 kDa, which was not used for quantification. Loading control was
β-actin. ** p < 0.01; *** p < 0.001, unpaired t-test, two-sided.

Furthermore, we tested the migratory properties of activated LX-2 cells. We first
performed a gap closure assay (scratch assay) where LX-2 cells must migrate in order to
close a gap between confluent cell batches. To suppress serum-driven proliferation effects,
we pre-incubated both conditions in 1% FBS and replaced the growth media by fresh
1% or 10% FBS containing DMEM at timepoint 0 h. We then monitored migration of cells
for the period of only 14 h during which no growth difference was observed (Figure 2A).
The difference in growth was prominent only after 48 h in culture (Figure 1A). As expected,
serum activated LX-2 cells migrated faster, leading to quicker gap closure (Figure 2B).
Faster migration was further corroborated by performing a transwell migration assay. For
this purpose, LX-2 cells were seeded onto porous transwells at 1% or 10% FBS. Serum
activated LX-2 cells showed enhanced migration to the lower side of the membrane after
24 h (Figure 2C).

We also investigated whether serum activation of LX-2 cells was accompanied by
loss of LD. In order to induce LD formation, LX-2 were first incubated in 200 µM oleic
acid at 1% FBS for 24 h and then treated with either 1% or 10% FBS containing DMEM
for additional 48 h. We observed a decline in LD volume in serum activated LX-2 cells
(Figure 2D). Furthermore, LD in serum activated LX-2 cells appeared to be smaller in
accordance with [27].

Altogether, these findings confirm serum activation of LX-2 cells as an accessible
option for studying the activated phenotype of HSC in vitro.
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the proteome of serum activated LX-2 cells. After treatment of LX-2 cells with either 1% 
or 10% FBS for 48 h, cells were harvested and subjected to shotgun proteomics. As a result, 
we quantified 4598 proteins across six biological replicates per treatment group (quiescent 
or activated). The protein list was filtered to keep only those proteins quantified in all six 
replicates in at least one of the treatment groups. The resulting protein matrix comprised 
of 3163 proteins (Supplementary Table S1) was subjected to statistical analysis. A Pearson 
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separation between serum activated and quiescent LX-2 cells (Figure 3A). 
Correspondingly, as shown in the volcano blot in Figure 3B, serum activated LX-2 cells 

Figure 2. Effect of serum activation on LX-2 cell phenotype. (A) Relative proliferation of LX-2 cells under low (1% FBS) or
high (10% FBS) serum concentrations, normalized to 0 h. (B) Left: gap closure assay of LX-2 cells in either 1% FBS or 10%
FBS after 0 h and 14 h. Right: Quantification of gap closure rate where the increase of occupied space is measured against
time and plotted as slope (normalized to 1 % FBS). Higher values represent faster migration. (C) Transwell migration of
LX-2 cells through a membrane in either 1% FBS or 10% FBS after 24 h. These images show the underside of the membrane
and therefore only migrated cells stained purple. (D) Left, both images: lipid droplets (BOPIPY, green) and nuclei (DAPI,
blue) staining of LX-2 cells shown as maximum intensity Z-projection. Right: Quantification of lipid droplet volume per cell.
* p < 0.05; *** p < 0.001, unpaired t-test, two-sided.

2.3. Proteomic Analysis of Serum Activated Hepatic Stellate Cells Reveals Changes of Several Key
Cellular Pathways

To reveal global changes on protein level induced by HSC activation we examined
the proteome of serum activated LX-2 cells. After treatment of LX-2 cells with either 1% or
10% FBS for 48 h, cells were harvested and subjected to shotgun proteomics. As a result,
we quantified 4598 proteins across six biological replicates per treatment group (quiescent
or activated). The protein list was filtered to keep only those proteins quantified in all six
replicates in at least one of the treatment groups. The resulting protein matrix comprised
of 3163 proteins (Supplementary Table S1) was subjected to statistical analysis. A Pearson
correlation coefficient heatmap of our six replicates can be seen in Supplementary Figure S1.

Principal component analysis (PCA) of the proteomics dataset revealed a clear sep-
aration between serum activated and quiescent LX-2 cells (Figure 3A). Correspondingly,
as shown in the volcano blot in Figure 3B, serum activated LX-2 cells undergo a massive
change to their proteome during activation; in numbers: 465 proteins were highly signifi-
cantly up- or downregulated (two-sample t-test, two-sided, S0 = 0.1, permutation-based
false discovery rate (FDR) = 0.05, 250 randomizations). In accordance with the observed
phenotypes, activated stellate cells had a higher abundance of proteins involved in mi-
gration (e.g., fibronectin 1 FN1, angio-associated migratory cell protein AAMP, Figure 3B,
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marked in purple), reduced levels of proteins involved in lipid biosynthesis (e.g., FASN,
CYP51A1, Figure 3B, marked in red) and a prominent up-regulation of ribosomal proteins
(Figure 3B, marked in blue).

2.3.1. Serum Activated Hepatic Stellate Cells Show Increased Ribosome Biogenesis, Cell
Cycle, Cell Migration and Oxidative Stress Related Proteins

To gain an overview of metabolic pathways and protein classes affected by serum acti-
vation we used significantly changed proteins as input for protein network and functional
enrichment analysis using the STRING [28] database for analysis and Cytoscape [29] for vi-
sualization (Figure 4). As one of the most prominently enriched clusters in serum activated
LX-2 cells we identified ribosome biogenesis related proteins, including small ribosomal
proteins (RPS) as well as large ribosomal subunit proteins (RPL) (gene ontology (GO) pro-
cess ribosome biogenesis GO:0042254, 49 enriched genes out of 270 pathway genes, FDR:
3.2 × 10−4 for proteins with enrichment values, enrichment score: 1.02665; Figure 4A).
Additionally, we identified 32 proteins involved in rRNA processing (GO:0006364), of
which 31 were upregulated in serum activated cells (Supplementary Figure S2A).

Furthermore, we also observed increased expression of Golgi-ER traffic related pro-
teins (Tubulin beta-8 chain TUBB8, Arfaptin-2 ARFIP2, Golgi SNAP receptor complex
member 1 GOSR1; see Supplementary Table S2). These findings are in line with the
observation of increased ECM protein production (see Figure 1C).

Additionally, upregulated proteins in serum activated LX-2 cells like cell division
protein kinase 6 (CDK6) or kinetochore protein Spc24 (SPC24) imply an upregulation of
the cell cycle (Figure 3B, green dots), which can also be seen in Figure 2A where we show
increased proliferation in serum activated LX-2 cells. In line with these findings, we found
upregulated nucleotide biosynthesis proteins in activated HSC (Figure 3B, black dots).

Interestingly, proteins related to cellular stress response like glutathione peroxidase 1
(GPX1), and GPX4 are highly upregulated in serum activated LX-2 cells (Figure 3B, grey).
Glutathione peroxidases were shown to reduce oxidative stress in HSC [30].
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Proteomic network analysis also suggested increased expression of proteins related
to cell migration, including the aforementioned AAMP and FN1 in serum activated LX-2
cells. Although STRING functional enrichment analysis with values/ranks did not identify
cell migration to be significantly enriched, 27 out of 37 matched proteins involved in this
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GO term were found significantly upregulated. (Figure 4B; cell migration GO process
GO:0016477, 37 enriched genes out of 812 pathway genes, FDR: 0.0151 for upregulated
proteins only, network strength: 0.35). This observation is in line with the phenotype we
describe in chapter 2.1.1 and Figure 2B,C.

2.3.2. Activated Hepatic Stellate Cells Show a Decrease in Fatty Acid and
Cholesterol Biosynthesis

Interestingly, lipid biosynthetic processes were found to be downregulated in serum
activated LX-2 cells (GO process GO:0008610, 30 enriched genes out of 585 pathway genes,
FDR: 2.8 × 10−4 for proteins with enrichment values, enrichment score: 2.08448), including
all fatty acid desaturases (SCD (being the most downregulated protein (6-fold)), FADS1,
FADS2), acetyl-CoA-carboxylase 1 (ACACA), and fatty acid synthase (FASN; Figure 4C).
Some of these findings are in accordance with previous reports as FASN downregulation
was already reported on mRNA level in activated (10 % FBS) as compared to quiescent
(2 % FBS) LX-2 cells [18]. These observations are in accordance with the LD volume
changes described in chapter 2.1.1 and Figure 2D. However, not only fatty acid de-novo
synthesis and desaturation were affected during activation. Cholesterol biosynthesis was
another prominently downregulated pathway in activated HSC (GO process GO:0006695,
14 enriched genes out of 41 pathway genes, FDR: 7.4 × 10−3 for proteins with enrichment
values, enrichment score: 2.62406). In addition, lipid transport proteins were reduced,
e.g., apolipoprotein M (APOM) and low-density lipoprotein receptor (LDLR), see Figure 3B,
red dots.

Overall, the proteomic alterations suggest several metabolic changes. Additionally, we
identified a downregulation of glucose transporter SLC2A1 in serum activated LX-2 cells,
see Figure 3B, yellow dots, suggesting decreased glucose uptake. Lastly, we also detected
changes in abundance of several ECM proteins (Supplementary Table S1). However, we
could not identify upregulation of COL1A1 like we see in our western blot (Figure 1C)
or a clear trend in the expression of other collagen proteins in our proteomics dataset
(Supplementary Table S1). One reason for this might be the proteomics sample preparation:
while for western blot analysis trypsin was used for cell harvest, for proteomics analysis
physical detachment using cell scrapers was applied. This might suggest that cell scraping
does not assure a quantitative collection of collagen proteins. Additionally, crosslinked
ECM proteins with low solubility are notoriously difficult to quantify using proteomics [31].
Despite this, we could identify many higher expressed regulators of ECM production,
including fibulin-2 (FBLN2) and pleckstrin homology domain-containing family A member
2 (PLEKHA2) in serum activated LX-2 cells (Figure 3B, dark red dots). Additional STRING
gene-ontology-enrichment analysis results are summarized in Figure A1.

3. Discussion

Activation of HSC is a well described phenomenon and key event in liver fibrosis [8].
This transformation process involves major changes to the phenotype and the proteome
of the cells. In this study, we describe a robust and accessible model of HSC activation
and characterize it in depth by phenotypic, proteomic, and gene ontology enrichment
analyses. Combined, our data confirms and adds on observations in activated HSC in vivo
and in vitro and suggests additional pathways involved in or affected by HSC activation.

Even though serum activation of human LX-2 cells has been used a number of times
before [18,19,32–35] it has not yet been characterized in depth with regard to changes
in gene and protein expression compared to rat HSC serum activation [36]. Therefore,
we first confirmed that the addition of FBS to growth media is both an easy and reliable
way to activate LX-2 cells. Both α-SMA, as well as COL1A1 expression changes suggested
prominent activation of LX-2 cells under high serum conditions (Figure 1A,C). Additionally,
LX-2 serum activation appeared to be reversible (Figure 1B).

We further characterized serum activated LX-2 cells by investigating several prominent
phenotypical changes described previously. Activated HSC have been reported to show
increased proliferation rates similar to myofibroblasts during wound healing [11]. We
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confirm this property: Serum activated LX-2 cells proliferated significantly faster after 48 h
in culture (Figure 2A). During activation, HSC also have been shown to gain enhanced
migratory properties helping them move towards the site of injury [12]. We also confirm
this observation using both gap closure (Figure 2B) and transwell (Figure 2C) migration
tests with serum activated LX-2 cells migrating significantly faster in both cases. Lastly,
since HSC have been described as losing most of their cytosolic LD during activation [26],
we compared the cellular LD volume of serum activated vs. quiescent LX-2 cells. Serum
activated LX-2 cells indeed lost most of their LD volume compared to quiescent LX-2 cells
(Figure 2D). Taken together, the serum activated LX-2 cell model appears to provide an
accurate representation of the phenotype shown by activated HSC in vitro.

We further investigated changes to the proteome of the HSC during activation. Prior
work on the activated HSC proteome revealed enhanced ECM organization in LX-2
cells [37] and increased proliferation and migration, as well as decreased lipid metabolism
in activated rat HSC [38]. Our analysis showed that many of the phenotypical changes
during activation are also represented in the proteome of LX-2 cells. We discovered en-
hanced ribosomal biogenesis in serum activated LX-2 cells (Figure 4A). This increased
need for protein production has been identified in transcriptome analysis of activated rat
HSC [39]. Interestingly, overexpression of 40S ribosomal protein S5 (RPS5) was found to
suppress HSC activation in rat HSC [40], while we found RPS5 to be upregulated in serum
activated LX-2 cells (Figure 4A). We hypothesize that the general increased need for the
ribosomal machinery, as well as rRNA processing (Supplementary Figure S2A) is related
to the higher rates of proliferation as well as remodeling of the proteome, e.g., additional
production of ECM proteins (such as COL1A1; Figure 1C) and the general re-structuring
of HSC during activation. Additionally, Golgi-ER traffic related proteins are enriched
(Supplementary Table S2) indicating increased protein transport and secretion.

Furthermore, many proteins involved in migration were also found to be upregulated
in serum activated LX-2 cells (Figure 4B), including FN1, which has been reported to
promote migration in HSC [41], as well as AAMP, which is mainly expressed in cells with a
migratory phenotype [42]. These two findings, combined with many other upregulated
proteins involved in migration (see Figure 4D, Supplementary Table S1) and our pheno-
typing experiments (Figure 2B,C) paint a clear picture of enhanced migration in serum
activated LX-2 cells.

Next, we took a closer look at proteins involved in lipid metabolism since we already
saw a decrease in LD volume in serum activated LX-2 cells. In our STRING protein network
analysis we did not find increased lipid catabolism per se, other than the slight upregu-
lation of carnitine-pamitoyltransferase 1 CPT1 (Figure 4C, Supplementary Table S1), but
a decrease in lipid biosynthesis (Figure 4C), which might explain the loss of LD volume
during activation (Figure 2D). Chen et al., 2007 showed that activated rat HSC exhibit
a decrease in lipogenic genes [43], which was similar to our results. Furthermore, they
reported increasing numbers of mitochondria in activated rat HSC. In our experiments,
we could not identify an upregulation of mitochondrial proteins, which would hint at an
increase in β-oxidation and the capacity for oxidative phosphorylation during activation,
but rather a decrease of mitochondrial matrix proteins (Supplementary Figure S2B) in
serum activated LX-2 cells. Even though serum activated LX-2 cells are exposed to higher
concentrations of fatty acids and lipoproteins in their growth medium, they do not upregu-
late the expression of mitochondrial proteins to increase β-oxidation. Although activated
HSC have been reported to preferentially utilize aerobic glycolysis [43] serum activated
LX-2 cells downregulated the glucose transporter SLC2A1 (Figure 3B) in the provided
high-glucose (4.5 g/L) growth medium.

Contrary to the observed reduction of glucose transporter and lipid metabolic enzymes
we could identify upregulation of several amino acid biosynthetic proteins (asparagine
synthetase ASNS, methionine synthase reductase MTRR) and transporters (neutral amino
acid transporter SLC1A5, 4F2 cell-surface antigen heavy chain SLC3A2) in serum activated
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LX-2 cells (Figure 3B). We suggest LX-2 cells upregulate these pathways to enable the
increased ribosome and ECM protein production during serum activation.

Bhattacharya et al. [44] reported downregulation or inhibition of stearoyl CoA-desaturase
SCD in human HSC ameliorates fibrosis by a decrease in cholesterol biosynthesis. In our
work we show that SCD and cholesterol biosynthesis in general are vastly downregulated
in serum activated LX-2 cells (Figure 4D). We suggest that this downregulation can in
part be explained by the increased availability of cholesterol from FBS in serum activated
LX-2 cells, reducing the activation of sterol regulatory element-binding proteins SREBPs
(Supplementary Table S2). An overview of observed phenotypical changes during serum
activation of LX-cells in comparison to literature can be found in Table 1.

Table 1. At a glance: Similarities and differences between literature and results presented in this study.

Phenotype Model in Literature Results in Literature Results in This Study References

Proliferation Primary rat HSC
Increase of HSC numbers after

CCl4 injury
(activation)

Increased proliferation after
serum activation, upregulation of

ribosome biogenesis and cell
cycle proteins

[45]

Migration Primary rat HSC Increased motility after
PDGF-β activation

Increased migration after serum
activation, upregulation of

migration associated proteins
[46]

ECM production
(collagen) Primary rat HSC

Strong upregulation of
collagen production in HSC CCl4

treatment (activation)

Increased COL1A1 production in
serum activated LX-2,

upregulation of ECM regulators
and ER-Golgi transport

[47]

Lipid metabolism Primary rat HSC
LDs increase in number, but

decrease in total volume
during activation

LDs decrease in volume,
downregulation of proteins

involved in lipid biosynthesis
after serum activation

[27]

Cholesterol
metabolism

Primary rat HSC,
primary human

HSC & LX-2

Downregulation of cholesterol
biosynthesis in HSC

ameliorates liver fibrosis

Downregulation of proteins
involved in cholesterol
biosynthesis in serum

activated LX-2

[44,48]

Lastly, we compared our serum activated LX-2 proteome to previous works on the
activation of HSC. Here, we analyzed proteomic studies from CCl4 in vivo activated rat
HSC [38,49], as well as LX-2 cells activated with either TGF-β [37] or the reversion of FBS
activated LX-2 cells with the adipocyte differentiation mixture MDI (isobutylmethylxan-
thine, dexamethazone, and insulin) [50]. A comparison of differentially regulated proteins
found in both this study and the aforementioned previous works is displayed in the
Appendix A Figure A2. In Figure A2A, a Venn diagram is displayed depicting differen-
tially regulated proteins found in both literature and this study. The expression levels of
these proteins are compared in Figure A2C–F. Additionally, proteins overlapping from
different studies are visualized in Figure A2B. Figure A2C displays a heatmap comparing
differentially regulated proteins found in CCl4 rat activated HSC to differentially regulated
proteins found in serum activated LX-2 cells in this study. Interestingly, in this study,
Kristensen et al. (Figure A2C) as well as Ji et al. (Figure A2F) identify the upregulation
of the calcium-binding protein S100A11 in activated HSC. The reversion of serum acti-
vated LX-2 cells with MDI is compared to serum activated LX-2 cells in Figure A2D. Here
we compare proteins differentially regulated in activated LX-2 cells. This comparison
shows that especially proteins downregulated in both datasets match to a high extent.
Interestingly, STAT1, which was identified as a key regulator in the reversion of LX-2
cells [50] was downregulated in our dataset, but strongly upregulated in the dataset of
Zhang et al. However, STAT1 was also found to be downregulated in activated rat HSC
cells (Figure A2F [38]), providing no clear hypothesis for the regulation of this protein.
Furthermore, the amino acid biosynthetic protein ASNS was found to be upregulated in
both datasets, solidifying the role of increased amino acid biosynthesis in activated HSC.
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The activation of LX-2 cells using TGF-β by Yuan et al. exhibits many similarities to our
study when we compare differentially regulated proteins (Figure A2E). Surprisingly, most
differentially regulated proteins found in both studies are involved in cell migration, like
Laminin subunit gamma-1 (LAMC1), FN1, Tropomyosin alpha-1 chain (TPM1) and TPM2,
as well as Plasminogen activator inhibitor 1 (SERPINE1), which are all upregulated in both
studies (all these proteins are also upregulated in the dataset of Ji et al.). This is another
hint at increased migration in activated LX-2 cells. Furthermore, PRKC apoptosis WT1
regulator protein (PAWR), a pro-apoptotic protein is upregulated in activated HSC in this
study, as well as in the dataset of Yuan et al. and Ji et al. Figure A2F compares differ-
entially regulated proteins in CCl4 activated rat HSC to differentially regulated proteins
in serum activated LX-2 cells from this study. This comparison highlights especially the
similarity in upregulated proteins in activated HSC. The ECM proteins FBLN2 as well as
FN1 are both upregulated in this study, as well as in the dataset of Ji et al. Even though
GPX1 and 4 are upregulated in (Figure 3B) in serum activated LX-2 cells in this study, Ji
et al. suggests a downregulation of GPX1 in CCl4 activated rat HSC, which has also been
shown by Hamid et al. [51]. Conversely, TGF-β activation of LX-2 cells increases GPX4
expression [52]. Furthermore, activated primary rat HSC also increase their expression of
GPx over time [30]. Therefore, we suggest that the expression of GPx might differ between
different activation methods.

In conclusion, we show that serum activated LX-2 cells exhibit a phenotype represen-
tative of HSC in vitro. We present serum activation of LX-2 cells as a viable alternative
to other activation techniques and describe proteomic changes during the activation of
HSC in accordance with the observed phenotypic changes of enhanced proliferation and
migration and decreased lipid storage. Finally, we compare previous proteomic studies on
HSC activation to this study.

4. Materials and Methods
4.1. Cell Culture

LX-2 cells (EP-CL-0560, Szabo Scandic, Vienna, Austria) were cultured in high-glucose
Dulbecco’s Modified Eagle Medium (DMEM) from Sigma-Aldrich supplemented with
2 mM L-Glutamine and either 1 or 10 % FBS (Gibco) in plastic dishes (VWR, Radnor, Penn-
sylvania, United States). For all assays we used 1% FBS DMEM, unless stated otherwise.
Cells were maintained at 37 ◦C at 5% CO2 and 20% O2. LX-2 cells were subcultured every
72 h at a ratio of 1:5 and used for experiments after at least two passages of subculturing.
Seeding equal numbers of cells was assured using the CASY cell counting system. LX-2
cells for western blot and proteomic analysis were harvested after 24 and 48 h, respectively.

4.2. Proliferation Assay

LX-2 cells were seeded in 96-well plates at 10,000 cells per well at 1% FBS contain-
ing DMEM growth medium. After 24 h, the medium was replaced by 100 µL of either
1% or 10% FBS containing DMEM. Cell proliferation was assessed every 24 h using the cell
counting kit 8 assay (CCK 8, Sigma-Aldrich, St. Louis, MO, USA) according to protocol.

4.3. Western Blotting Analysis

LX-2 cells were harvested after 24 h incubation time at either 1 or 10 % FBS at ~85 % con-
fluency using trypsin-EDTA. Cells were lysed in CST lysis buffer (Cell Signaling Technolo-
gies, Danvers, MA, USA) supplemented with protease inhibitor cocktail (Sigma Aldrich).
SDS-PAGE (NuPage, Thermo Fisher, Waltham, MA, USA) was used to resolve equal
amounts of protein. Semi-dry blotting was performed onto nitrocellulose membranes
(Amersham, GE Healthcare, Chicago, IL, USA). Blocking of membranes was achieved
by 5% skim milk in TBS-T for 30 min at RT. Primary antibody (α-SMA, Invitrogen 1A4;
vinculin, Invitrogen 7F9) incubation was performed over night at 4 ◦C and secondary HRP
antibody (horse anti-mouse 7076, Cell Signaling Technologies) incubation was performed
at RT for 1 h. Chemiluminescent detection agent Pierce ECL PLUS (Thermo Fisher) was
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used as substrate and detection was done at a ChemiDoc MP (BioRad, Hercules, CA, USA).
Image analysis was carried out with Image Lab (BioRad).

4.4. Proteomic Analysis

LX-2 cells were harvested using cell scrapers after 48 h incubation at either 1% or 10% FBS
at ~85% confluency. Cells were washed with PBS and lysed with an in-house reducing
and alkylating buffer (100 mM TRIS HCl; pH = 8.5, 1% sodium dodecyl sulphate, 10 mM
tris(2-carboxyethyl) phosphine, 40 mM 2-chloroacetamide). After sonication (1 kJ), samples
were heated to 95 ◦C for 10 min. 100 µg of protein per sample (after bicinchoninic acid
assay protein estimation (BCA), Thermo Fisher Scientific, reducing agent compatible) were
subjected to acetone precipitation by adding NaCl to a final concentration of 10 mM. After
that, 4× volumes of acetone were added and incubated for 10 min. After centrifugation
(10 min at 14,000× g) the supernatant was removed. Dried samples were dissolved in 25%
trifluoroethanol in 100 mM Tris-HCl (pH = 8.5) and subjected to sonication until completely
dissolved. For protein digest, samples were diluted to 10% trifluoroethanol using 100 mM
ammonium bicarbonate. LysC and trypsin (both Thermo Fisher Scientific) were added
in a 1:100 enzyme to protein ratio and digest was done overnight at 37 ◦C. Samples were
desalted the following day using in-house prepared polystyrene-divinylbenzene, reversed-
phase sulfonate stage tips (Supelco) and re-suspended in 0.1% formic acid.

Chromatography was carried out on an Ultimate 3000 RCS Nano Dionex system
equipped with an Ionopticks Aurora Series UHPLC C18 column (250 mm × 75 µm, 1.6 µm).
Separation was achieved via a linear gradient of H2O (solvent A) and acetonitrile, both
with 0.1% formic acid added (solvent B) (0–5.5 min 2% B; 65.5 min 17% B; 95.5 min 25% B;
105 min 37% B; 115.5–125.5 min 95% B; 126-136.5 min 2% B) with a flow rate of 0.4 µL/min.
Column temperature was kept at 40 ◦C.

Mass spectrometric analysis was performed on a timsTOF Pro (Bruker Daltonics,
Billerica, Massachusetts, United States) in positive data dependent Parallel Accumulation-
Serial Fragmentation (PASEF) [53] mode with enabled trapped Ion Mobility Spectrometry
(TIMS) at 100% duty cycle (100 ms cycle time). Source capillary voltage was set to 1500 V
and dry gas flow to 3 L/min at 180 ◦C. The proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE [54] partner repository with the dataset
identifier PXD029121.

4.5. Proteomic Data Analysis

Data analysis, database search and protein quantification were performed with
MaxQuant version 2.01.0 [55]; and statistical data analysis with Perseus version 1.6.14.0 [56].
Search criteria: false discovery rate (FDR) for peptide, peptide-to-spectrum as well as pro-
tein matches was set to 1%. Peptide tolerance was set to ±20 and ±4.5 for the first and
main peptide search, respectively. Product mass tolerance was set to ±0.5 Da. Cysteine
carbamidomethylation was set as static whereas methionine oxidation and N-terminal
acetylation were set as dynamic modifications. Minimum required peptide length was
six amino acids and maximum number of allowed tryptic mis-cleavages was two. For
protein search, the SwissProt human FASTA file (downloaded on 30 November 2020 from
https://www.uniprot.org, 20,434 entries) containing most common protein contaminants
was used as a database. Label-free protein quantitation (LFQ) was performed with a mini-
mum of two peptides per protein (unique and razor) as quantitation requirement. Match
between runs was enabled in the retention time window of 1 min and alignment window
of 20 min respectively. This resulted in a list of 4598 proteins with their corresponding
LFQ values. LFQ values were log2 transformed (resulting in invalid values [NaN] for
any missing value), and contaminants were removed. The matrix was then filtered to
contain 100% of valid values (LFQ intensities > 0 prior transformation) in at least one
group (1% or 10% FBS) to exclude proteins that were not identified across all samples of
one group. This reduced the matrix to 3163 proteins, and remaining missing values were
imputed from normal distribution (downshift 1.8, width 0.3). Consequently, two-sided

https://www.uniprot.org
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student t-tests were performed with the following criteria: p-value of 0.05, S0 of 0.1 and
permutation-based FDR set to 5% to correct for multi-testing with 250 randomizations.
A full table of all proteins with values can be found in Supplementary Table S1. A vol-
cano blot of protein expression differences was generated using identical parameters from
the two-sided student t-tests mentioned earlier and can be found in Figure 3B. Principal
component analysis was performed without category enrichment and can be found in
Figure 3A. Histograms of data distribution per each sample is displayed in Supplementary
Figure S3. Further data analysis and graphical interpretation of protein networks was
performed using Cytoscape [29] v3.8.2. STRING [28] v11.5 was used to generate protein
networks using the following parameters: Homo Sapiens, full STRING network, medium
confidence (0.4), medium FDR stringency (0.05). Additional enriched pathways can be
found in Supplementary Table S2.

4.6. Migration Gap Closure Assay

LX-2 cells were seeded in silicone 2-well inserts (ibidi, Gräfelfing, Germany) in
12-wells at 50,000 cells per silicone well in 100 µL 1% FBS containing DMEM. 2 mL of
1% or 10% FBS containing DMEM were placed outside the silicone insert. After 24 h, silicone
inserts were carefully removed, and cells were imaged in 4 positions on a cell observer (Zeiss,
Jena, Germany) at 37 ◦C in 20% O2 and 5% CO2 for 24 h. Gap closure was assessed by an
in-house script by Juergen Gindlhuber in NIS-Elements v5.20.02 (Nikon, Tokyo, Japan).

4.7. Migration Transwell Assay

Transwell inserts (12-well, polycarbonate, 8 µm pore size) were bought from Thermo
Scientific. LX-2 cells were seeded in 12-well transwell inserts and put into 12-wells contain-
ing either 1% or 10% FBS for 24 h. For microscopic analysis, inserts were removed from
the 12-well plate, washed twice with PBS and formaldehyde fixed for 2 min at room tem-
perature (RT). After that, cells were washed twice with PBS, permeabilized with methanol
for 20 min at RT, stained with crystal violet for 15 min at RT and again washed twice with
PBS. Finally, cells from the top layer of the transwell were carefully removed using a cotton
swab. Before recording on an inverse microscope, transwells were placed onto a glass slide
with the transwell membrane facing down. Additional images of Transwell migration can
be found in Supplementary Figure S4.

4.8. Lipid Droplet Analysis

125,000 LX-2 cells were seeded onto glass cover slips (ROTH, 18 × 18 mm, thickness
0.13–0.16 mm) in 6-wells in 1% FBS media and after they were allowed to settle for 2 h
treated with 200 µM oleic acid bovine serum albumin conjugate to initiate LD formation.
After 24 h, the medium was replaced by either 1% or 10% FBS containing medium. After
48 h of additional incubation, LD were stained with BODIPY 493/503 (Invitrogen) for
10 min at 37 ◦C and then washed twice with pre-warmed PBS. After that, cells were fixed
with 3.7% formaldehyde for 10 min at 37 ◦C and nuclei received DAPI staining (Vectashield,
Vectalabs). Cover slips were placed onto glass slides (ROTH) and imaged on a Nikon A1
confocal microscope. LD volume was calculated using an in-house FIJI [57] script by
Juergen Gindlhuber.

Supplementary Materials: The following supplements are available online at https://www.mdpi.
com/article/10.3390/ijms222312782/s1.

Author Contributions: Conceptualization, R.B.-G., M.S. (Maximilian Schinagl), T.T. and M.T.; Fund-
ing acquisition, R.B.-G.; Investigation, M.S. (Maximilian Schinagl) and R.P.; Methodology, M.S.
(Maximilian Schinagl), T.T., J.G., S.H. and M.S. (Matthias Schittmayer); Project administration, R.B.-G.
and T.T.; Resources, R.B.-G.; Software, J.G. and M.S. (Matthias Schittmayer); Supervision, R.B.-G. and
T.T.; Validation, R.B.-G. and T.T.; Visualization, M.S. (Maximilian Schinagl); Writing—original draft,
M.S. (Maximilian Schinagl); Writing—review & editing, R.B.-G., T.T. and M.T. All authors have read
and agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/ijms222312782/s1
https://www.mdpi.com/article/10.3390/ijms222312782/s1


Int. J. Mol. Sci. 2021, 22, 12782 13 of 17

Funding: This research was funded by Austrian Science Fund FWF, grant numbers F73 (SFB “Lipid
hydrolysis”) and W1226 (Doctoral School “DK-Metabolic and Cardiovascular Disease”).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The mass spectrometry proteomics data have been deposited to the Pro-
teomeXchange Consortium via the PRIDE [41] partner repository with the dataset identifier PXD029121.

Acknowledgments: We thank Laura Liesinger and Barbara Darnhofer (Medical University of Graz,
Austria) as well as Victoria Dorrer (Technische Universität Wien, Austria) for their technical support.
Open Access Funding by the Austrian Science Fund (FWF).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 13 of 17 
 

 

125,000 LX-2 cells were seeded onto glass cover slips (ROTH, 18 × 18 mm, thickness 
0.13–0.16 mm) in 6-wells in 1% FBS media and after they were allowed to settle for 2 h 
treated with 200 µM oleic acid bovine serum albumin conjugate to initiate LD formation. 
After 24 h, the medium was replaced by either 1% or 10% FBS containing medium. After 
48 h of additional incubation, LD were stained with BODIPY 493/503 (Invitrogen) for 10 
min at 37 °C and then washed twice with pre-warmed PBS. After that, cells were fixed 
with 3.7% formaldehyde for 10 min at 37 °C and nuclei received DAPI staining 
(Vectashield, Vectalabs). Cover slips were placed onto glass slides (ROTH) and imaged 
on a Nikon A1 confocal microscope. LD volume was calculated using an in-house FIJI [57] 
script by Juergen Gindlhuber. 

Supplementary Materials: The following supplements are available online at 
www.mdpi.com/xxx/s1. 

Author Contributions: Conceptualization, R.B.-G., M.S. (Maximilian Schinagl), T.T. and M.T.; 
Funding acquisition, R.B.-G.; Investigation, M.S. (Maximilian Schinagl) and R.P.; Methodology, M.S. 
(Maximilian Schinagl), T.T., J.G., S.H. and M.S. (Matthias Schittmayer); Project administration, R.B.-
G. and T.T.; Resources, R.B.-G.; Software, J.G. and M.S. (Matthias Schittmayer); Supervision, R.B.-
G. and T.T.; Validation, R.B.-G. and T.T.; Visualization, M.S. (Maximilian Schinagl); Writing—
original draft, M.S. (Maximilian Schinagl); Writing—review & editing, R.B.-G., T.T. and M.T. All 
authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by Austrian Science Fund FWF, grant numbers F73 (SFB “Lipid 
hydrolysis”) and W1226 (Doctoral School “DK-Metabolic and Cardiovascular Disease”). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The mass spectrometry proteomics data have been deposited to the 
ProteomeXchange Consortium via the PRIDE [41] partner repository with the dataset identifier 
PXD029121. 

Acknowledgments: We thank Laura Liesinger and Barbara Darnhofer (Medical University of Graz, 
Austria) as well as Victoria Dorrer (Technische Universität Wien, Austria) for their technical 
support. Open Access Funding by the Austrian Science Fund (FWF). 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 
Figure A1. STRING gene-ontology-enrichment analysis of biological processes (GOBP) of signifi-
cantly upregulated (A) or downregulated (B) proteins in activated LX-2 cells. Blue dots represent the
number of genes found in the corresponding pathway on the left.
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