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ABSTRACT

Background: Structured diagnosis (DX) are crucial for secondary use of electronic health record (EHR) data.

However, they are often suboptimally recorded. Our previous work showed initial evidence of variable DX re-

cording patterns in oncology charts even after biopsy records are available.

Objective: We verified this finding’s internal and external validity. We hypothesized that this recording pattern

would be preserved in a larger cohort of patients for the same disease. We also hypothesized that this effect

would vary across subspecialties.

Methods: We extracted DX data from EHRs of patients treated for brain, lung, and pancreatic neoplasms, identi-

fied through clinician-led chart reviews. We used statistical methods (i.e., binomial and mixed model regres-

sions) to test our hypotheses.

Results: We found variable recording patterns in brain neoplasm DX (i.e., larger number of distinct DX—

OR¼2.2, P<0.0001, higher descriptive specificity scores—OR¼1.4, P<0.0001—and much higher entropy after

the BX—OR¼3.8 P¼0.004 and OR¼8.0, P<0.0001), confirming our initial findings. We also found strikingly

different patterns for lung and pancreas DX. Although both seemed to have much lower DX sequence entropy

after the BX—OR¼0.198, P¼0.015 and OR¼0.099, P¼0.015, respectively compared to OR¼3.8 P¼0.004). We

also found statistically significant differences between the brain dataset and both the lung (P<0.0001) and pan-

creas (0.009<P<0.08).

Conclusion: Our results suggest that disease-specific DX entry patterns exist and are established differently by

clinical subspecialty. These differences should be accounted for during clinical data reuse and data quality

assessments but also during EHR entry system design to maximize accurate, precise and consistent data entry

likelihood.

Key words: data quality, electronic health records, secondary use of clinical data, clinical data management, learning healthcare

system

INTRODUCTION

Reliable secondary use of Electronic Health Record (EHR)

data is fundamental to learning healthcare systems;1,2 Promising

research endeavors such as comparative effectiveness research3,4 and

precision medicine5–7 heavily rely on identifying correct patients.

Correspondingly, patient Diagnosis (DX) data is often a starting

point of cohort selection for secondary use.8,9 Thus, the accurate

and precise assignment of structured DX data within EHRs is crucial
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to ensure reliable research outcomes.10 DX code recording has well-

known limitations11 and decades of research have revealed poor DX

code data quality through alarmingly high inaccuracy rates.10,12,13

Despite some improvements on error rates over time (i.e., ICD code

inaccuracy rates went from 20–70% in the 1970s to 20% in 1980s),

their reliability remains questioned.3,14 The complex nature of clini-

cal knowledge, variability of clinical workflows, and clinical data

being generated for care and billing rather than research3,15,16 have

led to development of workaround methods17–19 including natural

language processing (NLP) to access clinical notes, EHR phenotyp-

ing, and post hoc data quality assessments.19–24 Though these meth-

ods are helpful in unlocking existing poor-quality data, they do not

tackle the problem of producing more reliable datasets for future re-

search. Other fields have successfully leveraged data quality im-

provement techniques ensuring reliable data recording at the

source17,21,25,26 but this is generally seen as unfit for the clinical set-

ting due to its complex sociotechnical nature.27,28 These secondary

use challenges are compounded by EHR systems that provide multi-

ple descriptions for each individual DX code.29 Though they are

intended to facilitate DX code search in practice, the large number

of options complicates selecting the most appropriate textual

descriptions, increasing the potential erratic DX data recording.30

Although this is a healthcare-wide issue, the problem is com-

pounded and most evident in electronic oncology patient charts.31,32

On one hand, cancer care is team-based and requires multiple spe-

cialties and units (e.g., scheduling, encounters, billing, diagnostic im-

aging, surgical procedures, radiotherapy, etc.); This creates more

opportunities for discordant DX recording. EHR systems rarely ad-

dress this condition, failing to support consistent DX code recording

across workflows and making DX logging burdensome to oncolo-

gists.33–35 On the other hand, current versions of standard DX codes

and descriptions are not designed to support secondary use of clini-

cal data.3 For example, ICD-10 codes C71.* correspond to a malig-

nant neoplasm of the brain DX. These codes allow encoding of the

neoplasm site (e.g., C71.1 represents a malignant neoplasm of the

frontal lobe) but, as opposed to ICD-O-3 codes,36 they are not

designed to provide information on neoplasm type (e.g., IDH mu-

tant glioma, IDH wild type glioma, glioblastoma, etc.) crucial pa-

tient classification to treatment selection. However, EHR vendor-

provided DX descriptions may include neoplasm type information

but vary widely in precision. This complicates structured DX data

recording,30 leading to unreliable recording of these DX descriptions

preventing their use in patient cohort development for reliable reuse

of clinical data.

Our previous work shows that recoding presumably-accurate di-

agnostic information (i.e., a cancer patient’s biopsy [BX]) does not

increase subsequent data accuracy and does not reduce DX data var-

iability in EHRs of patients treated for brain neoplasms in a system

with multiple textual DX descriptions per DX.30,37 These findings

led us to believe that DX data quality may be affected by the EHR

data entry system design and clinical workflows, given that DX data

is directly dictated by the BX report in such clinical context. These

results also imply that, in the current state of EHR systems design,

accurate information does not propagate to populate the rest of the

patient’s chart. This is likely to be the case for other segments of the

EHR and other clinical specialties. However, we analyzed data for a

limited pilot cohort of patients from a single clinical subspecialty. In

this study, we tested our initial result’s internal validity of in a larger

cohort, hypothesizing that (I) the effect found in the pilot cohort

will be preserved in the larger cohort. We also explored their exter-

nal validity by replicating the study in two other patient cohorts

for other oncology subspecialties. Given that DX logging across

specialties can vary widely, (this is often noted qualitatively38 but

has yet to be shown explicitly and quantitatively in the field) we also

hypothesized that (II) DX recording patterns will differ across sub-

specialties. We tested our hypotheses on EHR data from patients di-

agnosed with brain, lung and pancreatic neoplasms (i.e., ICD-10

diagnosis codes, C71.*, C34.*, and C25.*). We selected these dis-

eases for their large number of textual diagnosis descriptions (i.e.,

their potential for precise structured DX recording) for a limited list

of specific diagnosis codes, the availability of a clinician-generated

patient cohort and each patient chart containing a definitive histopa-

thology report stating the most precise DX description possible. We

present descriptive statistics and statistical modeling results that

show the existence of seemingly stable DX recording patents that

appear to be disease and subspecialty-specific. This analysis contrib-

utes to our current understanding of DX logging practices and their

differences across workflows and subspecialties by providing con-

crete, quantitative and explicit evidence of such differences and log-

ging practice variability. Our findings provide further insights to

enable reliable reuse of DX data reuse but also lay the groundwork

for the development of adaptive clinical data entry support interven-

tions. The resulting understanding aims to unlock new avenues to

overcome current challenges introduced by existing EHR systems

designs providing multiple DX description per DX code. We also

seek to introduce the idea of using such structured textual DX

descriptions as a potential source of semi-structured data for cohort

selection. Particular care needs to be given to care team and subspe-

cialty differences when making secondary use of clinical data, carry-

ing out clinical data quality assessments and developing patient

cohorts using DX data. Our work also suggests support must be

provided to clinicians to ensure systematic recording of structured

clinical data across subspecialties to enhance clinical data quality

and ensure the reliability of secondary analyses of clinical data as a

step towards building learning healthcare systems.

METHODS

We extracted diagnoses codes for encounter, problem list, and

orders with their corresponding diagnosis descriptions, encounter

dates, and ICD-10 codes from the Wake Forest Baptist Medical Cen-

ter’s Translational Data Warehouse. This database contains all raw

data generated during patient care. Our dataset also included surgi-

cal pathology reports and relevant covariates such as BX date. We

used a clinician-generated gold standard to identify patients treated

for each neoplasm. We employed a combination of statistical and

NLP tools to quantify DX logging variability in each subspecialty.

We built binomial regressions to predict whether DX data appeared

before or after the BX based on the number of distinct DX descrip-

tions and DX description “particularity” (i.e., how much semantic

information is included in the textual description to differentiate

each DX). A “descriptive specificity” or “particularity” score was

calculated by extracting clinical concepts from DX descriptions us-

ing NLP tools and assigning scores for tumor histology description

precision and tumor location.30 Last, we investigated particularity

score entropy (i.e., a measure of diversity representing the average

amount of information in scores sequences), as a measure of vari-

ability in DX descriptions chosen by users before and after the BX.

Our study was approved by Wake Forest University School of

Medicine’s Institutional Review Board before any data extraction or

analysis.
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Our patient lists were distilled from the charts of patients treated

for brain, lung, and pancreatic neoplasms. Patients were pre-selected

during previous clinician-initiated chart reviews. A comprehensive

medical record review was performed by two physicians for each pa-

tient. The primary post-operative diagnosis was determined based

on review of pathology report and progress notes. All treating clini-

cians were available for consultation when needed. Discrepancies

between the two reviewers were resolved by an independent special-

ist. Our final datasets spanned between January 1st, 2016 to June

1st, 2018. This time frame ensured ICD coding version consistency

(i.e., to include DXs after October 2015; ICD-10 implementation

date). Each dataset contained 21,136 DX observations for 120 brain

neoplasm patients, 119,411 DX observations for 256 lung neoplasm

patients and 30,020 DX observations for 34 pancreatic neoplasm

patients.

We augmented our dataset with a DX “particularity” score30

based on NLP-extracted39 NCI thesaurus terminology40 concepts

from textual DX code descriptions. We define particularity as the

ability of a diagnosis description to pinpoint a diagnosis with the

most specific concepts available in a relevant controlled clinical vo-

cabulary and provide the most additional descriptive elements (e.g.,

tumor site) to classify patients. For this study, we used a particular-

ity scoring system to quantify particularity based on both concept

specificity and additional descriptive elements. EHRs provide clini-

cians with these clinically-relevant labels to facilitate DX code selec-

tion (i.e., each DX description was linked to an ICD-10 code;

C71.*, C34.*, or C25.* codes in our dataset). For example,

“Oligodendroglioma of frontal lobe” was attached to C71.1, generi-

cally named “Malignant neoplasm of frontal lobe” in the ICD-10

taxonomy. Scores depended on (1) the “descriptiveness” (i.e., rela-

tive concept “depth” in the NCI thesaurus structure)40 of the

extracted neoplastic process concepts (e.g., glioma is a general neo-

plastic process description with relative score of “0,” glioblastoma

scored “1” as a direct child of the glioma concept in the NCI thesau-

rus) and (2) whether we found a concept describing the neoplasm’s

anatomical site. For example, particularity score in brain DX ranged

from 0 for “Malignant neoplasm of brain, unspecified location” to

3 for “Oligodendroglioma of frontal lobe”. We also calculated DX

description sequence and DX particularity score entropy as a mea-

sure of DX description diversity and DX particularity score varia-

tion using the ‘entropy’ R package to foster reproducibility.41 This

R package automatically estimates empirical entropy form observa-

tion sequences (i.e., DX or Particularity score entropy) using a maxi-

mum likelihood estimation algorithm. In the rest of this paper we

refer to “DX Entropy” as the entropy of DX sequences and “Score

Entropy” as the entropy of particularity score sequences before or

after the BX.

We built binomial regressions using R’s generalized linear mod-

el42 and mixed models (lme4) packages.43 We selected binomial

regressions because our dichotomous main outcome variable ‘After

BX’ that indicated whether a DX was recorded before or after the

BX. Our original hypotheses30 aimed to explore differences before

and after the BX. We evaluated differences in number of distinct DX

with a binomial regression model predicting the “After DX” vari-

able based on the number of distinct DX descriptions. The same

kind of model was used to estimate differences in DX sequences and

particularity score entropy44 values. We built a binomial mixed re-

gression model to evaluate the relationship between DX particular-

ity scores before and after BX. We chose a mixed model to account

for each DX score as an independent test and account for intra-

subject correlation by attributing random intercepts to each patient.

We evaluated the quantitative effect difference across subspecialties

by aggregating all three datasets and building the same models

controlling for the type of disease diagnosed. We tested for model

improvement through covariate inclusion. We included variables

such as number of days before or after the BX each DX was

recorded, the provider recording the DX and the department (i.e.,

care units involved in patient treatment such as oncology, surgery,

and neurology) where the DX was recorded. We also tested for vari-

able interactions in all models with more than one variable. Sum-

mary statistics such as mean, median, and extreme values were

employed to screen the data for outliers, missing values and errone-

ous input. Dates were also reviewed for potential errors such as val-

ues being outside the study’s time window. Statistical significance

was set at p¼0.05 for all models and adjustments for multiple com-

parison were made using R’s p.adjust function45 using Holm’s cor-

rection method.46 We refer to the odds ratios as OR and adjusted p

values as adj-p.

Multiple software tools were used to carry out this analysis.

Data extraction and preprocessing was done using a DataGrip soft-

ware client (version 2017.2.2, JetBrains s.r.o., Prague, Czech Repub-

lic). Visual exploration and exploratory descriptive statistics were

done using Tableau (version 10.2.4, Tableau Software, Inc., Seattle,

WA). All statistical analyses and data manipulation such as data

scrubbing and reshaping were done in R version 3.4.130 and RStudio

(version 1.1.383, RStudio, Inc., Boston, MA).

RESULTS

Our final datasets contained 21,136 encounter, problem list and or-

der DX observations out of which 2,690 were primary encounter

DX for 120 brain neoplasm patients, 119,411 DX observations for

256 lung neoplasm patients, and 30,020 DX observations for 34

pancreatic neoplasm patients (Table 1). Primary encounter brain

DX contained 68 distinct DX descriptions corresponding to 8 ICD-

10 codes, logged by 144 distinct providers from 47 distinct hospital

departments. The average number of days from the BX was

170 6 189 days. The average particularity score was 0.96 6 0.71.

These statistics were mostly driven by the post-BX data, as expected

due to additional treatment data generation. Pre-BX data contained

200 DX observations for 30 patients with 31 distinct DX descrip-

tions corresponding to 4 ICD-10 codes. The number of providers

and departments also dipped to 31 and 12 correspondingly. This is

expected due to the reduced clinical evidence to make accurate a

precise DX before the BX is available as well as the lower number of

visits before the treatment plan is defined. Days from BX and Partic-

ularity score kept comparable standard deviations, while showing

lower averages before the BX as expected (i.e., �137 6 139 and

200 6 164 for days and 0.78 6 0.70 and 0.97 6 0.71 for pre and

post BX particularity). The full datasets containing encounter, prob-

lem list, and order DX observations 71,209 and 29 distinct DX

descriptions for brain, lung, and pancreas correspondingly. These

corresponded to 8, 22, and 10 ICD-10 codes, logged by 268, 592,

and 29 distinct providers from 111, 193, and 99 distinct hospital

departments. The average number of days from the BX was

189 6 186, 215 6 254, and 189 6 299 days, correspondingly. The

average particularity score was 1.01 6 0.68, 3.76 6 3.34 and

8.24 6 9.7, correspondingly, hinting at fundamental differences

across DX logging patterns across subspecialties.

Our full brain neoplasm DX dataset yielded similar effect sizes

the initial results30 for both the primary encounter DX and multi-

workflow DX data (Table 2 and Supplementary appendix Table
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A1). We provide full regression tables in Supplementary Appendix

A. For the primary encounter DX dataset, we found that adding an

additional distinct DX would make a DX sequence 77.7% more

likely to appear after the BX (adj-P¼0.02). Max days from BX was

a significant covariate but had a very small effect (OR¼1.004, adj-

P¼0.021). For all brain DX, we found that adding a new distinct

DX would make a DX sequence 2.2 times more likely to happen af-

ter the BX (adj-P<0.0001). Only problem list DX were statistically

different from other DX types (adj-P<0.0001) (Supplementary Ta-

ble A1). Particularity score increments of a unit would make a DX

40% more likely to appear after the DX (adj-P<0.0001); both or-

der and problem list DX were different in this regard (adj-p¼0.02

and adj-P¼0.003). Entropy regressions showed that higher DX se-

quence entropy made a sequence more likely to happen after the BX

(OR¼3.79, adj-P¼0.004) and that higher particularity score also

made the sequence more likely to be post-BX (OR¼7.89, adj-

P<0.0001). Neither regression showed any statistically significant

covariate relationship after P-adjustment nor any difference across

DX types.

We found qualitatively different results for both our lung and

pancreatic neoplasm DX datasets (Table 3, Supplementary Table A2

and A3). Lung neoplasm revealed a smaller effect in the number of

distinct DX (OR¼1.50, adj-P<0.0001) and the same difference in

problem list DX (adj-P¼0.0001). The effect of the particularity

score was also much smaller (OR¼1.085, adj-P<0.0001) with the

same differences for order and problem list DX (adj-P<0.0001).

However, higher DX sequence and particularity score entropy made

a sequence more likely to happen before the BX (OR¼0.51, adj-

P¼0.001, and OR¼0.47, adj-P¼0.017). This means that, con-

trary to brain neoplasm DX, lung neoplasm DX were less erratic af-

ter the BX. Neither of these regressions revealed differences across

DX types. None of the lung regressions showed significant covariate

relationships or interactions (Supplementary Table A2). Pancreatic

neoplasm DX regressions (Table 3 and Supplementary Table A3)

revealed no statistical relationship between the number of distinct

DX (OR¼1.36, adj-P¼1) nor differences across DX types (adj-

P¼1). The effect of the particularity score was opposite

(OR¼0.92, adj-P<0.0001) with DX type differences for order and

non-primary encounter DX (adj-P¼0.025 and adj-P¼0.033) rather

than problem list DX (adj-P¼0.931). This means that for pancre-

atic neoplasm DX, a more particular DX description is 9% less

likely to appear after the BX. However, higher DX sequence entropy

made a sequence more likely to happen before the BX, revealing

more consistent logging after the BX (OR¼0.32, adj-P¼0.046). In

contrast with brain neoplasm DX and just like lung neoplasm, DX

sequences were less erratic after the BX. Particularity score entropy

showed no statistically significant relationship (adj-P¼1). Both

regressions showed a significant relationship between Post-BX and

the number of days from BX but with a very small effect

(OR¼1.003, adj-P<0.0001 for both regressions). Neither regres-

sion revealed differences across DX types. No interaction term was

found significant in the pancreatic neoplasm regressions.

We also found quantitative differences across subspecialty data-

sets (Table 4). We found statistically significant differences between

the number of distinct DX in brain neoplasm DX data and lung neo-

plasm (OR¼0.54, adj-P<0.0001) as well as pancreatic neoplasm

(OR¼0.58, adj-P¼0.009). We found similar differences for partic-

ularity scores with significantly lower odds ratios that hinted at

much higher particularity in lung and pancreatic neoplasm data

(OR¼0.198, adj-P¼0.015 and OR¼0.099, adj-P¼0.015). En-

tropy values were also significantly different in all cases except for

pancreas particularity score entropy (adj-P¼0.080). The entropy

models revealed statistically significant differences hinting at lower

entropy in the lung and pancreas datasets as compared to the brain

Table 1. Descriptive statistics for primary brain DX and all DX data for brain, lung, and pancreas. These descriptive statistics show differen-

ces in DX logging volumes, DX description variability, and DX particularity

Primary brain DX Encounter, problem list, and order DX

Measure Overall Before BX After BX Brain Lung Pancreas

Distinct patients 120 30 117 120 256 34

Number of DX records 2,690 200 2,490 21,136 119,411 30,020

Distinct ICD-10 codes 8 4 8 8 22 10

Distinct DX descriptions 68 28 64 71 209 29

Distinct providers 144 31 137 268 592 305

Distinct hospital department 47 12 46 111 193 99

Days from BX (Mean6Std.Dev.) 1706189 1376139 2006164 1896186 2156254 1896299

DX particularity Score (Mean6Std.Dev.) 0.9660.71 0.7860.70 0.9760.71 1.0160.68 3.7663.34 8.2469.7

Table 2. Brain DX variability regressions. Post-BX data shows more distinct DX, higher particularity scores but also higher entropy in DX

and particularity score sequences

Model Term Odds ratio (exp(ß)) Confidence interval (95%) P-value Adjusted P-value

Distinct primary DX Distinct DX number 1.777 0.180 1.023 0.007 0.020

Max days from BX 1.004 0.001 0.007 0.013 0.021

Distinct DX Distinct DX number 2.219 0.573 1.046 <0.0001 <0.001

Particularity Particularity score 1.402 0.228 0.450 <0.0001 <0.0001

DX entropy DX entropy 3.788 0.586 2.110 0.001 0.004

Particularity entropy Particularity entropy 7.981 1.080 3.130 <0.0001 <0.0001
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dataset (OR¼0.53, adj-P<0.0001, and OR¼0.56, adj-P¼0.014

for DX sequence entropy, for lung and pancreas correspondingly;

OR¼0.54, adj-P<0.0001 for lung particularity score entropy). For

both entropy regressions, we found a statistically significant rela-

tionship with max days from BX with a low effect size (OR¼1.005,

adj-P<0.0001 in both cases). No other covariates were significantly

correlated. No interactions were found significant.

In summary, we confirmed the internal validity of our initial

results for brain neoplasm cases (i.e., larger number of distinct DX,

higher particularity scores, and higher entropy after the BX); odds

ratio values also close. Replicating the analysis in lung and pancre-

atic neoplasm patient charts, we found DX logging pattern differen-

ces across subspecialties. Lung and pancreas DX both seemed to

have lower DX sequence entropy and therefore more consistent DX

recording after the BX contrarily to brain neoplasm DX. Particular-

ity odds ratios were different for all three datasets; differences be-

tween datasets were statistically significant in most cases.

DISCUSSION

We used statistical regressions to evaluate structured DX data differ-

ences before and after BX reports are recorded in EHR records for

oncology patients (Figure 1). We found that DX entry patterns were

similar for two different brain cancer cohorts but qualitatively and

quantitatively different from cohorts of patients treated for lung and

pancreatic cancer. These results provide quantitative evidence that

suggests that clinicians establish a stable EHR interaction mecha-

nism for entering structured DX data, that this workflow remains

consistent over time and that it may vary by subspecialty or disease-

type. This implies that interaction design for data entry should be

carefully considered by EHR vendors and clinical interface designers

to support the accurate and precise data entry. The subspecialty dif-

ferences have important implications as efforts to improve and opti-

mize DX data entry may thus be different based on the disease area.

This hints at the need for disease-process-specific data entry support,

which justifies the use of advanced data-driven methods such as ma-

chine learning to achieve personalized support for the entry of accu-

rate clinical data. Data quality assessment research and method

development efforts should also take these data production differen-

ces into account when evaluating a repurposed dataset’s fitness for

purpose.47–51

Our study extends the existing literature by exploring aspects be-

yond the predominant DX code recording accuracy analyses.1,32,52

We showed the limited impact of a DX source of truth (i.e., the BX

report) in the EHR on subsequent DX recording, confirming our

previous findings for a pilot cohort of patients treated for brain neo-

Table 3. Lung and pancreatic neoplasm regressions. The effects found for these subspecialties are qualitatively different from those found

for brain neoplasm. Both subspecialties seem to present lower entropy values after the BX, in contrast with brain neoplasm DX. The effect

of particularity seems different for all three subspecialties

Sub-specialty Model & term Odds ratio (exp(ß)) Confidence interval (95%) P-value Adjusted P-value

Lung Distinct DX number 1.500 0.293 0.524 <0.0001 <0.0001

Particularity score 1.085 0.069 0.094 <0.0001 <0.0001

DX entropy 0.508 �1.044 �0.315 0.0002 0.001

Particularity entropy 0.473 �1.267 �0.237 0.004 0.017

Pancreas Distinct DX number 1.363 �0.145 0.810 0.197 1

Particularity score 0.915 �0.109 �0.067 <0.0001 <0.0001

DX entropy 0.324 �2.077 �0.205 0.017 0.046

Particularity entropy 0.976 �1.130 1.073 0.965 1.000

Table 4. Effect comparison regressions. Both lung and pancreatic neoplasm data seem to have quantitatively different effects from brain

neoplasm DX in terms of distinct DX number, particularity scores, and entropy

Model Term Odds ratio (exp(ß)) Confidence interval (95%) P-value Adjusted P-value

Distinct DX Distinct DX number 1.457 0.292 0.464 <0.0001 <0.0001

Brain 1 – – – –

Lung 0.538 �0.911 �0.333 <0.0001 <0.0001

Pancreas 0.580 �0.919 �0.171 0.004 0.009

Particularity Particularity score 1.041 0.030 0.050 <0.0001 <0.0001

Brain 1 – – – –

Lung 0.198 �2.912 �0.374 0.012 0.015

Pancreas 0.099 �4.043 �0.625 0.007 0.015

DX Entropy DX entropy 0.904 �0.415 0.212 0.525 1

Max days from BX 1.005 0.004 0.005 <0.0001 <0.0001

Brain 1 – – – –

Lung 0.529 �0.944 �0.334 <0.0001 <0.0001

Pancreas 0.561 �0.980 �0.178 0.005 0.014

Particularity Entropy Particularity entropy 1.581 0.031 0.888 0.036 0.080

Max days from BX 1.005 0.004 0.005 <0.0001 <0.0001

Brain 1 – – – –

Lung 0.542 �0.923 �0.308 <0.0001 <0.0001

Pancreas 0.628 �0.877 �0.054 0.027 0.080
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plasms.30 Though previous studies have explored multiple EHR seg-

ments to assess data quality,11,13,31,32,38,53 they often focus on pro-

viding accuracy measure results to warn secondary users of clinical

data against direct analysis of repurposed clinical data. Our study

takes this a step further by exploring patterns in a segment of the

EHR where no variability should exist due to the availability of a

BX that provides a source of accurate information. This was the

main reason for choosing oncological charts. We were also unable

to find similar analyses on repurposed EHR data quality focusing

specifically on oncological DX data. Thus, our study focuses on

breaking new ground and opening new avenues of research from the

vantage point of oncological patient charts into all segments of EHR

databases. It is interesting that we found evidence that DX recording

processes may be stable for different disciplines within a common

disease state. For example, we collected DX data for specialists in

medical oncology, neuro-oncology, radiation oncology, and neuro-

surgical oncology for patients with primary brain neoplasms. De-

spite the differences in specialty and training, relatively little

variability was observed within this patient cohort likely reflecting

the common clinical workflows that are established by clinicians

caring for this patient population. In contrast, we observed signifi-

cant differences between the DX data for this multidisciplinary care

team and a similar multidisciplinary lung and pancreatic team. This

is congruent with previous accuracy-driven EHR data analyses.38

Our findings stress the ties between clinical practice to the resulting

data. Secondary analyses of clinical data1,3,54 and data quality

assessments48,50,51,55,56 need to account for such cross-practice dif-

ferences. Though our analysis was conducted exclusively on oncol-

ogy EHRs, we used these data as a setup to better understand the

impact of clinical data entry.

We also explored the impact of multiple descriptions linked to

single diagnostic codes on structured data entry. To our knowledge,

only our initial analysis30 has explored the effect of such a setup.

Finding that clinicians logged more distinct DX descriptions after

the BX in two out of three subspecialties confirms our initial hy-

pothesis that multiple DX description per code may increase DX en-

try variability even after the DX is known through the BX report.

This observation also raises questions about how the currently avail-

able DX code lists within the EHR drive clinician practice. Anec-

dotal discussions with clinicians in these specialty areas suggest that

DX data tables available in the EHR may drive some of the clinical

practices observed in this study. Subsequent investigation is cur-

rently being conducted to better understand this finding. This, in

turn, confirms that data entry and the resulting intrinsic data qual-

ity49,57 are likely to be impacted by EHR interface design and de-

manding clinical workflows.33,58,59 This corroborates that clinical

data is a tangential product of clinical care and is affected by clinical

processes such as billing,34,60 rather than the ideal raw material for

clinical research.3 Much current research aiming to support second-

ary analysis of clinical data aims to develop methods for data quality

assessment and data curation in isolation from the clinical prac-

tice.4,48–50,55,56,61–64 Yet, our results suggest that the quality of

extracted clinical data is directly linked to the process that produced

them; They also suggest that data quality can be improved by alter-

ing the process. For example, integrating specialty-dependent diag-

nosis lists (e.g., ICD-O) into the EHR system could be beneficial to

improve data entry, quality, and concordance. The data entry pro-

cess could also be revised. For example, ICD-O diagnoses could be

presented first for oncology patients or could be prompted when a

pathology report indicates a cancer diagnosis in the EHR. It is cru-

cial that future development in this area should take into account

such cross-process differences to ensure the reliable secondary use of

clinical data.65

Our analysis presents three main limitations. First, we focused

our study on a limited number of clinical conditions (i.e., brain,

lung, and pancreatic neoplasms). However, we were able to evaluate

differences across subspecialties quantitatively and qualitatively

finding different DX logging profiles for each subspecialty. Our data

and analyses provided adequate evidence to evaluate our hypotheses

and test the internal and external validity of our initial results. We

will further extend this analysis to other subspecialties to better un-

derstand DX logging differences across clinical workflows; We also

expand to specialties outside oncology. A related limitation was not

accounting for comorbidities. However, the informatics-driven na-

ture of our analysis, along with the relatively large number of

patients for each dataset and large effect sizes suggest that the phe-

nomenon is driven by clinical practice and workflows rather than

the patient’s clinical profile. Comorbidity effects will also be ex-

plored in future work. Second, our particularity scoring has yet to

be validated with a gold standard. However, our DX particularity

Figure 1. Odds ratio and statistical difference findings summary.
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scoring was simple, transparent, and systematic enough to be con-

sidered a repeatable feature extraction process.66,67 The score was

based on summing a point for anatomical location concepts found

and neoplastic process concept’s precision based on its depth in the

NCI Thesaurus classification,40 a well-known and standardized clas-

sification of clinical concepts. The validation for this method is

planned in our future work. Finally, we only evaluated DX descrip-

tion variability (number of distinct DX), average particularity before

and after BX and the entropy of these two values rather than DX ac-

curacy. Although it would have been ideal to evaluate the accuracy

of each DX entry as a measure of intrinsic data quality, we defined

our variables to measure variability in a context where no variability

should exist because the DX is known in the EHR through the BX

report. In this context, DX variation is a reliable proxy for inaccu-

racy that our regressions were able to uncover.

Future work will be divided into three segments: further analyses

to confirm DX logging patterns differences across subspecialties, the

exploration of root causes through qualitative research and the de-

velopment of workflow-adaptive interventions to increase DX data

quality and support systematic DX logging across specialties. First,

we will explore differences across other specialties and validate our

particularity scoring system. We will also analyze temporal patterns

to better understand data entry dynamics. Then, we will carry out

qualitative research such as interviews and focus groups to explore

the underlying causes DX logging differences across subspecialties.

We will also carry out additional quantitative analyses to explore

potential factors influencing data entry processes and contributing

to DX data entry variability. Finally, we will employ informatics

methods to develop clinician-adaptive interventions to support sys-

tematic, accurate and concordant DX recording leveraging frag-

mented data across EHRs. We will also explore the idea of

centralized DX entry to assess whether such intervention increases

DX concordance across the EHR.

CONCLUSION

Our analysis provides quantitative evidence showing that disease-

specific DX entry patterns exist and are established differently by

clinical subspecialty. Secondary users of clinical data should con-

sider these differences when designing analyses and performing data

quality assessments. Standardized interventions able to accommo-

date these differences and support systematic, accurate, precise, and

concordant DX entry across subspecialties must be developed and

implemented to increase the reliability of structured DX data and

enable reliable secondary analyses of clinical data. Overcoming such

challenges may support the improvement of overall clinical data

quality,48,49,57 reliability of secondary analyses of clinical data1 and

the building of the learning system.31,68,69
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