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Abstract: Novel electric air transportation is emerging as an industry that could help to improve the
lives of people living in both metropolitan and rural areas through integration into infrastructure
and services. However, as this new resource of accessibility increases in momentum, the need to
investigate any potential adverse health impacts on the public becomes paramount. This paper
details research investigating the effectiveness of available noise metrics and sound quality metrics
(SQMs) for assessing perception of drone noise. A subjective experiment was undertaken to gather
data on human response to a comprehensive set of drone sounds and to investigate the relationship
between perceived annoyance, perceived loudness and perceived pitch and key psychoacoustic
factors. Based on statistical analyses, subjective models were obtained for perceived annoyance,
loudness and pitch of drone noise. These models provide understanding on key psychoacoustic
features to consider in decision making in order to mitigate the impact of drone noise. For the drone
sounds tested in this paper, the main contributors to perceived annoyance are perceived noise level
(PNL) and sharpness; for perceived loudness are PNL and fluctuation strength; and for perceived
pitch are sharpness, roughness and Aures tonality. Responses for the drone sounds tested were found
to be highly sensitive to the distance between drone and receiver, measured in terms of height above
ground level (HAGL). All these findings could inform the optimisation of drone operating conditions
in order to mitigate community noise.

Keywords: drone noise; noise annoyance; noise metrics; loudness; sound quality metrics; subjective
experiments

1. Introduction

A scenario with several drones (whether manned or unmanned) flying over cities and
rural areas is now more likely than ever. To start with, there is a myriad of potential uses,
from recreational to parcel delivery and even surveillance and law enforcement. There are
substantial environmental and societal benefits associated with the wider expansion of the
drone sector. For instance, medical deliveries to reduce waiting times [1] or reduction of
carbon footprint in cargo transport and parcel delivery [2]. However, there are important
concerns that can act as barriers for the wider adoption of these technologies: safety and
privacy concerns, airspace management and visual and noise impact [3]. Although the
main focus to date has been on the effects on human health, drone noise is also a source of
concern for animal welfare [4].

The noise emission of drones and isolated drone propellers have been extensively
studied [5-14]. Hui et al. [3] outlined the main sound generation mechanisms in drones,
highlighting the contributions of rotor noise and electric motors. Schiffer et al. [15] con-
ducted a systematic review (based on the PRISMA statement) on current methods for
acoustic measurements and noise emission characteristics of drones; they also stated the
requirements for a drone emission model and proposed a scheme for data acquisition.
Overall, the sound emission of drones was found to be mainly influenced by drone size,
configuration (number of rotors), payload, operating conditions and flight manoeuvres.
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Schiffer et al. [15] carried out a systematic review on the effects of drone noise on
humans, finding that the literature on the topic is still very limited. Christian and Cabell’s
work [16] was pioneering in understanding the perception of drone noise and how it com-
pared to other sources of transportation, such as road traffic. Gwak et al. [17] investigated
the reported annoyance (in a subjective, laboratory-based experiment) to a series of drones
of different size and under hover conditions. Hui et al. [3] investigated the perception
(in a subjective, laboratory-based experiment) of a series of drone sounds, accounting
for different operating conditions in terms of flight mode and height above the ground.
Ivosevic et al. [18] carried out a survey where a series of participants reported their in situ
subjective assessment on drone noise during a series of drone operations in an open field.

Current evidence suggests that drone noise annoyance highly depends on loudness-
related metrics [3,15,16]. However, Hui et al. [3] suggested that further research is needed
to understand and quantify the effect of spectral and temporal factors (including tonality
and impulsiveness) on drone noise annoyance. Schiffer et al. [15] also point out pure tones
and high-frequency broadband noise as important contributors to drone noise annoyance.
Tonal and high-frequency drone noise is also likely to increase its noticeability in existing
soundscapes [19-21] and therefore lead to noise annoyance. None of these sound features
are appropriately accounted for in current aircraft noise metrics, neither Laeq-related nor
even more sophisticated metrics, such as the effective perceived noise level (EPNL) [22].
Christian and Cabell [16] found that the A-weighted sound exposure level (Lag) was
not able to account on its own for the difference in annoyance between drones and road
vehicles. In their study, for a same value of Lag, drones were found to be more annoying
than road vehicles. In fact, drones were reported to be as annoying as road vehicles with
a 5.6 dB higher Lag. Torija et al. [21] also found that the Laeq metric does not account for
the particular sound features related to drones, and that these particular features highly
influence drone noise reported annoyance. Current regulation of drone noise is solely based
on A-weighted sound power level (Lya max), Which, as suggested by Torija and Clark [23]
might not provide an accurate picture of the noise impact of drones.

The aim of this paper is to investigate the perception of drone noise under controlled
laboratory conditions in order to propose noise metrics for effectively assessing human
response to drone noise. This research is framed within the perception-driven engineering
approach, where sound quality metrics (SQMs) provide an accurate assessment of how
the human auditory system responds to key sound features [23,24]. Gwak et al. [17] found
that the noise annoyance of three drones (with maximum take-off mass (MTOM) ranging
from 113.5 g to 11 kg) hovering was highly related to the SQMs loudness (perception of
amplitude of the sound), sharpness (perception of high frequency) and fluctuation strength
(perception of slow amplitude modulation). Torija and Li [25] found the noise annoyance
of a series of drone (MTOM of 1.2 kg) flyovers highly related to a tonality metric and the
interaction between loudness and sharpness. The research presented in this paper expands
the number of drones under investigation to eight types, with payloads ranging from 1.2 to
11.8 kg and differing rotor number (including a contra-rotating configuration). Moreover,
different manoeuvres are considered, including take-off, hover, flyover and landing, and
varying heights above the ground are analysed. This comprehensive set of drone sounds
aims to provide robust metric-noise-perception relationships for a representative sample
of drone types. The main contributions of this paper are: (i) a better understanding of
the noise perception of a comprehensive range of drone types and operating conditions;
(ii) an assessment of the contribution of key acoustic and psychoacoustic features to drone
noise perception in terms of perceived annoyance, perceived loudness and perceived pitch;
and (iii) a quantification of changes in drone noise perception as a function of distance
between drone and receiver. These findings can contribute to the development of noise
metrics for assessing human response to drone noise and the definition of operational
constrains in terms of distance to the receiver in order to minimise the community noise
impact of drones.
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The structure of the paper is as follows. Section 2 provides a brief overview of the main
metrics for aircraft noise and SQMs. Section 3 describes both the selection of drone sounds
used in this research and the methodology behind the subjective experiment investigating
the relationship between drone noise and perception. Results are presented in Section 4
and include the relationship between drone noise perception and flyover altitude, effect of
loudness on drone noise perception and metrics for drone noise assessment. Finally, results
are discussed in Section 5, and conclusions and future work are stated in Section 6.

2. Overview of Noise Metrics

The impact of aircraft noise on communities is mainly assessed with exposure metrics
related to A-weighted energy equivalent sound pressure level (Laeq) [22,26]. Examples of
these metrics are day—night level (DNL), day—evening-night level (DENL) and Laeq,16n- At
a vehicle level, broadband frequency-weighted sound pressure levels are used for aircraft
noise assessment. These metrics include the maximum A-weighted sound level (LA max)
and the A-weighted sound exposure level (LAg). LA max is @ common metric to assess sleep
disturbance [27]. Lag is numerically equivalent to the total sound energy of an aircraft
overflight and therefore is very useful to compare total emission of different types of aircraft
under different operating and payload conditions. However, these metrics do not account
for other important features for noise annoyance, such as tonality [28,29]. The effective
perceived noise level (EPNL) is the main metric for the noise certification of fixed-wing
and rotary-wing aircraft [30] and is calculated according to a procedure developed by
the Federal Aviation Administration [31]. This metric is based on the calculation of the
perceived noise level (PNL) as proposed by Kryter [32]. The PNL is a descriptor for the
overall perceived loudness, which is based on the Noy scale derived from a combination of
amplitude and frequency [23]. The PNL is then corrected by an exposure duration factor
and a tonality factor to obtain the EPNL metric. The tonality factor for the EPNL metric
is based solely on the level of the strongest protruding tone, and therefore, as suggested
by Torija et al. [22], might not be able to account for the perceptual effects of complex
tonality (due to blade-passing frequency and harmonics of diverse rotors) typical in drones.
Another limitation of the EPNL metric for assessing drone noise is that it does not consider
frequency content above 10 kHz (which might be present in some drone types due to the
operational frequency range of their electric motors) [7].

SQMs provide an accurate representation of huma hearing perception [15,33]. The
most widely used SQMs are loudness (measured in sone), sharpness (measured in acum),
fluctuation strength (measured in vacil), roughness (measured in asper), tonality (mea-
sured in tonality units—TU), and impulsiveness (measured in impulsiveness units—IU).
Loudness measures the perception of sound intensity. Sharpness assesses the perception
of spectral imbalances of a given sound towards the high-frequency region. Fluctuation
strength and roughness assess the perception of slow and rapid fluctuations of the sound
level. Tonality accounts for the perception of spectral irregularities of pure tones. Impul-
siveness assesses the perception of sudden, abrupt increases in the sound level. All these
metrics combined reflect the perception of sounds with various acoustic characteristics [15].
Further details on these SQMs can be found in Zwicker and Fastl [24] and Sottek et al. [34].

In addition to drone noise, as described in Section 1, SQMs have been used to develop
noise-annoyance models for different aircraft types. For instance, Rizzi et al. [35] developed
a model based on loudness, roughness and tonality to estimate noise annoyance for electric
fixed-wing aircraft. Moreover, Krishnamurthy et al. [36] and Boucher et al. [37] found
the SQMs sharpness, fluctuation strength and tonality as main contributors explaining
noise annoyance for rotorcraft. In a study involving a psychoacoustic analysis of contra-
rotating propellers, Torija et al. [33] suggested that loudness, tonality and fluctuation
strength metrics are able to account for the perception of potential field interaction tones
(dominating the sound emission with the rotor closely spaced). They also suggested that
roughness and impulsiveness metrics are able to account for the perception of unsteadiness
due to propeller—turbulence interaction noise.
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3. Materials and Methods
3.1. Selection of Drone Sounds

A database of 44 drone sounds were carefully selected for the subjective experiment in
order to assess perceived annoyance, loudness and pitch. The criteria for selection was to in-
clude sounds encompassing a wide variety of loudness level and other key psychoacoustic
parameters for drone noise, including temporal and frequency characteristics (see [23]). The
drone sounds were gathered from different sources, including in-house measurements [38],
colleagues at the Volpe Center in the US [39] and colleagues from industry. Although the
sounds were from various sources, they were selected to maintain a constant level of audio
quality (as assessed by the authors of this paper). Each of the original sounds was edited to
extract a sample of 4 sec long to use in the subjective experiment (to balance the gathering
of perceptual data with participants’ fatigue [22]).

In total, sounds from eight types of drones were used, with the weight of these
drones ranging from 1 to 12 kg. The chosen drone sounds also yielded a large variety of
noise and operational characteristics. The drone operations included flyovers, hovering,
manoeuvring, take-offs and landing. Furthermore, the drones were recorded performing
these operations at differing heights above ground level (HAGL) of 2 to 60 m. The Laeq s
of the drone sounds ranged between 37 dB and 71 dB. The full list of the 44 drone sounds
with associated characteristics can be seen in Table 1. Differences in Laeq 45 between sounds
from the same drone type with identical weight and HAGL might be attributed to small
variations in operating and meteorological conditions, such as small differences in vehicle
speed and different rotor rotational speeds to maintain vehicle stability under different
wind profiles. It should also be noted that the DJI Phantom 3 was tested with varying
payloads (see Torija et al. [38]).

Table 1. Drone sounds used in the subjective experiment.

Sound ID Drone Model Drone Weight (kg) gﬁ;‘iﬁ;ﬁ:ﬁ Heligil:la’ll;;)xecfl;(r);l)nd Calibrated Lpeg,4s
S1 DJI Inspire 2.85 Flyover 15 52
S2 DJI Inspire 2.85 Flyover 7.5 58
S3 DJI Inspire 2.85 Landing 7.5 64
54 DJI Inspire 2.85 Takeoff 2 70
S5 Intel Falcon 1.2 Flyover 30 54
56 Intel Falcon 1.2 Flyover 60 47
S7 DJI Matrice 600 9.1 Takeoff 3 71
S8 DJI Matrice 600 9.1 Hover 40 65
59 DJI Matrice 600 9.1 Flyover 40 57
510 DJI Mavic 0.743 Flyover 15 51
S11 DJI Mavic 0.743 Flyover 30 46
S12 DJI Mavic 0.743 Flyover 60 37
513 DJI Mavic 0.743 Maneuvering 7.5 51
S14 DJI Mavic 0.743 Maneuvering 7.5 53
515 DJI Mavic 0.743 Takeoff 7.5 59
S16 DJI Phantom 3 1.216 Maneuvering 2 68
S17 DJI Phantom 3 1.216 Takeoff 2 64
S18 DJI Phantom 3 1.216 Landing 2 62
S19 DJI Phantom 3 1.216 Hover 2 69
S20 DJI Phantom 3 1.216 Ascending 2 64
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Table 1. Cont.

Sound ID Drone Model Drone Weight (kg) grl:)ec::;i::‘g He]iﬁz:f?;ecfr(gnd Calibrated L Aeq,ds
S21 DJI Phantom 3 1.216 Flyover 2 61
S22 DJI Phantom 3 1216 Flyover 2 63
523 DJI Phantom 3 1.216 Flyover 2 66
524 DJI Phantom 3 1.216 Flyover 54 56
525 DJI Phantom 3 1216 Flyover 5.4 59
526 DJI Phantom 3 1.216 Flyover 5.4 57
527 DJI Phantom 3 1.216 Hover 2.2 62
528 DJI Phantom 3 1.216 Hover 5.1 56
S29 DJI Phantom 3 1.216 Hover 2.2 67
S30 DJI Phantom 3 1.216 Hover 3.6 67
531 DJI Matrice 200 4 Flyover 46 56
532 DJI Matrice 200 4 Flyover 46 45
S33 DJI Matrice 200 4 Takeoff 30 50
534 DJI Matrice 200 4 Landing 30 52
S35 DJI Matrice 200 4 Hover 1.2 56
S36 Yuneec Typhoon 2 Flyover 46 48
537 Yuneec Typhoon 2 Flyover 46 44
S38 Yuneec Typhoon 2 Takeoff 30 46
539 Yuneec Typhoon 2 Landing 30 52
540 Yuneec Typhoon 2 Hover 1.2 57
S41 Gryphon GD28X 11.8 Takeoff 30 53
542 Gryphon GD28X 11.8 Landing 30 54
543 Gryphon GD28X 11.8 Maneuvering 30 57
S44 Gryphon GD28X 11.8 Hover 1.2 60

As mentioned above, the drone sounds described in Table 1 were gathered from three
different databases. Sounds S1 to S15 were recorded with a TASCAM DR-05 audio recorder,
with sound pressure levels measured with a Norsonic 140 Class 1 sound level meter. These
drone sounds were recorded in an open field in Alnmouth (northeast England). There were
some other sounds present, including distant waves, birdsong and intermittent railway
noise. Sounds 516 to S30 were recorded with a Briiel & Kjeer 2250 Class 1 sound level
meter with sound-recording capabilities. These drone sounds were recorded in an open
field in Southampton. There were some other sounds present, including birdsong and a
distant road. For further details see Torija et al. [38]. Sounds S31 to S44 were recorded by
colleagues of the John A. Volpe National Transportation Systems Center in the Choctaw
Nation of Oklahoma. Drone sounds were recorded using GRAS Model 40A0 1/2 inch
pressure microphones and a Sound Devices 744T digital audio recorder. Sound pressure
levels were measured with a Larson—-Davis 831 Class 1 sound level meter. Recordings
took place in a remote and quiet open field, with ambient sound mainly dominated by
wind noise and some occasional aircraft flybys. For further details see Read et al. [39].
The ambient sound levels in all locations were considered sufficiently low so that they
would not unduly influence the drone sound recordings. During the selection process, the
databases available were carefully explored to discard any extraneous sounds.
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Temporal and spectral characteristics of drone noise have been found to be highly
influenced by the type of vehicle operation and meteorological conditions [15,23]. As the
drone operates, adjustments in rotor operating conditions are made to maintain vehicle
stability or to propel the vehicle in a given direction at a given speed (with a specific yaw,
pitch and roll). These adjustments have been shown to significantly change the sound char-
acter [38], leading potentially to important changes in drone-noise perception. Furthermore,
as described above, the operational HAGL was varied, as the drone noise spectrum contains
higher frequencies than those of conventional aircraft. This high-frequency content is con-
tributed to by harmonics of the rotor-blade-passing frequencies and the electric motors [5].
This, coupled with the decreased effects of air absorption due to the reduced operational
HAGL (compared to conventional aircraft), increases the prominence of high-frequency
content in drone noise and therefore should be considered in the subjective experiment.

3.2. Subjective Experiment
3.2.1. Calibration of Test Stimuli

In order to set the sound pressure level of the drone sounds used in the subjective
experiment to the Laeq s targets, a calibration process was designed. The control of the
L Aeqs of the test sounds is especially important when assessing the effect of operational
factors, such as type of operation, vehicle weight and HAGL (and consequently loudness)
on perception responses. The calibration setup included a class 1 BSWA308 sound level
meter, a Bruel and Kjaer head and torso system (HATS), Norsonic front end type 336
microphone pre-amp, M-Audio M-Track 2X2M audio interface, AKG k 501 headphones,
Audio Quest Dragonfly Red USB sound cards (24 bits 96 kHz) and a mainstream laptop for
stimuli playback and recording. The calibration setup is presented in Figure 1.

M-Audio M-Track 2X2M

Laptop playing UAV Audio Interface

stimuli/recording HATS
output

HATS w/ AKG k501 &

Dragonfly headphone BSWA 308 sound level
pre-amp Norsonic front end type meter to measure initial

336 microphone pre-amp calibration factor

g —

e 2 futve L |

Figure 1. Calibration setup used for subjective test drone stimuli.

To calibrate the drone-sound stimuli to the target Laeg4s (shown in Table 1), a 1 kHz
sine wave was played from the laptop through the headphones and recorded by the
microphones in the HATS system. The level of the sine wave was measured using the
sound level meter plugged in to the output of the microphone pre-amp. The difference
between the measured level of the microphone pre-amp output and the original sine
wave level (94 dB) was calculated to be the calibration factor to apply to the drone-sound
stimuli. The calibration factor was applied to the drone-sound stimuli, and the stimuli were
recorded through the HATS system so that SQM (and other noise metrics used)-analysis
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of the test sounds is representative of the stimuli as listened to by the participants. As the
experiment was conducted online and not in a lab as originally planned (see Section 3.2.2),
it was assumed that the sounds recorded through the calibration system described above
were representative of the sounds heard by the participants (see Sections 4.1 and 5 for
further discussion).

3.2.2. Experimental Procedure

Due to the COVID-19 pandemic and the restrictions put in place by the UK Govern-
ment to mitigate its effects, a laboratory-based experiment was not possible to carry out.
Instead, an online experiment was designed and built using the Web Audio Evaluation
Toolkit (WAET) [40]. An interface was designed for the participants of the experiment in
order to allow them to listen to the 44 drone-sound stimuli and provide their responses
of perceived annoyance, loudness and pitch. The online experiment was designed to
be completed in about 20 min (in order to maximise responses and completions of the
full experiment).

The online experiment was accessible via personalised URL links in order to maintain
anonymity and security between participant data. The online experiment was advertised
on social media and to the staff and students at the University of Salford. Each person
interested in participating was provided with a personalized URL link and a participant ID.
Overall, 89 participants completed the online experiment in part, with 49 of them complet-
ing the full test (32 males and 17 females). Therefore, the responses of the 49 participants
who completed the full test have been used for the analysis of this paper. The participants
were instructed to complete the test in a quiet, distraction-free environment and to use
high-quality headphones.

Each drone sound was presented individually to the participants. Once each drone
sound was presented, the participants could listen to it as many times as required. Re-
sponses were then given using a set of sliders in the interface. Once the participants were
satisfied with their responses, they could progress to the next stimulus, until the whole set
of 44 test sounds were heard and assessed. The order of the stimuli for each participant
was randomised.

Prior to the commencement of the experiment, each participant went through a pseudo-
calibration stage in order to adjust the level of the UAV stimuli. Since the experiment was
online and accessed remotely by the participants, the playback hardware used by each
participant was unknown and highly likely to vary. This would lead to a variance in the
playback quality and level of the stimuli between participants. To try to counter this, the
participants were presented with the loudest and quietest UAV stimuli from the experiment
and asked to adjust their playback volume so that the loudest stimulus was at a comfortable
level and the quietest stimulus was still audible. Once the participant had appropriately
adjusted their system playback level, they were asked to not adjust it for the remainder
of the experiment. In addition to this, before starting the experiment, the participants
were asked to match the sound levels of a series of tones in order to understand their
frequency sensitivity (and also to detect substantial anomalies in the frequency response of
the headphones used). A channel checking stage was also included to ensure that stereo
playback was used. All 49 participants considered in this research paper appropriately
passed these pseudo-calibration stages. In order to analyse the consistency of participants’
responses and the potential effect of using different sound reproduction settings (due to
the experiment to be online), a statistical analysis was carried out (see Sections 3.2.3 and 4.1
for more details).

The response variables considered were perceived annoyance, perceived loudness
and perceived pitch. These response variables were chosen to be included in the sub-
jective experiment as they relate to the amplitude of the sound event as well as various
spectral and temporal characteristics of drone noise that have been shown to influence
perception [15,16,21,23,25,33,38]. Perceived loudness was chosen as it is assumed to be a
suitable response metric for explaining the effect of the distance of drone operation on
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perceived response. Perceived pitch was chosen as it is assumed to be a suitable response
metric for explaining the effect of drone noise frequency content on perception. The ques-
tionnaire was designed according to the multi-dimensional scaling technique (MDS), which
is based on dissimilarity ratings (see Susini et al. [41]). A continuous scale (from 0 to 1) was
used for each subjective variable, labelled as follows: ‘Not Annoying’ at the left end and
‘Highly Annoying’ at the right end (perceived annoyance); ‘Not Loud” at the left end and
‘Highly Loud’ at the right end (perceived loudness); and ‘Low Pitch’ at the left end and
‘High Pitch’ at the right end (perceived pitch).

The experiment reported in this paper is the first of two experiments carried out consec-
utively. The first experiment reported here, which focused on individual and isolated drone
operations, investigated the influence of drone noise spectral and temporal characteristics
on perception by analysing and assessing the relationships between participants’ responses
and a selection of noise metrics (including SQMs). The second experiment (not reported
here) will investigate the effects of drones on the soundscape in which they are operating.

3.2.3. Data Analysis

To quantify the spectral and temporal characteristics of the drone-sound stimuli, the
HEAD Acoustics ArtemiS Suite 12.5 software was used to calculate a series of SQMs (as
described in Section 2). Loudness was calculated according to DIN45631/A1 [42]. This
calculation method is based on Zwicker’s loudness model and includes a modification
for time-varying signals. The calculation of sharpness was made according to the Aures
method [43] due to the observably large variance in the loudness of the stimuli. Tonality
was calculated according to the Aures/Terhardt tonality model [44]. Roughness, fluctuation
strength and impulsiveness were calculated following the methods derived by Sottek [34,45].
For the calculation of the SQMs described above, the first 0.5 sec of each sound stimulus
was omitted in order to remove any potential transient effect in the sound file that had
resulted from editing the stimuli to 4 sec samples. As described by Torija et al. [33], the 5th
percentile of the SQMs were used for the statistical analysis to investigate the perception of
the drone noise samples tested in this paper. The PNL metric was calculated according to
Kryter’s model [32] (see Section 2) with code developed in-house.

The statistical analyses were carried out with the IBM SPSS v.25 statistics software.
A correlation analysis (including partial correlation) was implemented to give an initial
insight into the relationship between each SQM and PNL and the perceived responses of
annoyance, loudness and pitch for each drone sound stimulus. A multiple linear regression
(MLR) analysis was also carried out to further determine the main contributors for the
perceptual variables assessed in this paper. A forward stepwise-regression method (entry
criterion for F-value < 0.01) was implemented.

As the experiment was carried out online, with the participants reproducing the test
sounds with different reproduction settings, two statistical tests were implemented to
assess consistency between participant responses: (i) a Kendall’s W test to investigate the
concordance in perceived annoyance, loudness and pitch for each drone sound between
participants (see Section 4.1); and (ii) a multilevel analysis to identify the significance of
subject-dependent responses and assess consistency in the perceived annoyance, loudness
and pitch for the stimuli tested. The multilevel analysis was carried out according to
Boucher et al. [37], with pooling of data between subjects. Pooling by subject creates a
partial-pooling methodology and assumes normal distribution across subjects.

4. Results
4.1. Analysis of Consistency between Participant Responses

As discussed by Torija and Flindell [46], in experiments involving participants as-
sessing sound stimuli it is expected that there would be a certain degree of variability in
the participants’ responses. For this research, the experiment was completed online, with
participants using different sound reproduction systems, and, therefore, a question on
consistency of the responses might arise. To investigate inter-participant variability and
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agreement among the different participants in their responses of perceived annoyance,
loudness and pitch for each of the test sounds, a statistical analysis was conducted. In the
first step, it was found that the participants’ responses of perceived annoyance, loudness
and pitch did not follow a normal distribution (based on both Kolmogorov—-Smirnov and
Shapiro-Wilk tests). A non-parametric, k-related sample statistic, Kendall’s W, was calcu-
lated for each perceptual variable, accounting for the whole set of 44 test sounds. Monte
Carlo bootstrapping with 10,000 samples was implemented to ensure a robust calculation
of the p-values. As can be seen in Table 2, very good agreement was found between partici-
pants in the responses of perceived annoyance and loudness for each of the test sounds
(Kendall’'s W > 0.6, with W = 0 meaning no agreement among responses). Good agreement
was also found for perceived pitch, although with a Kendall’s W value of about 0.4. As
shown in Table 2, the p-values are smaller than 0.01, which allows certainty in rejecting the
null hypothesis of no agreement between participants’ responses.

Table 2. Results of the Kendall’s W statistic for the responses on perceived annoyance, loudness
and pitch.

Perceived Annoyance Perceived Loudness Perceived Pitch

Kendall’'s W
p-value !

0.60 0.64 0.41
0.00 0.00 0.00

! p-value calculated with Monte Carlo bootstrapping with 10,000 samples.

The coefficient of variation (CV) was also calculated as the standard deviation divided
by the mean in order to check consistency in participants’ responses. As can be seen in
Table 3, the CV for the three perceptual variables and for each test sound is consistently
about 0.2-0.4 (which could be assumed to be an acceptable level). There are only a few
test sounds where the CV increases notably. After further exploration, the CV of perceived
annoyance and loudness reach higher values for test sounds S6, S12, S36 and 537, which all
correspond to flyovers at high HAGL (see Table 1). For these sounds, with HAGL about 46
and 60 m, the reduction in loudness might make the contribution of other psychoacoustic
factors more significant to the subjective responses, leading to less agreement in responses.
The cases with the higher value of CV for perceived pitch correspond to sounds 541-544,
all from the same drone type (Gryphon GD28X). This particular drone model is based on a
contra-rotating propulsion system. The spectral and temporal characteristics of this drone,
with its overlapping propellers, seemed to lead to less agreement in participants’ responses
of perceived pitch (although further research will be needed to fully understand the reasons
behind this finding).

Table 3. Coefficient of variation for each test sound and for perceived annoyance, loudness and pitch.

Sound ID

Perceived Annoyance Perceived Loudness Perceived Pitch

S1

0.55 0.49 0.44

52

0.32 0.31 0.39

S3

0.20 0.19 0.36

54

0.17 0.18 0.36

S5

0.36 0.47 0.32

S6

0.62 0.67 0.41

57

0.15 0.19 0.45

S8

0.36 0.35 0.47

S9

0.30 0.32 0.44

510

0.48 0.43 0.35




Int. J. Environ. Res. Public Health 2022, 19, 3152 10 of 19

Table 3. Cont.

Sound ID Perceived Annoyance Perceived Loudness Perceived Pitch
S11 0.52 0.60 0.41
S12 0.87 0.83 0.58
S13 0.33 0.46 0.22
S14 0.28 0.35 0.27
S15 0.25 0.31 0.29
S16 0.12 0.17 0.25
S17 0.19 0.22 0.24
S18 0.24 0.25 0.27
S19 0.13 0.16 0.27
520 0.15 0.20 0.22
521 0.21 0.23 0.27
S22 0.23 0.23 0.28
523 0.19 0.20 0.21
S24 0.35 0.38 0.41
525 0.25 0.32 0.27
526 0.31 0.35 0.28
527 0.20 0.23 0.28
528 0.34 0.39 0.36
529 0.16 0.17 0.24
S30 0.22 0.18 0.25
S31 0.57 0.60 0.57
532 0.54 0.60 0.58
S33 0.35 0.39 0.54
S34 0.36 0.41 0.46
S35 0.26 0.32 0.43
S36 0.64 0.74 0.44
S37 0.75 0.81 0.49
S38 0.49 0.55 0.31
S39 0.37 0.50 0.33
540 0.58 0.72 0.51
541 0.31 0.41 0.64
S42 0.38 0.34 0.64
543 0.30 0.29 0.63
S44 0.24 0.29 0.73

4.2. Peceived Annoyance, Loudness and Pitch as a Function of Height above Ground Level

The aggregated participant responses for each flyover drone sound were used to
investigate the relationship between perceived annoyance, loudness and pitch with HAGL.
As it can be seen in Figure 2 (perceived annoyance), Figure 3 (perceived loudness) and
Figure 4 (perceived pitch), there is a strong logarithmic correlation between the three
perceptual variables and HAGL. Although with some variability above 30 m, there is a
clear trend of lower perceived values of annoyance and loudness (for the flyover sounds
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tested) as the HAGL increases. It is also important to note that the perceived loudness
decays more rapidly with HAGL than the perceived annoyance, which might suggest the
important contribution of psychoacoustic factors (and probably non-acoustic factors, such
as perceived safety) other than loudness. Although there is a clear logarithmic correlation
between perceived pitch and HAGL, the residual differences from the trendline are greater
(see Figure 4). The perceived pitch might be expected to be associated with the high-
frequency content of the test sound (accounted for by the sharpness metric). As the flyover
is farther away, the high-frequency content becomes less prominent due to atmospheric
absorption. However, a weaker logarithmic correlation with HAGL suggests that other
psychoacoustic factors might have an important contribution to the perceived pitch.

Perceived Annoyance

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Perceived Annoyance = -0.107In(HAGL) + 0.7995
. RZ = 074
e
.0
... *
° .- ............... *
R ...
P O, o
:
°
0030 a0 0 A0

Height Above Ground Level (m)

Figure 2. Perceived annoyance vs. height above ground level of the unmanned aerial vehicles under

investigation during flyover operation.

Perceived Loudness

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Perceived Loudness = -0.117In(HAGL) + 0.7536
R2 = 082
.
.
..
e
s |
; ......................
& —
i .................. *
.
10 20 040 > ” "

Height Above Ground Level (m)

Figure 3. Perceived loudness vs. height above ground level of the unmanned aerial vehicles under

investigation during flyover operation.
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Figure 4. Perceived pitch vs. height above ground level of the unmanned aerial vehicles under
investigation during flyover operation.

In order to further investigate the relationship between different psychoacoustic factors
and the perceived responses for the flyover drone sounds tested, a correlation analysis
was carried out. Zero-order and partial correlation coefficients controlling for HAGL were
calculated between PNL and the SQMs (loudness, sharpness, fluctuation strength, Aures
tonality, roughness, impulsiveness) and perceived annoyance (Table 4), perceived loudness
(Table 5) and perceived pitch (Table 6). Note that the partial-correlation analysis allowed
measurement of the correlation coefficients whilst controlling the effect of HAGL.

As seen in Tables 4 and 5, PNL, loudness and sharpness have the highest correlation
(p < 0.05) with perceived annoyance and loudness, respectively, both zero-order and when
controlling for HAGL. This suggests that the different HAGL for the flyover drone sounds
did not have any influence in the relationship between PNL, loudness and sharpness and
responses of perceived annoyance and perceived loudness. For the case of perceived pitch
(Table 6), the highest zero-order correlation is with PNL, loudness and sharpness, but when
controlling for HAGL there is a statistically significant correlation with roughness as well.
This might help explain the results shown in Figure 4, where it was suggested that other
psychoacoustic factors were likely to explain the participants’ responses of perceived pitch
as a function of HAGL.

Table 4. Zero-order and partial correlation coefficients (controlling for height above ground level
(HAGL)) between PNL and the SQMs (loudness, sharpness, fluctuation strength, Aures tonality,
roughness and impulsiveness) and perceived annoyance. p-value shown in brackets.

Fluctuation Aures .
PNL Loudness Sharpness Strength Tonality Roughness Impulsiveness
Zero-order 096 (p=000) 091 (p=000) 087 (p=000) 024(p=033 023(p=035  008(p=075 0.1 (p=097)
Controlling for -, o4 (p=000) 077(p=000) 076(p=000) 030(p=024) —013(p=062) —003(p=090) —0.17(p=051)

HAGL
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Table 5. Zero-order and partial correlation coefficients (controlling for height above ground level
(HAGL)) between PNL and the SQMs (loudness, sharpness, fluctuation strength, Aures tonality,
roughness and impulsiveness) and perceived loudness. p-value shown in brackets.

Fluctuation Aures

PNL Loudness Sharpness Strength Tonality Roughness Impulsiveness
Zero-order 0.98 (p = 0.00) 0.95 (p = 0.00) 0.85 (p = 0.00) 0.26 (p = 0.29) 0.32 (p = 0.20) 0.17 (p = 0.51) 0.01 (p =0.97)
Congilg‘f for 002 (p=000) 086(r=000) 072(=000) 038(p=0.14) —003(p=091) 011(p=0.67) —0.22(p=041)
Table 6. Zero-order and partial correlation coefficients (controlling for height above ground level
(HAGL)) between PNL and the SQMs (loudness, sharpness, fluctuation strength, Aures tonality,
roughness and impulsiveness) and perceived pitch. p-value shown in brackets.
Fluctuation Aures .
PNL Loudness Sharpness Strength Tonality Roughness Impulsiveness
Zero-order 0.68(p=000) 073(p=000) 076(p=000) 004(p=089)  009(p=073) —035(p=016) —0.08(p=0.76)
Cong(ﬁlgig for  037(pr=014)  049(p=005) 060(p=001) —001(p=096) —021(p=043) —054(p=003) —021(p=042)
4.3. Loudness and PNL vs. Perceived Responses
After investigating the correlation between PNL and the SQMs considered and the
perceived responses for flyover drone sounds at varying HAGL, a bivariate correlation
analysis was carried out with the whole set of test sounds. As seen in Table 7, PNL, loudness,
sharpness and fluctuation strength have statistically significant correlation (p < 0.05) with
both perceived annoyance and perceived loudness. Responses on perceived annoyance
and loudness seem to have a significant association to PNL, loudness and sharpness.
Table 7. Bivariate correlation coefficients (Pearson’s r coefficient) between PNL and the SQMs (loud-
ness, sharpness, fluctuation strength, Aures tonality, roughness and impulsiveness) and perceived
annoyance, loudness and pitch. p-value shown in brackets.
PNL Loudness Sharpness Flsut';:;agttiﬁn Aures Tonality Roughness Impulsiveness
Perceived Annoyance 0.96 (p = 0.00) 0.90 (p = 0.00) 0.90 (p = 0.00) 0.40 (p = 0.01) 0.25 (p = 0.10) 0.19 (p=0.21) —0.16 (p = 0.30)
Perceived Loudness 098 (p=0.00) 092 (p=0.00)  0.87 (p =0.00) 047 (p = 0.00) 0.15 (p = 0.33) 0.29 (p = 0.06) —0.08 (p = 0.59)
Perceived Pitch 047 (p=0.00) 050 (p=0.00)  0.55 (p =0.00) —0.00 (p = 0.98) 0.48 (p = 0.00) —0.34 (p = 0.03) —0.37 (p = 0.01)

Table 7 also shows that PNL, loudness, sharpness, Aures tonality, roughness and
impulsiveness have statistically significant correlation (p < 0.05) with perceived pitch. For
this particular case, sharpness has the highest correlation with perceived pitch, although
contribution from the metrics listed above is observed as well.

An important finding, as shown in Table 7, is that PNL has a greater correlation
with perceived annoyance and perceived loudness than the loudness SQM (and similar
correlation to perceived pitch as loudness). The PNL metric was developed by Kryter [32]
to assess the perception of jet aircraft noise. The frequency vs. sound pressure level (defined
in the Noy scale) seems to be able to efficiently capture the perception of the amplitude and
spectral characteristics of the drone sounds tested. The Noy scale, and therefore the PNL
metric, assumes a significant sensitivity to higher frequency noise, which might explain
its strong correlation with perceived annoyance and loudness. For this reason, it was
decided to use the PNL and not the loudness metric for the subsequent regression analysis
presented in Section 4.4.

4.4. Metrics for Drone Noise Assessment

An MLR analysis was undertaken to define the main contributors to perceived an-
noyance, perceived loudness and perceived pitch. All assumptions of MLR were checked
before implementing the analysis:
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e  The linear relationship between predictors and dependent variables was verified in
Table 7.

e  The value of the variance inflation factor (VIF), well below 10, allowed the assumption
of no multicollinearity in the data.

e  The Durbin-Watson statistic was used to test the assumption of being independent.
The value of this statistic was 1.30 (perceived annoyance), 1.52 (perceived loudness)
and 1.39 (perceived pitch), allowing the assumption of the residuals being independent.

e Homoscedasticity was assumed by observing a random distribution of values in
scatterplots between the regression-standardised predicted values and the regression-
standardised residual values.

e  Exploration of the P-P plots, with data points close to the observed vs. expected
cumulative probability diagonal line, allowed the assumption of residuals being
normally distributed.

e  Values of Cook’s distance below 1 (max values of 0.12 for perceived annoyance, 0.83
for perceived loudness and 0.23 for perceived pitch) allowed the assumption of no
influential cases biasing the MLR models presented.

As shown in Table 8, participants’ responses of perceived annoyance are mainly driven
by PNL and sharpness. This suggests the perceived loudness and the high-frequency
content of drone noise are key elements for perceived annoyance [17]. Perceived loudness
is mainly driven by PNL and fluctuation strength. In this case, the beating effect due to the
interaction between rotors seems to play an important role in perceived loudness [33]. The
main contributors to perceived pitch are sharpness, roughness and Aures tonality. These
results seem to indicate that pitch, as perceived by the participants, is highly influenced by
the high-frequency and tonal content of drone noise, including the perceptual effect of the
interaction between complex tones [22] typical of drone noise [23].

Table 8. Summary of multiple linear regression models to estimate perceived annoyance, loudness

and pitch.
R2 Adjusted R2 Predictors Standard.ls.ed Beta Variance Inflation
Coefficient Factor

. PNL 0.72 4.15
Perceived Annoyance 0.93 0.93 Sharpness 0.28 415
. PNL 0.95 1.18
Perceived Loudness 0.97 0.57 Fluctuation Strength 0.09 1.18
Sharpness 0.56 1.13
Perceived Pitch 0.61 0.59 Roughness —0.45 1.06
Aures Tonality 0.32 1.08

A multilevel analysis was also carried out to investigate whether the main contributors
to perceived annoyance, loudness and pitch (as reported in Table 8) were consistent between
participants. Table 9 shows the statistically significant predictors for perceived annoyance,
loudness and pitch based on a multilevel analysis with subject-dependent intercepts and
regression slopes. As seen in Table 9, there is consistency in the main contributors to the
three perceptual variables between participants. The similarity of results in Tables 8 and 9
suggest certainty in the predictors for the subjective models.

Following a ‘one-off” approach previously implemented by Boucher et al. [37] and
Torija et al. [21], the relative importance of a metric was assessed based on model accuracy
(in terms of R?) when removing it from the analysis. Figure 5 confirms that participants’
responses of perceived annoyance and loudness are highly determined by PNL, while
the responses of perceived pitch are highly determined by Aures tonality and especially
roughness. These results suggest that rapid amplitude modulation, for instance due to
unsteadiness of the sound signal, might affect the perception of pitch.
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Table 9. Statistical significance (p-value) of predictors for perceived annoyance, loudness and pitch
with subject-dependent intercepts and regression slopes.

Predictors Perceived Annoyance Perceived Loudness Perceived Pitch
PNL 0.00 0.00 0.17
Sharpness 0.00 0.04 0.00
Fluctuation Strength 0.22 0.00 1
Aures Tonality 0.29 0.38 0.00
Roughness 0.21 0.82 0.00
Impulsiveness 0.14 1 0.50

! Predictor redundant in multilevel analysis.
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Figure 5. Reduction in R? per predictor removed from multilevel model (using subject-dependent
intercepts and regression slopes) for perceived annoyance, loudness and pitch.

5. Discussion

The results presented in this paper, in terms of correlation between metrics and
drone noise perception, are consistent with existing literature. In line with Hui et al. [3],
the subjective responses evaluated in this paper correlate strongly with loudness-related
metrics. Other SQMs driving responses of perceived annoyance were sharpness and
fluctuation strength, similar to Gwak et al. [17]. Interestingly, the two metrics driving
responses of perceived loudness were PNL and fluctuation strength. The contribution to
fluctuation strength to perceived loudness (and also to perceived annoyance) is assumed
to be due to accounting for the perceptual effect of interactions between rotors, however,
further research is needed to validate this assumption. It has also been found that the
perceived pitch for the drones assessed was mainly related to the high frequency, tonality
and rapid amplitude modulation (described as due to interaction between discrete tones
by Torija et al. [22]).

In Christian and Cabell [16], the annoyance response did not change significantly with
drone altitude ranging from 10 to 100 m above ground level with other parameters held
constant. However, this research has found the subjective responses evaluated changing
significantly with HAGL. For instance, the perceived annoyance varied from about 0.5 to
0.4 when the HAGL changed from 20 to 60 m. Unlike Christian and Cabell [16], where only
a SUI Endurance equipped with two-blade props was considered for analysis, this research
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investigated subjective responses vs. HAGL with flyovers of seven types of drones (D]I
Inspire, Intel Falcon, DJI Matrice 200 and 600, DHI Phantom 3 and Yuneec Typhoon). This
might be one of the reasons for the different findings, but further research is needed to
investigate in more depth the relationship between drone noise perception and distance
from the receiver. A better understanding of this relationship is key to defining operational
constraints for drones in order to minimise community noise impact.

Due to the COVID-19 pandemic, only the subjective experiment was carried out, and
not as it is usually done under controlled laboratory conditions. As recently reported
by the technical committee of the Acoustical Society of America on Psychological and
Physiological Acoustics, online experiments can provide access to larger sample sizes
and ecologically valid responses, but at the cost of compromising the calibration process
and finding inconsistencies in participant experiences [47]. Although the statistical tests
reported in Section 4 confirmed consistency in participant responses, the results presented in
this paper should be interpreted with caution, and important caveats should be considered:

(i) A careful process to calibrate the drone sounds to the target Laeq4s (shown in
Table 1) was carried out. Moreover, a pseudo-calibration stage was included in the online
platform, where the participants adjusted their playback volume of the loudest stimulus to
a comfortable level and the quietest stimulus to a just-audible level (see Section 3.2.2 for
further details). The assumption was that even though the adjusted playback volume was
different for each participant, the relative values of Laeq 45 of the individual stimuli were
consistent (as they were calibrated in the laboratory as described in Section 3.1). However,
the different playback hardware and quality and frequency response of each participant’s
headphones might have altered the actual Laegas of the individual stimuli as heard by
the participants.

(ii) The participants were instructed to complete the test with adequate headphones
and in a quiet environment. However, it can be assumed that the quality and frequency
response of the headphones used and the background sound level where they completed
the test varied between participants.

(iii) The online experiment was designed for the participants to reproduce the stimuli
via headphones. There is uncertainty as to whether the headphones used by the participants
were able to recreate the low frequency noise produced by the drones evaluated.

Therefore, the research findings presented and described in this paper will be vali-
dated in a subsequent experiment carried out under controlled laboratory conditions and
reproducing the test sounds via a loudspeaker array.

6. Conclusions

This paper presents the results of a subjective experiment to investigate the noise per-
ception of a comprehensive set of drone sounds encompassing different flying operations,
size, weight and distance from the receiver. Based on a detailed statistical analysis, the
responses of the participants for each drone sound were very consistent (even though the
experiment was conducted online).

For the drone sounds tested, the participants’ responses of perceived annoyance were
mainly driven by PNL and sharpness, confirming the significance of the high-frequency
content present in drone noise. For perceived loudness, participants’ responses were
mainly driven by PNL and fluctuation strength. In this case, the beating effect due to rotor
interactions might affect the perception of loudness. Perceived pitch was found to be highly
influenced by sharpness, Aures tonality and roughness. In this case, the perception of
pitch seemed to be driven by the high-frequency and tonal content along with the rapid
amplitude modulation due to the unsteadiness of the sound signal.

A robust logarithmic relationship was found between the perceived responses and
distance from the receiver (quantified in terms of HAGL). An increase in HAGL of drone
flyovers led to consistent reductions in perceived annoyance, perceived loudness and, to a
lesser degree, perceived pitch. However, it was found that the perceived loudness declines
more rapidly than perceived annoyance when HAGL increases. This means that increasing
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the distance of drone operations from communities is likely to lead to more substantial
reductions in perceived loudness than perceived annoyance. This is likely due to other
psychoacoustic factors, or even non-acoustic factors, on the perception of annoyance.

The findings of this research could facilitate better understanding of the key psychoa-
coustic factors to account for in order to mitigate community noise impact when planning
drone operations. The metrics proposed in this paper could also aid the effective assessment
of human response to drone noise.

Further research is needed to better understand the effects of drone noise on existing
soundscapes, how ambient noise may mask drone noise, and the influence of this masking
on the perception of drone operations.
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