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Background: Several studies have described an enhanced inflammatory status and oxidative 

stress balance disruption in women with polycystic ovary syndrome (PCOS). However, there is 

scarce information about redox markers in the blood of androgenized animal models. Here, we 

evaluated the serum/plasma oxidative stress marker and metabolic parameter characteristics of 

prenatal (PreN) and postnatal (PostN) androgenized rat models of PCOS. 

Materials and methods: For PreN androgenization (n=8), 2.5 mg of testosterone propionate 

was subcutaneously administered to dams at embryonic days 16, 17, and 18, whereas PostN 

androgenization (n=7) was accomplished by subcutaneously injecting 1.25 mg of testosterone 

propionate to animals at PostN day 5. A unique control group (n=8) was constituted for comparison. 

Results: Our results indicate that PostN group rats exhibited particular modifications in the oxida-

tive stress marker, an increased plasma ferric-reducing ability of plasma, and an increased antioxi-

dant capacity reflected by higher albumin serum levels. PostN animals also presented increased 

total cholesterol and triglyceride–glucose levels, suggesting severe metabolic disarrangement. 

Conclusion: Study findings indicate that changes in oxidative stress could be promoted by 

testosterone propionate exposure after birth, which is likely associated with anovulation and/

or lipid disarrangement.

Keywords: animal models of PCOS, oxidative stress, prenatal, postnatal

Introduction
Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder 

impacting 5%–10% of women at reproductive age.1–3 Although PCOS has been identi-

fied mainly by reproductive features (oligo-amenorrhea, hyperandrogenism, polycystic 

ovary appearance), other metabolic and inflammatory conditions, including disrup-

tion in cholesterol and glucose levels and the oxidative stress balance, have also been 

reported.4–10 A recent publication has found that total oxidative stress and antioxidant 

capacity were increased in PCOS against controls.11 In this study, which also evalu-

ated the four phenotypes of PCOS, a higher oxidative stress was related to increased 

androgens, plasma glucose, and triglycerides, and decreased apoA
1
 concentrations.11

Studies in rodent models replicate many of the abnormalities observed in PCOS 

women and, for this reason, have been used to explore the pathophysiological basis 

of the disorder.12–17 Currently, there is scarce information about the redox state in the 

blood of PCOS rats, once the majority of the studies have focused most of their atten-

tion on the ovaries and liver, fat, and muscle tissues.17,29,35

Therefore, the aim of this study was to compare the oxidative stress profile in two 

different phenotypes obtained by prenatal (PreN) and postnatal (PostN)  androgenization 
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protocols (both with testosterone propionate). This research 

worked with an anestrous rat model of PCOS (PostN andro-

genized rat or PostN group), an estrous rat model (PreN 

androgenized rat or PreN group), and an androgenized PostN 

estrous rat model (PostN L group).18,19

Our results indicate that modifications in the oxidative 

stress markers in the blood occurred in the presence of severe 

reproductive and metabolic disarrangements observed in 

the female rats submitted to PostN androgenization with 

testosterone propionate.

Methods
Animals
This study was approved by the Ethics Committee on Animal 

Use (CEUA) of the Federal University of Santa Maria (UFSM), 

Brazil, under protocol number 100/14. The procedures with 

animals were in agreement with the guidelines of the Brazilian 

National Council of Control of Animal Experimentation that 

follows the “Principles of Laboratory Animal Care” established 

by the National Institutes of Health, Bethesda, MD, USA.

Overall, 46 female Wistar rats (Rattus norvegicus var. 

albinus) were used in this study and housed at the Labora-

tory of Biotechnology and Animal Reproduction, BioRep, 

UFSM. The animals were maintained at a temperature of 

22°C, 55%–65% humidity under artificial illumination on 

a light–dark cycle of 12:12 h, with daylight from 7 am to 

7 pm. Food and water were given ad libitum.

A total of 30 female rats were submitted to the protocol for 

synchronization of estrus. They received an intraperitoneal 

injection of 10 IU of equine chorionic gonadotropin (eCG; 

Folligon™; Intervet, São Paulo, Brazil), followed 48 h later 

by 10 IU of human chorionic gonadotropin (hCG; Pregnyl™; 

Organon, Cascavel, Brazil), and were placed with a male for 

24 h. Matches were controlled; vaginal plug was checked 

every 12 h. Observation of the vaginal plug was considered 

as the first day of pregnancy. Female rat pups were divided 

into four groups for androgenization by treatment with 

testosterone propionate or two control groups. Dams were 

maintained with their pups until weaning (21 days). PreN 

hormone exposure was accomplished by the treatment of 

pregnant dams during embryonic days 16, 17, and 18 through 

a subcutaneous injection of 2.5 mg testosterone propionate 

(Androgenol™; Hertape Calier, Juatuba, Brazil) (PreN 

group), whereas vehicle control exposures were accom-

plished by similar treatment of pregnant dams with 2.5 mg 

of corn oil (control PreN). PostN hormone exposures were 

performed by the treatment of 5-day-old animals through a 

subcutaneous injection of 1.25 mg testosterone propionate 

(PostN group), whereas vehicle control PostN 5-day-old 

animals received a subcutaneous injection of 1.25 mg of 

corn oil (control PostN).19 The final groups were as follows: 

PreN (n=8), PostN (n=7), and control group (control PreN 

with control PostN) (n=8). Another androgenized group, 

PostN leuprolide (PostN L n=7), included the treatment with 

an intramuscular (im) injection of 0.40 mg of leuprolide 

acetate depot (Lectrum™; Sandoz International GmbH, 

Holzkirchen, Germany) in 2-day-old rats before PostN 

androgenization with testosterone propionate. Information of 

other groups of leuprolide treatment including the number of 

animals per group (eg, PreN androgenized with leuprolide) 

is available in the Supplementary materials.

Euthanasia and sample collection
At the age of 110 days, the animals were transferred and then 

anesthetized with isoflurane by administering tramadol chlo-

ride (Tramadol™; Pfizer, São Paulo, Brazil) intramuscularly 

(20–40 mg/kg). Between 9 am and 10 am, blood samples were 

collected before the animals were finally sacrificed using 

cardiac puncture under deep anesthesia in the absence of 

pedal and corneal reflexes. Blood samples were centrifuged 

at 4°C and 5000 rpm/4696× g (Sorvall-Thermo Scientific, 

Asheville, NC, USA) for 15 min to separate the blood solid 

components from the serum and plasma (ethylenediamine-

tetraacetic acid) and stored at -80°C.

Laboratory measurements
Total blood cholesterol, high-density lipoprotein cholesterol 

(HDL-C), low-density lipoprotein cholesterol (LDL-C) 

triglyceride, albumin, and glucose were measured enzy-

matically in serum using a commercial assay kit (LabTest 

Diagnostics, Lagoa Santa, Brazil).

Ferric-reducing ability of plasma (FRAP)
FRAP was assessed as previously described.20 In brief, the 

FRAP reagent was freshly prepared and warmed at 37°C by 

mixing the following solutions: 1) 0.3 M sodium acetate buf-

fer solution (pH 3.6), 2) 10 mM 2,4,6-tripyridyl-1-5-triazine 

in 40 mM HCl solution, and 3) 20 mM FeCl
3
 solution at the 

ratio of 10:1:1 (v/v/v). Plasma (10 µL) was incubated with 

90 µL of FRAP reagent in a microplate for 30 min at room 

temperature in the dark. Subsequently, the level of absorbance 

of the mixture was measured at the wavelength of 595 nm 

using a spectrophotometer. The FRAP values were calculated 

by using a calibration standard curve of FeSO
4
 (0–2000 µM). 

All measurements were performed at the same time. The 

intra-assay coefficient of variation was between 1% and 2%.
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Measurements of advanced oxidation 
protein product (AOPP) levels in serum
Samples were prepared as follows: in a tube, 20 µL of serum 

from each rat was diluted into 100 µL in phosphate-buffered 

saline, followed by the addition of 10 µL of 1.16 M KI and 

20 µL of absolute acetic acid. The absorbance of the reac-

tion mixture was immediately read using a SpectraMax 

1601 spectrophotometer (Molecular Devices, Sunnyvale, 

CA, USA) at 340 nm against a blank containing 100 µL of 

phosphate-buffered saline, 20 µL of acetic acid, and 10 µL of 

KI solution.21 As the linear range of chloramine-T absorbance 

at 340 nm is between 0 and 100 µM, AOPP concentrations 

were expressed in µM chloramine-T equivalents. All mea-

surements were performed at the same time. The intra-assay 

coefficient of variation was 4%.

Total oxidation status (TOS)
TOS of serum was measured using a colorimetric measure-

ment method.22 Briefly, 225 µL of Reagent 1 (xylenol orange 

150 µM, NaCl 140 mM, and glycerol 1.35 M in 25 mM 

H
2
SO

4
 solution, pH 1.75) was mixed with 35 µL of serum 

sample, and the absorbance of each sample was read spectro-

photometrically at 560 nm as a sample blank. Subsequently, 

11 µL of Reagent 2 (ferrous ion [5 mM] and o-dianisidine 

[10 mM] in 25 mM H
2
SO

4
 solution) was added to the mix-

ture for ~3–4 min. After mixing, the last absorbance was 

read at 560 nm. The analytical sensitivity of the method was 

found to be 0.0076 absorbance/amount (AX/µM). The assay 

was calibrated with H
2
O

2
, and the results are expressed in 

terms of micromolar H
2
O

2
 equivalent per liter (µmol H

2
O

2
 

equiv/L). The detection limit of the method was determined 

by evaluating the zero calibrator 10 times. All measurements 

were performed at the same time. The intra-assay coefficient 

of variation was 6.5%.

Statistical analysis
The statistical analysis was performed using GraphPad Prism 

7.0 (GraphPad Software, Inc., La Jolla, CA, USA). Com-

parisons among the groups were performed by analysis of 

variance (ANOVA) followed by post hoc (Tukey) comparison 

test. In the absence of a normal distribution, verified by Sha-

piro–Wilk test, the data were analyzed by a Kruskal–Wallis 

test, followed by Dunn’s post hoc test. Proportion among 

groups was compared by the Fisher’s test. Differences 

between independent variables of two groups were accessed 

by the Student’s t-test or Mann–Whitney U-test according to 

the presence or absence of a normal distribution. Significance 

was assumed at P<0.05.

Results
Weight of the animals
PreN androgenized rats showed a lower weight at first PostN 

day (mean ± SD; 5.16±0.21 g) in comparison with PostN 

androgenized (6.56±0.4 g) and control (6.35±0.44 g) groups 

(P < 0.001) ( Figure 1A). At day 60, PreN rats continued to be 

lighter than PostN and control rats: the mean ± SD of weight was 

197.3±8.0 g for PreN, 219.5±1.5 g for PostN, and 210.5±13.3 g 

for control rats (P=0.01) (Figure 1B). Finally, at 110 days, all 

groups displayed similar weights: the mean ± SD of 308.8±15.2, 

314±15.0, and 316.5±10.67 g, respectively (Figure 1C). Groups 

subjected to leuprolide acetate treatment did not exhibit any 

modifications in the total weight (data not shown).

Oxidative stress markers and antioxidant 
capacity (albumin) in serum and plasma
PostN group rats displayed a significant increase in FRAP, a 

marker of direct oxidation, compared to PreN group rats. The 

mean ± SD of FRAP in PreN was 369.2±103 µmol/L/g protein, 

whereas that in the PostN group was 962±210.8 µmol/L/g pro-

Figure 1 Weight of rats at days 1 (A), 60 (B), and 110 (C) of life.
Notes: Con (n=8); PostN androgenized (n=7); PreN androgenized (n=8). (A) ANOVA P<0.0001; (B) ANOVA =0.01. Distinct letters indicate a statistical significant 
difference (adjusted P level <0.05) obtained with multi-comparison Tukey’s test. 
Abbreviations: ANOVA, analysis of variance; Con, controls; PostN, postnatal; PreN, prenatal.
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tein (P=0.03) (Figure 2A). The mean ± SD of FRAP in controls 

was 644.3±258.6 µmol/L/g protein. The difference between 

PostN and controls did not reach statistical significance.

AOPP, another marker of direct oxidative stress, was compa-

rable among the three groups (Figure 2B). The PreN, PostN, and 

control values were similar, with the mean ± SD of 36.46±20.1, 

49.75±23.32, and 4585±213 mmol/g protein, respectively.

Values for TOS, which estimates the final oxidant sta-

tus, were superimposed among the three groups. As shown 

in Figure 2C, similar features were observed in the PreN 

(mean ± SD 63.78±14.68 µmol/L/g protein), PostN (mean 

± SD 74.77±24.9 µmol/L/g protein), or control (mean ± 

SD 67.5±20.9 µmol/L/g protein) groups. Notably, neonatal 

treatment with leuprolide acetate showed no effect on FRAP, 

AOPP, or TOS in all groups (Figure S1A–I).

Levels of serum albumin, a surrogate marker of anti-

oxidant capacity, were elevated in the PostN group (mean ± 

SD 5.28±0.18 mg/dL) versus the control group (mean ± SD 

4.53±0.12 mg/dL) (P=0.01). Intermediate values (mean ± SD) 

of 4.95±0.4 were exhibited in the PreN group ( Figure 2D). The 

treatment with leuprolide in the PostN L group was associated 

with a significant reduction in albumin levels in comparison 

with PostN rats (Figure S1K). These changes did not occur 

with controls (Figure S1J) or with PreN rats (Figure S1L).

Biochemical variables
Total cholesterol levels were significantly reduced in PreN 

rats (mean ± SD 77.25±11.4 mg/dL) in comparison with those 

in PostN rats (mean ± SD 100.7±11.71 mg/dL) (P=0.01) 

(Figure 3A). Differences between the total cholesterol levels 

in the control group (mean ± SD 86.43±5.25) versus PostN 

almost reached significance (P=0.052). HDL-C and LDL-C 

levels were similar between the three groups (Figure 3B 

and C). Notably, the HDL levels decreased in the PreN 

group after neonatal leuprolide treatment (Figure S2G); 

other variables in PreN rats, such as glucose (Figure S2L), 

total cholesterol (Figure S2C), triglycerides (Figure S2K), 

and triglyceride–glucose (TyG) index (Figure S2O), did not 

modify after leuprolide treatment. PostN rats, in turn, did 

not show any metabolic modification after administration of 

leuprolide acetate (Figure S2B, F, H, J, and N).

Triglyceride levels were increased in the PostN group 

(mean ± SD 88.8±9.3) compared to those in the PreN group 

(mean ± SD 63.5±7.2) (Student’s t-test, P=0.04). Overall, no 

changes in the triglyceride levels were identified in the three 

different groups (Figure 3D), although a significant higher 

glucose was observed in both androgenized rodent models 

(P=0.001) (Figure 3F). The product of TyG was increased in 

PostN rats in comparison with that in the two other groups 

(P=0.02) (Figure 3E).

As shown in Figure S2M, control rats treated with leupro-

lide acetate (control L) exhibited an increase in the TyG index, 

suggesting a worsening of metabolic control (Figure S2D). 

No other changes regarding total cholesterol, HDL-C, or 

triglycerides were reported in control rats ( Figure S2A, E, 

and I).

Figure 2 Oxidative stress markers in C, PreN, and PostN rats.
Notes: Values of oxidants FRAP (A), AOPP (B), TOS (C), and anti-oxidant, albumin (D) in the blood of female rats. Con (n=8); PostN androgenized (n=7); PreN 
androgenized (n=8). (A) ANOVA P=0.03; (D) ANOVA P=0.02. Distinct letters indicate a statistical significant difference (adjusted P level <0.05) obtained with multi-
comparison Tukey’s test.
Abbreviations: ANOVA, analysis of variance; AOPP, advanced oxidation protein product; Con, controls; FRAP, ferric-reducing ability of plasma; PostN, postnatal; PreN, 
prenatal; TOS, total oxidation status.
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Figure 4 summarizes the main dissimilarities between 

PreN and PostN androgenized rat protocols in our study.

Discussion
Women with PCOS most frequently exhibit dyslipidemia, 

glucose intolerance/diabetes mellitus, and increased oxidative 

stress marker levels. Our study evaluated whether different 

protocols of androgenization leading to normal and abnormal 

reproductive and metabolic rat phenotypes could be associ-

ated with a particular lipid status and redox balance in the 

blood. We show that a combination of changes in oxidative 

stress (increased direct oxidation and increased antioxidative 

profile) was observed in PostN rats exhibiting anovulation/

anestrous and increased TyG, whereas this phenomenon was 

not observed in ovulatory/estrous PreN rats.

All groups of rats achieved a similar final weight at the 

end of the study. As a result, it was possible to avoid pos-

sible bias related to higher adipose accumulation, which is 

a predominant characteristic of rodents following the use of 

implants with dihydrotestosterone (DHT),13,23 letrozole,23–26 

or other miscellaneous protocols.27–29 We also observed an 

earlier weight reduction in PreN group rats at birth and day 

60. This finding was consistent with previous reports of rats 

androgenized with testosterone propionate prenatally.

An increase in direct oxidation, FRAP, was identified in 

the plasma of androgenized animals in our study. This result 

contrasts with the work of Daneasa et al (2016),30 where the 

serum levels of malondialdehyde (MDA), a lipid peroxida-

tion marker, were similar between letrozole-treated rats and 

its controls. No modifications in MDA were also reported 

in the ovary tissue of Sprague–Dawley rats submitted to 

free testosterone (2 or 5 mg) administration,17 although an 

increase in lipid peroxidation products of the ovary was found 

in letrozole rats by another study.24

In the present study, antioxidant capacity was estimated 

in the serum of androgenized animals and controls through 

the levels of albumin. Albumin is capable of scavenging 

hydroxyl radicals with its reduced (–SH) cysteine residue 

(Cys34) and, therefore, considered as one of the major 

antioxidant elements in the blood of humans and rats.31–36 

We identified increased serum albumin levels in PostN 

rats compared with controls and the PreN group. In a 

previous study, no differences in glutathione peroxidase 

(GPx), another antioxidant marker, were described between 

letrozole rats and controls.30 However, an increase in the 

antioxidant capacity measured by catalase activity and 

superoxide dismutase or GPx has been identified in the 

ovary of PCOS rats.17,24,30

Figure 3 Serum levels of total cholesterol (A), HDL cholesterol (B), LDL cholesterol (C), triglycerides (D), TyG index (E), and glucose (F) in Con, PreN, and PostN 
androgenized rats.
Notes: Con (n=8); PostN androgenized (n=7); PreN androgenized (n=8). (A) ANOVA P=0.01; (D) ANOVA P=0.04; (E) ANOVA P=0.02; (F) ANOVA P=0.001. Distinct 
letters indicate a statistical significant difference (adjusted P level <0.05) obtained with multi-comparison Tukey’s test. 
Abbreviations: ANOVA, analysis of variance; Con, controls; HDL, high-density lipoprotein; LDL, low-density lipoprotein; PostN, postnatal; PreN, prenatal; TyG, 
triglygeride–glucose.
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One reason for the divergences among experimental stud-

ies may be based on the existence of several approaches for 

the development of animal models of PCOS. Because of the 

diversity and limitation of rodent models, it has been claimed 

that there is no “gold standard” reproducing all abnormalities 

seen in PCOS.37 For this reason, caution is necessary to avoid 

an indiscriminate generalization of the meaning of PreN and 

PostN models regarding the presented data.

Our results suggested a dual augmentation in oxidative 

and antioxidative statuses that agreed with some findings in 

the blood of women with PCOS. In a previous meta-analysis, 

the mean of MDA, a direct oxidant marker, was ~40% higher 

in PCOS than in controls.38 Other direct oxidants such as 

dimethylarginine and homocysteine and nitric acid were also 

increased. However, in the same study, antioxidant markers 

were reduced (glutathione), increased (superoxide dismutase 

activity), or equal (total antioxidant capacity) to controls.38

A recent study (544 PCOS and 468 control women) 

showed that all four typical phenotypes of PCOS based on 

the Rotterdam criteria were associated with higher TOS and 

oxidative stress index (OSI) in comparison with control 

women.11 Increased oxidative stress in PCOS was related to 

higher plasma glucose and triglycerides.11 Remarkably, all 

oligo-anovulatory PCOS women, except PCOS women with 

presumed regular cycles, show an increased total  antioxidant 

capacity in the serum.11 In our study, anovulatory rats (PostN) 

presented an increased TyG index. TyG, the product of tri-

glycerides with glucose, has been considered in humans and 

in rodents as a surrogate marker of insulin resistance and 

metabolic syndrome.39–42 We showed that only PostN rats 

exhibited statistically significant higher TyG indices than 

controls, which may represent an additional link toward the 

disruption of the oxidative stress markers.43

Although the comparison of two models (PreN and PostN) 

with an extra ovulatory control (PostN L rats) consisted in 

one strength of the present study, weakness should be consid-

ered as well. The realization of euthanasia in rats at different 

estrous cycles may also had an impact of estrogens on oxida-

tive stress markers. Other limitations of our research from 

our point of view were related to sample size, the absence of 

subgroups (lean, obese/young, aged), and the lack of inclu-

sion of more antioxidant stress markers to the study.

Conclusion
The results presented suggest that an increased direct oxi-

dation and an increased antioxidative capacity could be 

associated with PostN treatment with testosterone propionate 

(PostN), which is usually linked with anovulatory cycles and 

insulin resistance estimated by higher TyG. Androgenized 

rats treated with leuprolide acetate (PostN L) and presenting 

Figure 4 Metabolic and oxidative stress markers’ characteristics of PostN and PreN rats.
Notes: *Significant differences with control rats. – indicates similarities with controls. The full reproductive aspects of these groups (PreN, PostN, and control with 
and without treatment with GnRH agonists) have been published in a previous study.19 Our results agreed with those of previous studies that employed testosterone 
propionate,12,18,44,45 with few exceptions.46

Abbreviations: AOPP, advanced oxidation protein product; FRAP, ferric-reducing ability of plasma; GnRH, gonadotropin-releasing hormone; HDL, high-density lipoprotein; 
PostN, postnatal; PreN, prenatal; TOS, total oxidation status; TyG, triglygeride–glucose.
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• Increased number atertic follicles
• Decreased corpus luteum

• Ovulatory cycles (estrous cycles)
• Ovary histology (number of atretic
   and healthy follicles, corpus
   luteum) similar to control rats

PreN group

– (d1)
– (d90)
– (d110) – (d110)
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estrous cycles did not exhibit modifications in biochemical 

status or increased direct oxidation (FRAP) in plasma but 

showed a reduced antioxidant capacity estimated by albumin 

serum levels. PreN androgenization, in turn, was related to 

a lower weight at birth but a less harmful phenotype. Alto-

gether, these findings continue to support the central role of 

androgen excess, anovulation, and insulin resistance as the 

key factors to trigger redox abnormalities in PCOS. Addi-

tional studies of the impact of weight gain, high-glucose/

high-fat diet,43 or simply the long-term follow-up will 

improve the comprehension of the intricacy mechanisms of 

oxidative stress in PCOS.
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Supplementary materials

Figure S1 Oxidative stress markers in C, PreN, and PostN androgenized rats, which were treated and not treated with neonatal leuprolide acetate.
Notes: (A–C) FRAP; (D–F) AOPP; (G–I) TOS; (J–L) Albumin. Con (n=8); Con + Leup, Con treated with leuprolide; PostN androgenized (n=7); PostN + Leup, PostN 
androgenized treated with leuprolide (n=7); PreN androgenized (n=8); PreN + Leup, PreN androgenized treated with leuprolide (n=4). Results were reported as mean (SEM). 
Statistical analysis used Student’s t-test. *Significance was assumed at P<0.05.
Abbreviations: AOPP, advanced oxidation protein product; Con, controls; FRAP, ferric-reducing ability of plasma; Leup, leuprolide; PostN, postnatal; PreN, prenatal; SEM, 
standard error of the mean; TOS, total oxidation status.
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Figure S2 Biochemical markers.
Notes: Serum levels of total cholesterol (A–C), HDL cholesterol (E–G), triglycerides (I–K), TyG index (M–O), and glucose (D, H, and L) in Con, PreN, and PostN rats 
submitted or not submitted to the neonatal treatment with leuprolide acetate. Con (n=8); C + Leup, Con treated with leuprolide (n=6); PostN androgenized (n=7); PostN + 
Leup, PostN androgenized treated with leuprolide (n=7); PreN androgenized (n=8); PreN + Leup, PreN androgenized treated with leuprolide (n=4). Results were reported 
as mean (SEM). Statistical analysis used Student’s t-test. *Significance was assumed at P<0.05.
Abbreviations: Con, controls; HDL, high-density lipoprotein; Leup, Leuprolide; PostN, postnatal; PreN, prenatal; SEM, standard error of the mean; TyG, triglygeride–
glucose.
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