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Abstract: For smart mobility, autonomous vehicles, and advanced driver-assistance systems (ADASs),
perception of the environment is an important task in scene analysis and understanding. Better
perception of the environment allows for enhanced decision making, which, in turn, enables very
high-precision actions. To this end, we introduce in this work a new real-time deep learning approach
for 3D multi-object detection for smart mobility not only on roads, but also on railways. To obtain the
3D bounding boxes of the objects, we modified a proven real-time 2D detector, YOLOv3, to predict
3D object localization, object dimensions, and object orientation. Our method has been evaluated on
KITTI’s road dataset as well as on our own hybrid virtual road/rail dataset acquired from the video
game Grand Theft Auto (GTA) V. The evaluation of our method on these two datasets shows good
accuracy, but more importantly that it can be used in real-time conditions, in road and rail traffic
environments. Through our experimental results, we also show the importance of the accuracy of
prediction of the regions of interest (RoIs) used in the estimation of 3D bounding box parameters.

Keywords: object detection; localization; distance estimation; object dimensions; object orientation;
3D bounding box estimation; 3D multi-object detection; multi-modal dataset; deep learning; smart
mobility

1. Introduction

To improve safety in intelligent mobility and to make driving more autonomous, vehi-
cles must have a better perception of their environment. This perception must guarantee
good detection of objects, but more generally good interpretation of the scenes. In rail
mobility, the problem is quite similar to that in the road sector. In these two types of
environment, the objects of interest are vehicles, pedestrians, buses, cyclists, trees, etc.
However, while the road sector is widely covered in the scientific literature, this is not the
case for the rail sector. This is in part due to the lack of specific datasets. Reliable perception
must guarantee completion of at least three essential tasks: object detection, localization,
and tracking. An accurate and reliable estimation of the depth could significantly increase
safety, by allowing the estimation of the distance between the vehicle and the detected
objects, thus allowing the prevention of collisions. Other information about objects such
as their dimensions and orientation is also very useful for safety. The estimation of those
parameters is consequently an important task that should be performed by an advanced
driver-assistance systems (ADAS).

Measurement of the distance to objects is generally based on a range of complementary
sensors: radar [1], LiDAR [2], or time-of-flight (ToF) camera [3]. However, these methods
have some limitations because they are often expensive and bulky. We focus in this paper
rather on the use of vision-based techniques for object detection in 3D, which combine
the detection of objects and their localization in 3D. In recent years, methods based on
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convolutional neural networks (CNNs) have been explored for detecting and locating
objects in 3D space with only images as inputs. One of the main advantages of these
methods is the reduction of sensor costs. Light detection and ranging (LiDAR) and radar
are replaced by a standard camera, which is easy to integrate and is inexpensive. Many
approaches have been proposed in the literature. However, we note a deficit in the
evaluation of these approaches in realistic environmental conditions, specifically in rail
traffic environments.

The main contributions put forward in this paper are the following:

• A new method for a real-time multi-class 3D object detection network that is trainable
end-to-end. We leverage the popular real-time object detector You Only Look Once
(YOLO) v3 for regions of interest (RoIs) prediction used in our network. Our methods
allow the following predictions:

1. Object 2D detection;
2. Object distance from the camera;
3. Object 3D centers projected on the image plane;
4. Object 3D dimension and orientation.

With these predictions, our method is able to draw 3D bounding boxes for the objects.
• A new photo-realistic virtual multi-modal dataset for 3D detection in the road and

railway environment using the video game Grand Theft Auto (GTA) V . The GTAV
dataset includes images taken from the point of view of both cars and trains.

Our approach is mainly based on the contribution of an object detection method
taking into account two significant criteria: accuracy and real-time for both road and rail
environments. While other methods in the state-of-the-art focus mainly on the accuracy of
3D object detection, in railway applications we note that no work is published on 3D object
detection. No datasets are currently available in the state-of-the-art that include railway
scene data with the ground truth. We use an approach based on YOLOv3 for real-time 3D
object detection and we use the GTAV game for the creation of the virtual railway dataset
(instead of using a simulator, for more graphical fidelity) for training and validation of
our method. The remainder of this paper is organized as follows. Section 1 introduces
the paper. In Section 2, we review the 3D-object-detection-related work in which we will
present methods based on depth sensors as well as methods based on monocular images.
In Section 3, we describe in more detail our approach for real-time 3D multi-object detection
and localization. Experimental results are presented in Section 4. Finally, the conclusions
and future directions are outlined in Section 5.

2. Related Work

Many works have been carried out on 3D object detection. Among these works, we
can find methods based on high-precision depth sensors such as LiDAR and methods
based only on images from a single camera.

2.1. 3D Object Detection from a Depth Sensor

Among the methods based solely on depth sensor inputs, we can distinguish the
methods using only a point cloud from LiDAR sensors like PointNet [4] and Pipeline
based on graph convolutional networks (PointRGCN) [5]. In PointNet, a deep network
architecture is presented. This network allows performing tasks such as object classification,
part segmentation, and semantic segmentation from a 3D point cloud from a depth sensor.
The PointNet network is divided into two sub-networks: the first one is the classification
network and the second one is the segmentation network. The classification network takes
the points from the point cloud and performs feature transformation to extract global
features. These global features are then passed through a multi-layer perceptron (MLP)
to obtain the classes to score from the classification. The global features are then also fed
to the segmentation network to obtain the semantic segmentation. This method has been
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trained on the indoor dataset presented in [6] but has not been trained on outdoor datasets
for road applications.

However, PointRGCN has been trained for road applications on the KITTI road
dataset [7]. It introduces a graph-based 3D object detector based on graph convolutional
networks (GCNs). The method relies exclusively on 3D point clouds from a LiDAR sensor
to perform the 3D object detection task. This method is based on three modules: a region
proposal network (RPN) module, a graph-based network for feature extraction, and a
graph-based network for context aggregation.

We can also denote methods that use as the input the point cloud from a LiDAR and
RGB camera to improve 3D detection. In [8], the proposed method puts forward a new
architecture for the RPN used for predicting the RoIs. The method uses feature extractors
to create the feature maps for both RGB input images and LiDAR point clouds. The feature
maps are then fed to the multimodal fusion RPN introduced in this paper, which leverages
the data from both inputs to perform the 3D bounding box proposals. These proposals have
their dimension refined in the detection network and their orientation and class predicted.
This network has also been trained in road environments through the KITTI dataset.

LiDAR-based methods have the advantage of being the most accurate methods avail-
able for 3D object detection. However, they require a dense point cloud from an expensive
depth sensor such as a LiDAR. This limits the development of datasets that are necessary
for training, validation, and inference.

2.2. 3D Object Detection from Monocular Images

In recent years, we have seen the emergence of CNN-based methods for 3D detection.
These methods enable 3D detection from simple RGB images. In [9], the bounding boxes
are predicted by using prior 3D boxes with typical object sizes on the ground plane.
These boxes are then projected onto the image plane and the scores are computed by
using features like the class semantic, instance semantic, contour, object shape, context,
and location prior. The final boxes are obtained after the application of non-maximum
suppression (NMS)-based methods.

2D-detector-based methods [10–12] use separately trained 2D detectors for feature
extraction and RoI prediction, which are used to obtain aligned features that are then fed to
a 3D parameter regressor. Ref. [10] proposes a 3D parameter regression network from RoI-
aligned features with a new hybrid discrete-continuous loss for orientation prediction. This
allows leveraging the geometric constraints given by the 2D bounding boxes to increase
the accuracy of the 3D bounding boxes. This method turns the regression of the object
angle into a hybrid task with a classification part as well as a regression part. It is shown
to increase the precision of the angle prediction. For the classification task, the angles are
separated into bins, and then the network predicts the confidence score for an observed
angle to belong to a specific bin. The network also computes the cosine and the sine of
the offset angle from the bin centers (regression). Another part of the model regresses the
dimension of the object. This new loss function provides a better prediction of the object’s
angle compared to the simple regression. This method still requires an RPN-based object
detector for extracting the features as well as obtaining the RoIs used for feature alignment.

In [11], a CNN-based approach for 3D object detection and tracking is proposed. This
method uses a Region Based Convolutional Neural Network called FasterRCNN to first
predict the 2D bounding boxes along with the object class, and then predict its projected
3D center on the image plane. For each 2D box, the dimensions, orientations, and distance
along the Z-axis from the camera are predicted to obtain the oriented 3D bounding boxes.
The tracking across an image sequence is performed by two long short-term memory
(LSTM) layers. These temporal layers produce a robust linking across the frames and
allow for further refinement of the 3D bounding boxes. The whole method is trained and
evaluated on a custom dataset, but the authors also provide 3D detection quantitative
results on the KITTI dataset.
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In [12], a deep coarse-to-fine many-task (deep MANTA) CNN is introduced for simul-
taneous vehicle detection, part localization, visibility characterization, and 3D dimension
estimation, from monocular images. It is based on a two-step process: the first step outputs
scored bounding boxes associated with vehicle information, and the second uses these
outputs and a 3D vehicle dataset to recover 3D orientations and locations.

These methods provide relatively accurate results but still fall short of methods that
take point clouds from depth sensors as the input. These methods also do not focus on the
real-time aspect that is essential for an embedded system application for both road and
rail safety. Finally, we can denote the complete absence of methods evaluated in railway
environments due to the lack of adequate datasets. Our work aims at filling this gap in the
state-of-the-art by proposing a new real-time 3D detection method trained and evaluated
on our own virtual road/rail GTAV-based dataset, as well as on the KITTI dataset.

3. Our Realtime 3D Multi-Object Detection and Localization Network

The aim of our method is to retrieve 3D bounding boxes from monocular RGB images
while keeping the computing time low to be compatible with real-time constraints. Like
most of the works related to 3D object detection from a single image presented in the
previous section, we rely on RoIs provided by a 2D object detector to estimate the oriented
3D bounding boxes of the objects. Unlike the other methods for 3D detection from a
monocular image, which rely on a separate RPN-based network like faster RCNN to
perform the 2D detection, our method is based on the single-stage detector YOLOv3 [13]
to perform the 2D bounding box predictions, and our network shares the same feature
extractor between the 2D detector and the 3D detector. Our network architecture allows
the memory consumption to be greatly reduced, while outperforming other state-of-the-art
methods in terms of computing time, at the cost of slightly lower precision. Furthermore,
our method is trained end-to-end, while other models require the 2D detector to be trained
separately, thus reducing the training time and cost of our method. Our detection pipeline
is described in Figure 1.

3D Regression Module

Yolov3

FeatureMaps
Conv
Layers

Skip Connections

Object
Classes

RoIsYOLO Layers

ROI Align Aligned Features

NMS

( 7× 7 )

Conv Layers

Conv Layers

Conv Layers

Conv Layers

Dimensions

Distance

Orientation

Center 3D Bounding Box

Figure 1. Illustration of our 3D bounding box detector. A single RGB image is used as the input
for our method; the shared convolutional features are then extracted by the network backbone,
Darknet-53. We leverage the proven 2D object detector, YOLOv3, to perform the RoI and object class
prediction. We then extract the RoI features by using the feature alignment used in [14]. The 3D
bounding box parameters are predicted by our CNN’s parameter prediction, and finally the 3D
bounding box is drawn on the image.

3.1. 3D Bounding Estimation

The 3D bounding box of an object can be described by its center position relative
to the camera T = [x y z]> its dimensions D = [w, h, l] and its orientation R(φ, θ, ψ)
characterized by the elevation, the azimuth, and the roll angles. Given K the matrix of
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intrinsic parameters of the camera and Xo = [xo yo zo 1]> a 3D point in the object coordinate
system, the projection of this point onto the image plane xim = [u v 1]> is given by:

xim = K ·
[
R T

]
· Xo. (1)

By considering the origin of the object coordinates to be the center of the 3D
bounding box, the coordinates of the 3D bounding box are X1 =

[
w/2 h/2 l/2

]
,

X2 =
[
w/2 −h/2 l/2

]
, . . . , X8 =

[
−w/2 −h/2 −l/2

]
. The 3D bounding box coor-

dinates in the image can then be obtained using Equation (1).

3.2. Parameters to Regress

2D object detection. In our work we use YOLOv3 to perform the 2D object detection.
YOLOv3 performs the object class classification cls as well as the bounding box parameters
b (position and dimension). The bounding box predictions are then used as RoIs for the
Feature Align function to extract the features for each RoI, which are then fed to the rest of
the network for predicting the 3D bounding box parameters.

Object center prediction. In this work, we assume the center of the 3D bounding box
to be the 3D center of the object. Predicting the center of the 3D bounding boxes of the
objects is therefore equivalent to predicting their position Xo = [xo yo zo 1]>. In order to
increase the accuracy of this prediction, we aim at predicting the projected 3D center on
the image plane. Instead of predicting directly the coordinates of the object center on the
image plane, we use cues from the 2D bounding box prediction and we predict the offset
position in pixels of the object center from the 2D bounding box center c̃ =

[
c̃x c̃y

]
. We

are therefore reducing the variance of the prediction, making it easier for the algorithm
to learn. The object center Xo is computed by using the object distance estimation on the
Z-axis and the inverted calibration matrix K−1.

Object distance estimation. In order to determine the center of the 3D bounding box,
it is necessary to determine its position on the Z-axis of the camera coordinates. For each
RoI from the object detector, we predict the object’s center distance z̃ in meters.

Object dimensions. Instead of directly predicting the object’s dimensions in meters,
we use the fact that the dimensions of objects have a very low variance among the same
class (car, truck, etc.). Therefore, we choose to use the mean dimensions for each object
class as a strong prior for the prediction of the dimensions.

Object orientation. In our work, we assume that only the azimuth (noted θ) matters
for application on the road environment, and thus we do not predict the orientation
characterized by the elevation and roll and we set φ = 0 and ψ = 0. Since the same
azimuth can lead to multiple observed orientations from the camera point of view (see
Figure 2), we cannot predict directly the angle θ. Instead, we predict the observed angle α
and retrieve the global orientation θ using Equation (2):

θ = α + arctan(
x
z
). (2)

Following the work of [10], instead of considering the angle prediction as a regression
problem, we adopt a hybrid classification/regression approach. We divide the possible
angles into 2 bins; we then perform a classification task to predict in which bin the object
angle is located. Then, we regress the difference between the bin center and α.
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Camera

α

θ

X

Figure 2. Illustration of the object azimuth θ and its observed orientation α. The local orientation is
retrieved by computing the angle between the normal to the ray between the camera and the object
center and the X-axis of the camera. Given that we are using left-hand coordinates, the rotation is
clockwise. Our method estimates the observed orientation and θ can be obtained using Equation (2).

3.3. Losses

In this subsection, we present the loss calculation of our method. The loss is specified
in Equation (3):

L = Lyolo + k1 × Lcenter + k2 × Ldistance + k3 × Ldim + k4 × Lorient. (3)

In our loss calculations, we use the same loss as YOLOv3 for 2D detection and class
prediction. We also use ki∈[1,...,4] as weights for the losses. With ck =

[
cxk cyk] the

ground-truth center of the object k in pixels, Rck =
[
Rcxk Rcyk

]
the center of the RoI for

the object k, N the number of objects, and c̃k the prediction from our network, the center
loss is written in Equation (4):

Lcenter = Mean(
1
N

N

∑
k=1
|ck − Rck − c̃k|). (4)

Assuming zk to be the ground-truth distance of an object k, N the total number of
objects, and z̃k the distance prediction from our method, the distance loss is then calculated
using the L1 loss and is detailed in Equation (5):

Ldistance =
1
N

N

∑
k=1
|zk − z̃k|. (5)

With dk =
[
dx dy dz

]
the ground-truth dimensions of an object k in meters, ddk

the mean dimension for the class of object k, N the number of objects, and d̃k the prediction
from our method, the distance loss is detailed in Equation (6):

Ldim = Mean(
1
N

N

∑
k=1

∣∣dk − d̃k − ddk
∣∣). (6)
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Finally, assuming αk to be the ground-truth observed angle of object k, N the total
number of objects, and α̃k the prediction, we use the smooth L1 loss as the orientation loss
and the loss is written in Equation (7) with β = 1 :

Lorient =
1
N

N

∑
k=1

ek, (7)

where

ek =

{
0.5(αk − α̃k)

2/β, if |αk − α̃k| < β

|αk − α̃k| − 0.5× β, otherwise
.

4. Experimental Results
4.1. Training Details

KITTI. We trained our method on the KITTI dataset dedicated to 3D detection on
the same training split used by the authors of [10] containing half of the samples and we
performed the evaluation on the other samples. This dataset offers over 7000 training
image annotations for 2D bounding boxes, object position (XYZ), object dimensions, object
azimuth, and observed orientation for 3 different object classes (car, bicycle, person).
Optimal results (optimal-fitting) for our method were achieved after 130 epochs.

GTA. Inspired by previous work on database creation using images from the video
game Grand Theft Auto V [15], we created our own hybrid database of road and rail images.
This new dataset allows us to overcome the problem of having a railway database with a
ground truth rich enough to allow 3D bounding box learning for cars, trucks, pedestrians,
and motorcycles. The training of our method was conducted on a split containing road and
railway images. The evaluation was then conducted on the validation split of the database
containing only railway images. The dataset contains a total of more than 10,000 images.
The training on this dataset was performed on 50 epochs.

Training. For estimating the 3D bounding box, we used a pre-trained YOLOv3 model
trained on the COCO dataset to reduce the training time. The training on both datasets
(KITTI and GTAV) was performed with an image resolution of 512× 512 pixels with a batch
size of 64. We used the one-cycle learning rate scheduler as proposed in [16] for controlling
the momentum and the learning rate during training. The optimal maximum learning rate
was determined using the method described in the same paper [16]. For our method, we
used a peak learning rate of 7× 10−4 with a weight decay of 1× 10−3. Through trial and
error we also determined the loss weights and we set k1 = 1, k2 = 5.1, k3 = 70, k4 = 110. We
also chose the Adam optimizer with a weight decay of 7× 10−5 for training optimization.

4.2. Evaluation

2D detection. For evaluating the performance of the 2D detection, we used the
metrics described by the authors of YOLOv3 on each class of the dataset. Given that the
regression of the 3D bounding box parameters relies on accurate RoIs and classes for the
objects, evaluating the precision of the 2D detector is a necessity. The error metrics are the
average precision (AP), the recall (R), the mean average precision (mAP), and the F1 score.

Distance estimation. For our distance estimator evaluation, we used the same eval-
uation as was used for image-level depth estimation methods. The metrics used include
absolute relative error (Abs Rel), the squared relative error (SRE), the root-mean-square
error (RMSE), the logarithmic RMSE (log RMSE), and the percentage of bad matching
pixels (BMP). Let zgt and zpd be, respectively, the ground truth and predicted distance of
the object i, calculated using Equation (8), where δ = 1.25k:

αk=[1...3] = max(
zgt

zpd
,

zpd

zgt
) < δk. (8)
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Dimensions. The dimension prediction evaluation is performed using the dimension
score (DS) described by the authors of [11]. With Vpd and Vgt the predicted and ground
truth volume of the object, the DS is computed using Equation (9):

DS = min(
Vpd

Vgt
,

Vgt

Vpd
). (9)

Object center. The object center predictions are evaluated with the center score (CS)
as described in [11]. Assuming x and y are the projected center coordinates in pixels and w
and h the width and the height of the 2D bounding box, CS is computed with Equation (10):

CS = (2 + cos(
xgt − xpd

wpd
) + cos(

ygt − ypd

hpd
))/4. (10)

Orientation. For evaluating the orientation predictions, we use the orientation score
(OS) as described in the KITTI benchmark. OS is calculated using Equation (11):

OS = (1 + cos(αgt − αpd))/2. (11)

4.3. Results

The quantitative results of our method on both KITTI and GTAV datasets are presented
in Table 1 and Figures 3 and 4. We can see that although our method offers results that
are slightly lower than the state-of-the-art methods, the lightweight architecture of our
network allows us to perform real-time 3D detection, which is not possible with the other
state-of-the-art methods. We have also added the qualitative results of our method under
both GTAV and KITTI datasets in Figure 5.

Figure 3. In these graphs, we compare the orientation score obtained by our method (with or
without ground truth box) on the different dataset classes; we also include the results of the “3D joint
monocular” method (which also uses ground truth boxes). We can see that our method has a lower
orientation score when we do not use Ground truth (GT) bounding boxes. This can be explained
by the fact that the boxes used for feature alignment during inference are the same as those used
during training.
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Figure 4. In these graphs, we compare the depth RMSE obtained by our method (with or without
ground truth box) on the different dataset classes; we also include the results of the “3D joint
monocular” method (which also uses ground truth boxes). We can see that our method obtains a
higher RMSE error when we do not use GT bounding boxes. This can be explained by the fact that the
boxes used for feature alignment during inference are the same as those used during training. We can
also see that there is a significant loss in accuracy on smaller classes such as bicycles or people when
our method predicts RoIs using YOLOv3 instead of using ground truth. This can be explained by the
fact that variations in the prediction of RoIs have a greater impact than for larger classes like cars.

In order to carry out a 3D object detection, our method requires 2 stages: 1. The first
level allows extraction of the image features to predict the RoIs of the objects and their
classes. 2. The second level of our CNN network uses both extracted features and the RoIs
to align the features and to predict the 3D parameters of the objects. As for the method
presented in [10], this presents an approach to improve the prediction of orientation during
3D detection while our approach predicts not only the objects’ orientation, but also their
distance, their 3D centers, and their dimension for a full 3D object detection. The architec-
ture of the network presented in [10] has only one stage (the second stage in our approach)
for 3D prediction and requires adding the first stage using a 2D object detector (faster
RCNN, YOLO, Single-Shot Detector (SSD), etc.). Moreover, the results presented in [10]
focus on the evaluation of the orientation under the KITTI dataset and do not include an
evaluation dedicated to 3D object detection. Our approach predicts not only 2D object
detection, but also the distance of the objects from the camera, their 3D center, their ori-
entation, and their dimension. All these predictions are integrated into an “all-in-one”
network to predict 3D objects. For this reason, we have presented in Table 1 quantitative
results of our method on both KITTI and GTA datasets compared to [11], and in Table 2
some experimental results for different object classes on both KITTI and GTAV compared
with [11].
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Figure 5. Qualitative results of our method were obtained through KITTI and our GTAV datasets.
These images were extracted from the validation split of each dataset. The RoIs used for predicting
the 3D bounding box parameters were computed through YOLOv3. 4 top lines: results obtained for
GTAV dataset (left column: ground truth; right column: prediction), 4 bottom lines: results obtained
for KITTI dataset (left column: ground truth; right column: prediction).
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Table 1. Quantitative results of our method for both KITTI and GTAV datasets. The evaluation was performed on the validation split of the datasets. Since accuracy metrics for the 2D
detection (RoI) were not available for [11], only ours are displayed. The bold numbers represent the best score for each metrics for each dataset.

Dataset Method
2D Detection Distance

Dimensions DS Center CS Orientation OS VRAM Usage Inference TimeAP R mAP F1 Abs Rel SRE RMSE
(m)

log
RMSE

α1 α2 α3

KITTI Ours (w GT RoIs) - - - - 0.096 0.307 2.96 0.175 0.941 0.980 0.988 0.847 0.983 0.753 3.22 GB 10 ms
Ours (w/o GT RoIs) 0.469 0.589 0.5 0.517 0.199 2.32 5.89 0.310 0.823 0.934 0.960 0.853 0.951 0.765 3.22 GB 10 ms

Joint Monocular 3D [11] - - - - 0.074 0.449 2.847 0.126 0.954 0.980 0.987 0.962 0.918 0.974 5.64 GB 97 ms

GTA Ours (w GT RoIs) - - - - 0.069 0.420 4.60 0.100 0.965 0.992 0.999 0.886 0.999 0.961 3.22 GB 10 ms
Ours (w/o GT RoIs) 0.533 0.763 0.632 0.61 0.207 4.92 12.3 0.319 0.781 0.897 0.942 0.853 0.846 0.845 3.22 GB

Table 2. Our experimental results for different object classes on both KITTI and GTAV datasets. The evaluation was performed on the validation split of the datasets. Since accuracy
metrics for the 2D detection (RoI) were not available for [11], only ours are displayed. The bold numbers represent the best score for each metrics for each dataset.

Dataset Classes Method 2D Detection Distance Dimensions Center Orientation
AP R mAP F1 Abs Rel SRE RMSE (m) log RMSE α1 α2 α3 DS CS OS

KITTI

Car Ours (w GT RoIs) - - - - 0.0957 0.312 3.05 0.18 0.941 0.980 0.988 0.872 0.981 0.781
Ours (w/o GT RoIs) 0.558 0.879 0.783 0.682 0.163 1.29 5.28 0.271 0.839 0.948 0.971 0.867 0.962 0.783

Person Ours (w GT RoIs) - - - - 0.0979 0.254 2.01 0.154 0.935 0.983 0.992 0.705 0.993 0.584
Ours (w/o GT RoIs) 0.508 0.518 0.464 0.513 0.424 7.92 7.70 0.485 0.729 0.844 0.892 0.719 0.885 0.616

Cyclist Ours (w GT RoIs) - - - - 0.0979 0.359 3.57 0.150 0.940 0.979 0.988 0.809 0.997 0.738
Ours (w/o GT RoIs) 0.342 0.371 0.253 0.356 1.04 30.9 17.4 0.797 0.415 0.622 0.719 0.812 0.678 0.542

GTA

Car Ours (w GT RoIs) - - - - 0.0552 0.385 4.74 0.0761 0.990 0.999 0.999 0.860 0.999 0.993
Ours (w/o GT RoIs) 0.477 0.915 0.778 0.627 0.129 2.28 9.59 0.217 0.873 0.938 0.965 0.812 0.894 0.905

Truck Ours (w GT RoIs) - - - - 0.0454 0.178 3.22 0.0576 0.994 1.00 1.00 0.871 0.999 0.989
Ours (w/o GT RoIs) 0.312 0.880 0.617 0.461 0.259 6.99 19.2 0.455 0.642 0.78 0.868 0.736 0.622 0.681

Motorcycle Ours (w GT RoIs) - - - - 0.0623 0.266 3.84 0.0753 1.00 1.00 1.00 0.918 1.00 0.967
Ours (w/o GT RoIs) 0.614 0.764 0.725 0.681 0.186 3.58 13.7 0.281 0.691 0.878 0.967 0.901 0.689 0.909

Person Ours (w GT RoIs) - - - - 0.116 0.612 4.56 0.159 0.877 0.966 1.00 0.963 0.997 0.856
Ours (w/o GT RoIs) 0.263 0.659 0.488 0.375 0.372 10.5 15.1 0.453 0.620 0.834 0.903 0.961 0.812 0.735
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We conducted our experiments on both datasets using our method with either the
RoIs coming from YOLOv3 or coming directly from the ground truth. The results show
that the accuracy of our method, especially for distance estimation, is dependent on the
accuracy of the RoI prediction. Thus, we can see that our method, when the ground truth
RoIs are used, has a precision close to the state-of-the-art methods. However, when we use
the RoIs predicted by YOLOv3, the accuracy is significantly lower, which can be explained
by the fact that RoIs for the same target can vary in size and shape, which makes learning
the distance more difficult. This problem is mitigated when the method is evaluated using
the same fixed RoIs as those used for learning, which explains the good performance of the
state-of-the-art methods and of our method with the ground truth RoIs. In our 3D object
detection approach, we use images and not videos, so we do not have problems related to
full RoI selection where objects change position in video sequences. We also note through
our results that the OS is relatively low; this can be explained by the fact that our method
struggles to distinguish the front from the back of the detected objects. However, when
plotting the 3D bounding boxes on the image, this problem is mitigated. Our 3D object
detection method, although being one of the fastest, does not yet reach the level of accuracy
of state-of-the-art methods. This is because the variation of RoIs during the 2D prediction
phase leads to a loss of accuracy when predicting the 3D parameters. We are currently
working on a new method that will use 2D/3D anchor boxes to replace the prediction
part of the RoIs and thus avoid the loss of accuracy when these vary. Predicting the 3D
parameters of an object from a 2D image is a complex problem. By predicting the 3D center
projected on the 2D image, we can improve the prediction of the 3D center. Our network
can thus use the information related to the appearance of the object to deduce the position
of the object’s 3D center on the image. By combining this information with the prediction of
the distance of the object from the camera and the object calibration matrix, we can obtain a
prediction of the object’s 3D center. With this approach, we can increase the accuracy of the
object 3D prediction; however, it is still not as accurate as using LiDAR data. The accuracy
is also reduced when the object is partially hidden by any other obstacle present in the
scene. Additional evaluations of our methods were conducted for the different classes of
objects present on the two datasets (see Table 2). These results show that on both KITTI and
GTAV datasets, the object class with the highest precision is the Car class. This is explained
by the fact that the Car class is the majority class on both datasets and by the fact that a car
represents a relatively large target (unlike a person or a cyclist) making detection easier.

We have used YOLOv3 as the first stage because at the time of our network design,
YOLOv3 was the most responsive/accurate real-time 2D object detector (better than Faster
RCNN, SSD, etc.). YOLOv4, which was published in 2020, has made improvements on
the backbone architecture of YOLOv3 (moving from Darknet53 to Darknet53CSP) due to
improvements in data augmentation during the training process. During the development
of our network, we have tested the different improvements related to the data augmentation
on our network and, although they improve the precision for 2D object detection, they
deteriorate and decrease the quality of 3D detection. Therefore, we chose not to make these
improvements on our network and kept YOLOv3 as a main approach in the first stage.

Finally, we conducted experiments on the computation time and memory consump-
tion of the different models, which can be found in Table 1. Since the method proposed
by [11] is separated into three modules (RoI prediction, 3D parameter regression, and track-
ing), we obtained the computation time by adding one of the forward passes of the RoI
prediction and one of the 3D parameter predictions. The memory consumption was ob-
tained similarly. The results of this experiment show that our method’s single network
architecture allows us to greatly reduce the computation time as well as reducing the
memory footprint suitable for embedded system real-time applications. The experiment
was conducted on an Nvidia RTX 3080. Our approach is innovative for at least two signifi-
cant reasons. Firstly, our new approach of 3D object detection is adapted in real-time to
real navigation and traffic conditions. We tested it with our test vehicle in Rouen and Le
Havre (two large cities in France). The real-time 3D object detection improved the quality
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of environment perception, which improved the quality of both decisions and actions
(obstacle avoidance, pedestrian detection, maintaining a safe distance, etc.). Our approach
allows 2D detection, object center prediction, object distance prediction from the camera,
object 3D center prediction, 3D object dimension, and 3D object orientation. This means
that our method is based on a new network that is trainable end-to-end, which facilitates
the training process. Our approach is one of the fastest and lightest methods compared to
the state-of-the-art methods. This makes it the most suitable 3D object detection method for
embedded applications such as autonomous vehicles (cars and trains). Indeed, the other
approaches in the state-of-the-art do not put the real-time aspect as a high priority. Secondly,
we have developed a new GTAV virtual multi-modal dataset (both camera and LiDAR)
with ground truth for both road and rail environments. The GTAV dataset includes images
taken from the point of view of both cars and trains. This is another innovation of our
approach because no dataset exists today for smart rail mobility, whether a real or a virtual
dataset. However, we are developing a second rail dataset that is a real dataset. This one
has been collated in two French cities (Rouen and Le Havre).

5. Conclusions

In this paper, we have introduced a new method of real-time 3D multi-object detection
and localization for both road and railway smart mobility. Based on a proven 2D real-
time object detector, YOLOv3, our method offers encouraging results for real-time 3D
detection. Our results also highlight the importance of accurate RoI prediction for all
objects, especially for depth prediction. We tested our method on two datasets, the KITTI
road dataset and our own hybrid virtual dataset (GTAV), including both road and railway
images and scenes. The latter takes advantage of the graphics fidelity of the Grand Theft
Auto V video game to offer a virtual dataset that is very close to reality. Finally, our
results on our road/railway dataset show promising results. These results prove that our
method can be used in the railway environment without loss of accuracy compared to
road traffic scenes. We also plan to improve the accuracy and overall performance of our
method through a refinement of the RoIs to improve their quality. The publication of the
dataset as well as the code are planned in a future work. Finally, in addition to our virtual
road/railway GTAV dataset, we are currently developing a new real road/railway dataset
with ground truth, allowing us to go further in the development of not only the railway
but also road e-ADAS. Our objective is to publish and share both virtual and real datasets
in the fall of 2021. Our aim is to provide researchers and industry with an open platform
including both datasets (virtual and real) so that they can experiment and validate their
approaches for smart road and rail mobility. This will be the first such dataset in the world
because today, no real road/rail dataset exists. There is only one dataset, which is dedicated
to rail smart mobility, but it does not include ground truth such as RailSem19 [17]. We are
going to replace YOLOv3 with YOLOv5 and will deeply modify our approach (our own
network) to make it lighter (time and memory) and more accurate. We are going to use both
virtual and real datasets to validate our new approach for 3D detection-based YOLOv5. We
will reduce the accuracy gap of our method compared to the state-of-the-art approaches,
and we will also carry out some experiments on an NVIDIA Jetson TX2embedded system
dedicated to real-time artificial intelligence applications.
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Abbreviations
The following abbreviations are used in this manuscript:

ADAS Advanced driver-assistance system
GTA Grand Theft Auto
ToF Time of flight
CNN Convolutional neural networks
MLP Multi-layer perceptron
PointRGCN Pipeline based on graph convolutional networks
RoIs Regions of interest
RPN Region proposal network
NMS Non-maximum suppression
GCN Graph convolutional networks
ARE Absolute relative error
RMSE Root-mean-square error
BMP Bad matching pixels
DS Dimension score
CS Center score
OS Orientation score
YOLO You only look once
LiDAR Light detection and ranging
GT Ground truth
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