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-e sonogram is currently an effective cancer screening and diagnosis way due to the convenience and harmlessness in humans.
Traditionally, lesion boundary segmentation is first adopted and then classification is conducted, to reach the judgment of benign
or malignant tumor. In addition, sonograms often contain much speckle noise and intensity inhomogeneity.-is study proposes a
novel benign or malignant tumor classification system, which comprises intensity inhomogeneity correction and stacked
denoising autoencoder (SDAE), and it is suitable for small-size dataset. A classifier is established by extracting features in the
multilayer training of SDAE; automatic analysis of imaging features by the deep learning algorithm is applied on image
classification, thus allowing the system to have high efficiency and robust distinguishing. In this study, two kinds of dataset
(private data and public data) are used for deep learning models training. For each dataset, two groups of test images are
compared: the original images and the images after intensity inhomogeneity correction, respectively. -e results show that when
deep learning algorithm is applied on the sonograms after intensity inhomogeneity correction, there is a significant increase of the
tumor distinguishing accuracy. -is study demonstrated that it is important to use preprocessing to highlight the image features
and further give these features for deep learningmodels. In this way, the classification accuracy will be better to just use the original
images for deep learning.

1. Introduction

In recent years, with dietary habit and the change of lifestyle,
a quick rise has been seen in female’s breast cancer. In the
developed and developing countries, breast cancer has, re-
spectively, become the first and second causes of women’s
cancer death. According to the article published in In-
ternational Journal of Cancer, 1993, one in every 8 women in
European and American countries has breast cancer [1].
American Cancer Society pointed out as early as in 1999 that
breast cancer is the first cause of women’s death in the
developed countries [2]. In the various breast cancer di-
agnosis procedures, ultrasound diagnosis is regarded as a
kind of “highly accepted” tool because of low price, con-
venience, universality, and nonradiation. Ultrasound has

become a necessary diagnosis tool in all medical centers and
a good tool for doctors to initially diagnose the breast cancer
clinically.

However, ultrasonic images often contain lots of
speckles, noises, and textures so that it is unable to clearly
discriminate the detail changes of tissues, e.g., the tumor size
and boundary. -erefore, many studies in the past have put
forward ultrasound tumor segmentation algorithm, in-
cluding the well-known deformation model [3, 4], clustering
[5], overzero [6], thresholding [7], watershed method [8],
and level set method [9, 10]. -e above methods can be
roughly divided into two categories, respectively, based on
pixel or region information [11]. However, in order to make
the segmentation results well [12–14], many experiment
steps and parameter adjustments are involved. It may have
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been affected by the developer’s subjective ideas and habits
so that these results may be not sufficiently objective, af-
fecting the accuracy in doctor’s judgment with naked eyes,
and it is likely to cause misdiagnosis. -erefore, the tradi-
tional computer-aided diagnosis tool is limited.

Recently, deep learning has been widely used in various
applications such as facial recognition [15, 16], object
detection, and car identification. In medical imaging, deep
learning still offers excellent performance on different fields
[17, 18]. With the development of deep learning, the system
architecture of computer-aided diagnosis has been
changed, and the advantages unavailable in traditional
computer-aided diagnosis system have been added. In the
deep learning method, it is only needed to specify the
training data, and then, the features in the images can be
automatically extracted, and more abstract feature de-
scriptions can be extracted according to the nerve cell
depth of each layer, including the features from point to
edge, contour, and even a higher level so as to gradually
reduce the nerve cells at the same time of improving the
features. In the deep learning method, selection and ex-
traction of features, as well as data classification, are
established under the same structure, which has a higher
accuracy than traditional feature extraction.

To address the problem of the breast sonogram de-
tection, there are several approaches that can be used such as
a convolutional neural network (CNN) [19–21], deep
autoencoder (DAE), or stack denoised autoencoder (SDAE).
Zhou et al. demonstrated the importance of feature ex-
traction and selection for tumor classification and confirmed
that the classification effect based on the Shearlet-based
texture feature was better than those of the other four
feature extraction methods by AdaBoost and SVM. In the
classification of 200 benign and malignant tumors, the ac-
curacy is up to 90%, indicating the effectiveness of using
machine learning for breast tumor classification [22]. In
2017, Moon added adaptive filtering to the CAD system (A-
CAD) to emphasize the characteristics of tumor size. CAD
was more robust when classifying tumors larger than or
equal to 1 cm.-e results showed that the accuracy increased
from 73.1% to 81.4% after adding the adaptive filter. It is
suggested that the tumor classification effect is better after
using adaptive filtering [23]. Due to the speckle noise of
ultrasonic images, Raha used four kinds of filters (median,
high boost, Sobel, and average filter) for image pre-
processing, and watershed was used for segmentation. Fi-
nally, the k-nearest neighbors algorithm was performed for
the classification of benign and malignant tumors with a
high accuracy of 96.4% [24]. Abdel-Nasser extracted a high-
resolution (HR) image from a set of low-resolution (LR)
images using super-resolution to overcome the speckle noise
and artifacts problems. -e 31 benign and 28 malignant
tumors were divided into training and test data by leave-
one-out cross validation (LOOCV) and classified by random
forests [25]. -e classification results with high accuracy
were obtained. It was also emphasized that if the texture
features were able to accurately represent the tumor in-
formation, it is very important to perform preprocessing.
Cheng et al. conducted research on deep learning-based

CAD. To avoid using inaccurate image processing results to
achieve tumor classification, the team used SDAE for US
breast cancer, pulmonary nodules in CT scans classification.
Relying on the advantages of SDAE well equipped with the
automatic feature exploration mechanism and noise toler-
ance advantage, the classification result can reach 82.4%
accuracy. Cheng et al. reported that the research is the first
CAD study based on deep learning, which can further study
other image features for more accurate classification results
[26]. Overall, it is important to do image preprocessing to
highlight the image features and further give these features
for deep learning models.

In general, CNN is an end-to-end architecture and
suitable for various image classification tasks. However, it is
relatively hard to find the useful and meaningful features in a
constrained-scale training set. In breast sonogram classifi-
cation task, the training set is usually smaller than the size of
the general training images. For example, the number of
training images in ILSVRC12 [19] is 1.2 million, while that of
our training set is 170. Instead, the autoencoder families deal
with feature extraction task as a data reconstruction task. By
minimizing the reconstruction error, the primary feature of
the training images should be detectable. In this study,
therefore, we tend to adopt the autoencoder network to
extract the useful features and follow by concatenating a
classifier to distinguish the type of breast sonogram. SDAE
[27] is one of the state-of-the-art autoencoder architectures.
Xing et al. adopted SDAE for the extraction of tumor fea-
tures and classification of benign andmalignant tumors [27].
SDAE is about to find out many typical patterns in the input
training data, to deal with the high change problem of tumor
margin, and moreover, it is provided with multilayer
training automatic feature extraction and noise reduction
ability so that the problems likely to occur under traditional
methods may be avoided.

-e accuracy of classifier is highly related to the quality
of test images. As for ultrasonic image, due to the imaging
principle and the properties of object to be tested, the re-
search scholars are often encountered with two major
problems, much noise and intensity inhomogeneity. Noise-
resistant function has been added to SDAE when it is
designed, to reduce the noise effect. In terms of intensity
inhomogeneity, studies have found that after the preprocess
of intensity inhomogeneity correction [28–31] of medical
images, the imaging quality is effectively improved so as to
reach a better image processing result. -ere are several
intensity inhomogeneity correction methods. For example,
the filter method [32, 33] is to take intensity inhomogeneity
as low frequency signal and eliminate the intensity in-
homogeneity with the filter method, but such a method has
the elimination risk of important low-frequency in-
formation; the surface fitting method [34] is generally used
to establish a curve with polynomial or spline, and the
characteristics in the image are fit on such a curve to serve as
image intensity inhomogeneity; the histogram method is to
take the observed image as the convolution of original image
and intensity inhomogeneity, and the original image can be
obtained only through deconvolution; the image segmen-
tation method [35, 36] is able to get the segmentation result
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and estimated intensity inhomogeneity; or the method
combining withmany concepts above is adopted [37]. In this
study, intensity inhomogeneity correction is conducted
before the input of ultrasonic testing images. -en, the
corrected images are input into the classifier system
established on the basis of SDAE, hoping to overcome the
effect of intensity inhomogeneity in ultrasonic imaging for
improving the system resolution and quality.

Main aims of the paper are as follows:

(i) A classification algorithm in breast sonogram
without subjective influences is proposed

(ii) Up to 85% accuracy can be obtained when deep
learning was applied to the intensity
inhomogeneity-corrected image

(iii) -e study overcomes drawbacks of sonogram and
has reliable discrimination ability

(iv) It has the potential to obtain the better classification
results after image preprocessing

2. Materials and Methods

2.1. InputData. -is study was approved by the Institutional
Review Boards of the Taipei Veterans General Hospital. All
the experimental methods were carried out in accordance
with the approved guidelines. In this study, we used two
kinds of dataset. One is the data collected by our team (a
database of 96 malignant and 74 benign images) and the
other is the public dataset on the website, Rodrigues, Paulo
Sergio (2017), “Breast Ultrasound Image,” Mendeley Data,
v1 (a database of 150malignant and 100 benign images) [38].

2.2. SDAE. Artificial neural network is a kind of machine
learning concept to simulate the learning of human’s brain.
As for each nerve cell, the nerve cell signals connected to it
will influence the output of such nerve cell. -e transmission
of nerve signals is to add the received signals and then
conduct nonlinear transformation, to get new output. -e
mutual connection in neural network decides the calculation
method to make the actual output approach the expected
output as much as possible through neural network
adjustment.

-e training of one neural network is to limit the output
value to be equal to the input value, and this indicates that
the output layer has the same quantity of nerve elements as
the input layer, and the error between the two layers is used
to adjust the weight of each layer. -e training of autoen-
coder (AE) is unsupervised, so no label information is
needed. Denoising autoencoder (DAE) is improved on the
basis of AE. It is assumed that the input data include noise,
so DAE is suitable to learn the features from the data in-
cluding noise. SDAE is stacked by DAE, to obtain higher
level features. -e network training of SDAE is layer-wise,
for it is of independent training between each DAE. As for
the SDAE network after training, the decoding layer is
eliminated, while the encoding layer generating features is
reserved. To classify the data, logistic regression (LR) layer is
added to be taken as output layer, and LR is of supervised

type, adding the expected output volume label information
through backpropagation algorithm, and based on the error
between actual output and expected output, the network
weight between layers is fine-tuned. -erefore, the feature
learning of system is the result of combination between
SDAE pretraining and LR adjustment.

It is supposed that the input data are x and DAE anti-
noise method is used to firstly set some input as 0 or add
Gaussian noise to generate x as shown in Figure 1. -e way
of thinking is to make the input not perfect in the very
beginning so as to get better features after training.
-erefore, a good result still can be achieved after the input is
polluted. DAE encode is obtained according to one non-
linear transformation equation:

Z � fθ(wx + b), (1)

where Z is the output of the hidden layer, called as feature
description, w is the weight of input and hidden layers, b is
the offset, and fθ is the activation function of the hidden
layer. DAE decoding and reconstruction are realized
through the mapping function:

x′ � gθ′ w′y + b′( , (2)

where x′ denotes the transpose operation, x the output of
DAE (the reconstruction), and w the corresponding weight.
DAEmay generate a depth network withmany hidden layers
through stacking. A standard SDAE structure includes two
encoding layers and two decoding layers. In the encoding
stage, the output of the first encoding layer is taken as the
input of the second encoding layer. It is supposed that there
are L hidden layers in the encoding stage, and we can obtain
the activation function of number k encoding layer as
follows:

Z
(k+1)

� fθ w
k+1

Z
k

+ b
k+1

 , k � 0, . . . , L− 1, (3)

where Z0 is the original input and ZL is the feature de-
scription of the highest layer. -e decoding stage is the same
as the encoding stage. -e output of the first decoding layer
is taken as the input of the second decoding layer, and in this
way, the activation function of number k encoding layer can
be obtained as follows:

x′
(k+1)

� gθ′ w
(L−k)T

x′
k

+ b′
(k+1)

 , k � 0, . . . , L− 1,

(4)

where x′
0 is the output of the last layer in the encoding

stage and x′
L is the reconstruction of x.-e weight of SDAE

after pretraining will be the initial weight of adjustment and
classification stages. Once the import and discriminative
features have learned by SDAE, the next step is to find a
suitable classifier to correctly detect the type of the
extracted feature of the input image. Since there are many
different classifiers such as linear classifier, perceptron,
SVM, random forest, and so on, it is necessary to select one
of them for the best performance purpose. Most of them are
different from SDAE, while the perceptron is also based on
the neural network. Inspired by perceptron learning, we
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concatenate a sigmoid layer to SDAE and formulate it as a
cross-entropy loss function to keep it as an end-to-end
architecture.

In the LR stage, the expected output is added, and the
weight after pretraining is fine-tuned through the supervised
learning method, and the activation function of LR layer is S
(sigmoid):

S(t) �
1

1 + exp(−t)
, (5)

where t is the output ZL of the final encoding layer and also
the depth feature of pretraining of the SDAE method, and
the output of S is the classification result, with the value
ranging from 0 to 1.

-e backpropagation algorithm is one kind of gradient
descent methods. After the gradient direction is worked
out, the weight of the classifier system will advance towards
the direction with the quickest gradient descent. In addi-
tion, it is a kind of the greedy method, for it always ad-
vances towards the steepest direction, seeking for the
biggest decent extent.

To realize the slight adjustment of weight, the error
calculation method shall be defined. Different error calcu-
lation methods have different weight upgrading rules. Here,
the common square error will be adopted:

E �
1
2


d∈D

(t−y)
2
, (6)

where D indicates all input data, d indicates one of the input
data, t is the expected output, and y is the actual output.

-e target is to find out a set of weights, to realize the
smallest calculation error:

w � w + Δw,

Δw � −α
zE

zw
,

(7)

where α indicates the learning rate. -e weight upgraded
mode is the batch mode. After all inputs are executed, the
connecting weight will be changed.

2.3. Intensity Inhomogeneity Correction. -e algorithm was
composed of two parts, constrained fuzzy cell-based bi-
partition and the intensity inhomogeneity modelling [39].
When correcting the intensity inhomogeneity, the poly-
nomial surface fitting method is adopted to estimate the
image intensity inhomogeneity. Curve fitting is a kind of
concept to represent the existing data through the mathe-
matical method. Fitting is to obtain the discrete information
through sampling and testing in engineering. Based on the
data obtained in this way, it is hoped to obtain a continuous
function (polynomial) or the gathering (spline) of many
discrete equations to be identical to the data. Surface fitting is
the popularization of curve fitting. It is supposed that the
region of interest (ROI) image is composed of foreground
(F) and background (B), and each area is regarded as the
homogeneous area.

-e observed gray level of image can be expressed as
follows:

Oi � μψ + Pi + ni, (8)

where Oi is the gray level of number i pixel, μψ is the average
value of area where the pixel is located, ψε F, B{ } represents
the area where the pixel is located, and the latter two items
indicate intensity inhomogeneity and noise. Here, intensity
inhomogeneity is supposed as the normal distribution of
spatial changes, which is composed of a fixed variance and
the average value P changing with the space, and it is
represented with polynomial surface form. Pi represents the
value of polynomial in number i pixel, that is, the average
value of intensity inhomogeneity of number i pixel in the
image, and ni is the composition of change and noise in the
polynomial surface indicating intensity inhomogeneity.

Adopt the least square method to minimize the cost
function and estimate the polynomial surface as follows:

Input 
data, x

Reconstructed
data, x~

Embedded
Z

Weight, w
Weight, w′

Reconstructed error = 
2

x~ – x

Figure 1: -e flowchart of the reconstructed error of the DAE used in this paper.
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ε2 �
1
N


∀i

Oi − μψ −Pi 
2
. (9)

When the pixel is in the foreground area, μψ � μF, and
when the pixel is in the background area, μψ � μB.
Pi � P(xi, yi), in which P is N time polynomial. After the
polynomial surface is obtained, the image intensity will be
adjusted based on results, to complete the image correction.

-e image training and classification steps are shown as
follows:

(1) Input training image and initialize the neural net-
work weight by use of SDAE

(2) Remove decoding part and add LR structure, to
establish SDAE-LR system

(3) Add expected input volume label and slightly adjust
the network weight, to complete the classifier

We use the original images of the two different databases,
i.e., private dataset and BUSIS dataset, and conduct intensity
inhomogeneity correction for the original images.-erefore,
each database will generate two groups of images (the
original image and the corrected image) and their labels as
training data. -ese materials are trained in the deep
learning model and then performed testing to predict the
benign/malignant lesions in the image. In this study, we use
five different models to compare the results. Figure 2 shows
the flowchart for deep learning.

3. Results and Discussion

Intensity inhomogeneity often causes unclear contour of
tumors in sonogram so that it is uneasy to judge the type of
tumors clinically. -e correction method is proposed for
improving image quality and increasing the accuracy in
classification. Figure 3 shows the comparison images of one
malignant tumor with/without intensity inhomogeneity.
Before correction, it is uneasy to find the whole edge of the
tumor.-ere is a missing boundary part at the left bottom of
the tumor so that a wrong judgment may be caused.
However, after correction, the missing part can be clearly
seen, so it could be correctly judged as a malignant tumor.

Certainly, intensity inhomogeneity correction also
works well in benign tumor images. Figure 4 shows the
comparison images of benign tumor with/without intensity
inhomogeneity. -e original image with intensity in-
homogeneity has unclear boundary at the right and left of
the tumor that would cause wrong classification result. After
correction, the unclear boundary part can be obviously
distinguished so as to classify the type of the tumor correctly.

In this study, we used two kinds of dataset. One is the
data collected by our team, named private dataset (96
malignant and 74 benign images), and the other is the public
dataset on the website, named BUSIS dataset (150 malignant
and 100 benign images). In the private dataset, 143 images
and 27 images are selected randomly as training data and test
data, respectively. In the BUSIS dataset, 210 images and 40
images are selected randomly as training data and test data,
respectively.

First, we feed ultrasound tumor ROI images into SDAE
network sized of 28 × 28. In the private dataset, 143 images
and 27 images are selected randomly as training data and test
data, respectively. In the BUSIS dataset, 210 images and 40
images are selected randomly as training data and test data,
respectively. Second, a backpropagation algorithm is used on
SDAE to learn the weights and the feature representation.
-ird, the images are labeled manually and conducted the
second supervised training to classify the malignant/benign
tumor images. -e experiments of benign/malignant clas-
sification are grouped into two groups: (1) original images
and (2) contrast-enhanced images by intensity in-
homogeneity correction, which are shown in Figures 5–8,
respectively.

For the private dataset, the classification accuracy values
of testing results of two groups of images are, respectively,
63% and 82%. For the BUSIS dataset, the classification
accuracy values of testing results of two groups of images are,
respectively, 75% and 83%. -e results indicate the im-
provement of image quality (contrast-enhanced images)
actually achieve better classification performance. -e re-
sults also show that because the image complexity in the
private database is higher, the accuracy increases noticeably
after intensity inhomogeneity correction.

As we stated previously, CNNmay fail when the number
of the training images is relatively small. To verify this, we
also conduct an experiment of CNN for detecting benign
and malignant tumors. -e labeled training images are
directly fed into AlexNet [19] to learn the prediction results
(i.e., benign or malignant tumors). Similarly, the back-
propagation algorithm is used to train the weights of
AlexNet. Finally, the classification accuracy values of testing
results of two groups of private dataset images are 44% and
37%, while the training accuracy values are 99.8% and 99.4%,
respectively. Apparently, such CNN architecture is not
suitable for such small-scale training images, leading to a
serious overfitting problem. It also verified that the proposed
SDAE is a proper choice for analyzing malignant/benign
tumor images classification. In addition, three models (In-
ception v3 [40], ResNet [41], and DenseNet [42]) are also
used for comparison. Table 1 shows the detection results of
the original images (without correction) and the corrected
images (with correction) of the private database, in which
the displayed value means with/without intensity in-
homogeneity correction, respectively. Table 2 shows the
results of the BUSIS dataset. To sum up, because the
complexity of the images in the BUSIS database is lower, the
classification accuracy is higher than that of the private
database before or after intensity inhomogeneity correction.

It is clear that the DenseNet achieves the best perfor-
mance. However, it is also shown that the performance of the
different CNN methods cannot achieve good performance,
compared with SDAE approach. Although the number of
the parameters of AlexNet is relatively low, the total number
of parameters is still greatly large than that of SDAE. By fair
comparison, we have chosen Resnet with 54 layers and
Inception v3 with 34 layers to learn the classifiers with
the default settings suggested by their approach. However,
such lot parameters in these two networks lead to serious
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(a) (b)

Figure 4: Benign: (a) original image and (b) image after correction.

Figure 5: -e examples of original test images in the private dataset.

Deep learning

SDAE

AlexNet

Inception v3

ResNet

DenseNet

Training data Training label

Training data Training label

Test data Test data

Test label

Benign/malignant Benign/malignant

Test label
BUSIS

Training

Evaluate

Predict

Private
Original image

Corrected image Benign/malignant

Benign/malignant

Figure 2: -e flowchart for deep learning.

(a) (b)

Figure 3: Malignant: (a) original image and (b) image after correction.

6 Journal of Healthcare Engineering



Figure 6: -e examples of test images after correction in the private dataset.

Figure 7: -e examples of original test images in the BUSIS dataset.

Figure 8: -e examples of test images after correction in the BUSIS dataset.
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overfitting problem and bad test performance. On the
contrary, the most advanced network architecture, Dense-
Net, achieves good performance among four CNNmethods;
it still fails to obtain promising performance at all.

In [43], this study discriminates benign cysts from
malignant masses in breast ultrasound by transferred deep
neural network, Inception V3, with an accuracy of 89.44%.
However, this study uses a total of 2058 breast ultrasound
masses, comprising 1370 benign and 688 malignant lesions,
so better results can be obtained. In [44], Han et al. use
GoogLeNet with preprocessing for supporting the classifi-
cation of breast lesions in ultrasound images. -e networks
showed an accuracy of about 90%.-is study uses large data,
7408 images (4254 benign and 3154 malignant lesions), to
get a good classification result. Apparently, CNN architec-
ture is not suitable for such small-scale training images,
leading to a serious overfitting problem. It also verified that
the proposed SDAE is a proper choice for analyzing
malignant/benign tumor images classification. In addition,
Han et al. also proposed that the preprocessing can get better
classification results.

4. Conclusion

-is study reports that the proposed algorithm overcomes
the problem of intensity inhomogeneity in the sonogram,
and in combination with the deep learning method for
tumor classification. -is study compared five deep learning
models, and SDAE achieved the best identification accuracy.
Since this is a small amount of data, SDAE is a suitable
choice for analyzing the small dataset.

For the original image group and the corrected image
group in the private database, the accuracy values of
identifying the benign and malignant tumors are 63% and
82%, respectively. For the same group in the public database,
the accuracy values are 75% and 83%, respectively. -e
results refer that increasing the image quality will help
improve the accuracy of classification.-e image complexity
in the private database is higher. From the results, it can be
inferred that for images with high complexity, the classifi-
cation accuracy increases noticeably after image
preprocessing.

-is work is different from the traditional algorithm to
classify the type of lesions, i.e., benign or malignant in the
sonogram. In the traditional way, the tumor contours must
be delineated first by the segmentation technique before they
can be classified. However, many segmentation algorithms
need to adjust many parameters or depend on the de-
veloper’s subjective ideas. In this way, the result of the
segmentation in turn affects the classification result. -e
proposed method reduced the impact of segmentation
processing steps to lead an objective classification result via
deep learning. Moreover, this paper combines an intensity
inhomogeneity correction method to make the classification
result better. -is way is advantageous, and it has the po-
tential to obtain the better classification results after image
preprocessing.
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