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Purpose: Mechanical ventilation (MV) is one of the most common treatments for patients with blunt chest trauma (BCT) admitted to 
the intensive care unit (ICU). Our study aimed to investigate the performance of machine learning algorithms in predicting the 
prolonged duration of mechanical ventilation (PDMV) in patients with BCT.
Methods: In this single-center observational study, patients with BCT who were treated with MV through nasal or oral intubation 
were selected. PDMV was defined as the duration of mechanical ventilation ≥7 days after endotracheal intubation (normal vs 
prolonged MV; dichotomous outcomes). K-means was used to cluster data from the original cohort by an unsupervised learning 
method. Multiple machine learning algorithms were used to predict DMV categories. The most significant predictors were identified 
by feature importance analysis. Finally, a decision tree based on the chi-square automatic interaction detection (CHAID) algorithm was 
developed to study the cutoff points of predictors in clinical decision-making.
Results: A total of 426 patients and 35 characteristics were included. K-means clustering divided the cohort into two clusters (high 
risk and low risk). The area under the curve (AUC) of the DMV classification algorithms ranged from 0.753 to 0.923. The importance 
analysis showed that the volume of pulmonary contusion (VPC) was the most important feature to predict DMV. The prediction 
accuracy of the decision tree based on CHAID reached 86.4%.
Conclusion: Machine learning algorithms can predict PDMV in patients with BCT. Therefore, limited medical resources can be more 
appropriately allocated to BCT patients at risk for PDMV.
Keywords: mechanical ventilation, blunt chest trauma, machine learning, pulmonary contusion

Introduction
Chest trauma is a serious threat to human health, accounting for approximately 60% of all patients with multiple injuries, among 
which blunt injuries account for approximately 70%, with an in-hospital mortality can reach 20%-25%.1–4 Invasive mechanical 
ventilation (MV) is often required for patients admitted to the intensive care unit (ICU) for hypoxemia due to blunt chest trauma 
(BCT) and pulmonary contusion (PC).5–7 Theoretically, after MV, the oxygenation of BCT patients improves, and the ventilator 
can be successfully removed after a short time. However, there are still quite a few BCT patients with prolonged duration of 
mechanical ventilation (PDMV).8,9 Multiple studies have shown that, compared with the normal duration of mechanical 
ventilation (NPMV), patients with PDMV had higher chronic and acute disease burdens, higher incidences of hospital- 
acquired complications (sepsis and ventilator-associated pneumonia), and lower clinical and economic outcomes (in-hospital 
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mortality, medical costs).10–14 Therefore, we need to accurately identify risk factors for PDMV to shorten DMV and prevent 
unnecessary prolongation.

A prospective study of 69 patients with BCT showed that age, bilateral thoracic injury and severe cranial 
trauma were independent predictors of PDMV.15 However, the study also included other non-chest injuries. 
Therefore, these findings cannot be extrapolated to isolated patients with chest trauma. Schieren et al16 also 
found that BCT combined with traumatic cranial injury (TBI) significantly prolonged DMV and was associated 
with higher mortality. In addition, the body mass index (BMI) and trauma severity score were also identified as 
risk factors for PDMV in BCT patients.17,18 Additional studies have shown that intrathoracic injury is the main 
risk factor for PDMV, including flail chest, acute respiratory distress syndrome and pulmonary contusion.19–21 

However, a portable tool that can accurately predict the occurrence of PDMV in BCT patients is still lacking.
Predictive analysis and machine learning have become reliable prognostic tools for patients based on relevant 

characteristic variables.22 The development of a prediction model centered on patient outcome variables can help 
clinicians and medical decision makers improve the rational utilization of social medical resources and better coordinate 
the allocation of medical resources based on different treatment plans.23

Given the adverse outcomes of PDMV in BCT patients, we hypothesized that algorithms based on multiple machine 
learning could accurately predict whether BCT patients would undergo normal or prolonged DMV. Next, we aimed to 
find the most relevant characteristic variables that were capable of solving the classification task.

Methods
Batch Evaluation and Ethical Issues
This was a single-center observational study of patients admitted to the emergency department and ICU of Affiliated hospital 
of Yangzhou University between August 2017 and October 2022 for MV for BCT. We obtained a patient clinical cohort from 
the emergency information system and the inpatient electronic case system and masked the true information of all enrolled 
patients. The primary inclusion criteria included patients with BCT who received MV during the relevant time period. 
Exclusion criteria included the following: age < 18 years; sudden cardiac and respiratory arrest after admission; length of 
hospital stay < 48 hours; MV due to other reasons; repeated admissions for chest trauma; and incomplete medical history. The 
study was approved by the ethics committees of Affiliated hospital of Yangzhou University and complied with the Declaration 
of Helsinki. Due to the observational nature of the study, written informed consent was waived for all enrolled patients.

Parameters Used and Definition
All included variables are shown in Table 1. The demographic cohort and underlying diseases of all subjects were 
recorded to include patient histories 3 months before injury; disease severity scores, concomitant injuries, 
laboratory cohort (except for C-reactive protein), fluid resuscitation, procedures, and surgery were collected within 
24 hours after injury. Biological samples, including hemoglobin, blood lactate, and CRP (48 hours after admis-
sion), were collected from the patient’s venous blood using an appropriate blood collection tube, such as an 
ethylenediaminetetraacetic acid (EDTA) anticoagulant tube or a vacuum blood collection tube, to prevent hemo-
lysis during the collection process. All classification features were divided into three categories at most, and the 
classification variables were represented in a binary form (assigned “1” if the feature existed and “0” if it did not).

DMV was defined as the duration from the start of ventilation to the first successful extubation. DMV≥7 days was considered 
to be PDMV, whereas a duration of less than 7 days was considered to be NDMV.24,25 We process the missing data for the cohort 
according to missing mechanisms. Missing values for <10% of the features were estimated and used as input features in cluster 
analysis. Features with missing values between 10–30% were not used as clustering input features. Finally, the features were 
excluded if the missing values were >30%. We used the random forest multiple filling method to fill in the missing values of the 
features.
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Table 1 Comparisons of the Features Were Obtained Through the K-Means Cluster Analysis, Including 
the Continuous Scale Feature Duration of Mechanical Ventilation

Features All (n=426) Clusters P-Value

High Risk (n=106) Low Risk (n=320)

Age, years,(mean±SD) 41.6±14.0 58.2±8.1 34.4±8.9 <0.001

Male sex, n (%) 209(49.1) 58(54.7) 151(47.2) 0.188

BMI, kg m−2, (mean±SD) 21.0±4.1 23.9±4.6 19.8±3.2 <0.001

GCS score, point, median (IQR) 8(3–15) 6(4–12) 8(6–15) 0.015

ISS score, point, (mean±SD) 39.0±8.4 40.6±8.1 38.4±8.5 0.011

Chronic pulmonary disease, n (%) 58(13.6) 19(17.9) 39(12.2) 0.659

Three-dimensional reconstruction of chest images, median (IQR)

Volume of pulmonary contusion 13.2(11.4–38.6) 22.1(14.7–29.6) 12.3(9.8–14.7) <0.001

Number of ribs fractured 7(4–10) 8(5–10) 6(4–7) 0.017

Chronic cardiac failure, n (%) 45(10.6) 16(15.1) 29(9.0) 0.416

Associated injury types, n (%)

Traumatic brain injury 54(12.7) 19(17.9) 35(3.9) 0.401

Sternum fractures 131(3.4) 37(34.9) 94(29.4) 0.542

Flail chest 94(5.1) 38(35.8) 56(17.5) 0.055

Spine fractures 33(9.7) 10(9.4) 23(7.2) 0.998

Maxillofacial fractures 46(11.9) 16(15.1) 30(9.3) 0.482

Complications, n (%)

Hemothorax 185(39.8) 60(56.6) 125(39.1) 0.290

Pneumothorax 244(57.3) 75(70.8) 169(52.8) 0.813

Ventilator associated pneumonia 56(13.1) 22(20.8) 34(10.6) 0.116

Acute respiratory distress syndrome 124(29.1) 44(41.5) 80(25.0) 0.134

Laboratory value (initial value), median (IQR)

Hemoglobin, g dL−1 8 (6.5–11.9) 8 (6.9–11.4) 9 (7.9–11.6) 0.325

CRP 48h after admission, mg/L 14.7(10.9–21.6) 21.6(12.6–32.6) 14.3(10.9–18.6) <0.001

Blood lactate, mmol L−1 3.7(3.0–4.3) 3.5(3.0–4.1) 3.7(3.2–4.3) 0.705

Medical treatment, median (IQR)

DMV, day 7(2–11) 10(8–11) 4(2–7) <0.001

Fluid infusion within 24 hours of admission, median (IQR)

RBC, mL 1150(650–1750) 1050(650–1650) 1350(750–1750) 0.629

Plasma, mL 920(570–1180) 910(580–1150) 965(750–1020) 0.064

Platelets, units 1(0–2) 1(0–2) 2(0–2) 0.083

All fluid infusion 5250(4100–7355) 5155(4150–7200) 5500(4250–7290) 0.504

Operations, n (%)

Surgery on limbs and joints 18(4.2) 8(7.5) 10(3.1) 0.181

Surgery on pelvic 110(25.8) 35(33.0) 75(23.4) 0.684

Surgery on abdominal 7(1.6) 3(2.8) 4(1.3) 0.465

Surgery on thorax 15(3.5) 6(5.7) 9(2.8) 0.460

Surgery on brain 112(26.3) 39(36.8) 73(22.8) 0.211

Surgery on spine 21(4.9) 8(7.5) 13(4.1) 0.074

Thoracic close drainage 19(4.4) 7(6.6) 12(3.8) 0.810

Transcutaneous tracheostomy 101(23.7) 38(35.8) 63(19.7) 0.066

Abbreviations: IQR, interquartile range; BMI, body mass index; GCS, glasgow coma scale; ISS, injury severity score; CRP, C-reactive 
protein; DMV, duration of mechanical ventilation; RBC, red blood cell.
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Statistical Processing
We conducted unsupervised learning of the baseline cohort through the K-means algorithm, evaluated whether cluster 
analysis could be performed according to the characteristics of the cohort set, and then automatically determined the 
optimal number of clusters according to Schwarz’s Bayesian Criterion (BIC) (Figure 1).

The Mann‒Whitney U-test or chi-square test was used to compare significant differences among cluster variables. A decision 
tree with the CHAID algorithm was used to determine the discrepancy between the child node and the parent node. The 
discrepancy between the observed count and the expected count of the objective variable for each node and the summation of the 
squares of these normalized discrepancies was used as the chi-square value. The CHAID algorithm was applied for cross 
verification (n = 5). The maximum tree depth was 3, the minimum number of parent nodes was 10, and the minimum number of 
child nodes was 5. Therefore, 14 nodes were obtained, 8 terminal nodes were obtained, and the depth was 3. The missing values of 
continuous variables were replaced by linear regression, and the missing values of classified variables were interpolated by logistic 
regression.

Finally, we applied multiple machine learning and deep learning algorithms to predict the classification of the target 
DMV, including the random forest classifier, logistic regression, K-nearest neighbor, decision tree classifier, Gaussian 
naive Bayes (Gauss NB), stochastic gradient descent (SGD) classifier, support vector machine (SVM), convolutional 
neural network (CNN), radial basis function neural network (RBNN), and multilayer perception (MLP).

Computer hardware and software environment specifications were as follows: Central Processing Unit: Advanced 
Micro Devices Ryzen 5 3500Ux64-Core Processor (Santa Clara, CA, USA); Random Access Memory: 16 GB; Graphics 
Processing Unit: Radeon Vega Mobile Gfx 2.10 GHz (Santa Clara, CA, USA); Python version: 3.10.4 (64-bit) 
(Wilmington, DE, USA); Operating System: Windows 10 (Redmond, WA, USA). Statistical analyses were conducted 
in Python and Stata SE v16.0 (IBM, Armonk, NY, USA).

Result
The K-means algorithm was used for a secondary cluster analysis, and the original cohort set was divided into two 
clusters, including a high-risk group and a low-risk group. In addition, we evaluated which features were vital for the 
cluster analysis. We used the DMV (continuous variable) in the original cohort for the first cluster analysis, resulting in 
two clusters, which included 320 cases (75.1%) in the high-risk group and 106 cases (24.9%) in the low-risk group 
(Figure 2). The cohort distribution showed that all high-risk cluster variables (DMV, VPC, BMI, CRP, GCS score, ISS 
score, and number of rib fractures 48 hours after admission) were significantly higher than those in the low-risk group, 

Figure 1 Flow chart of K-means cluster analysis. Input data consist of both complex descriptors from Chest imaging data (eg 3-D reconstruction of chest CT images of a 58- 
year-old male patient showing the VPC. The VPC =285.34cm3 /2627.05cm3 *100%=10.9%; the number of rib fractures=8) and clinical parameters (left pane), which are used 
by the unsupervised machine learning algorithm classify data through dimensionality reduction (right pane).
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P<0.05 (Table 1). Thus, these two clusters may represent the degree of DMV risk in patients (the high-risk group showed 
higher VPC, BMI, CRP 48 hours after admission, ISS score, and number of rib fractures; and lower GCS scores).

The DMV (dichotomous variable) was used as the cohort type in the second cluster analysis, and two clusters were 
also obtained, including 319 cases (74.9%) in the high-risk group and 107 cases (25.1%) in the low-risk group 
(Figure 3). The results showed that the cluster variables (DMV, VPC, BMI, CRP, ISS score and number of rib fractures 

Figure 2 K-means cluster analysis for the raw DMV target variable (continuous scale). The most important feature to classify the data was the VPC, followed by the BMI, 
age, CRP, GCS, ISS, and number of ribs fractured excluding the DMV. The distribution charts show the distribution of the features for both clusters. An example feature 
(VPC) is shown to help interpretation. The selected feature shows that the distribution of VPC is right-shifted for the high risk cluster, whereas it is left-shifted for the low 
risk cluster.

Figure 3 K-means cluster analysis for the binary DMV class (prolonged versus normal).The most important feature to classify the data was the VPC, followed by DMV class, BMI, age, 
CRP, ISS score, GCS score and number of ribs fractured.The distribution charts show the distribution of the features for both clusters. An example feature (age) is shown to help 
interpretation. The selected feature shows that age distribution is right-shifted for the high risk cluster (including the DMVclass), whereas it is left-shifted for the low risk cluster.
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at 48 hours after admission) in the high-risk group were significantly higher than those in the low-risk group, except 
for the GCS score, P< 0.05 (Table 2). In addition, the distribution of DMV was significantly different between the 
high-risk group and the low-risk group, with all PDMV cases in the high-risk group and NDMV in the high-risk group, 
p < 0.001.

Multiple machine learning algorithms were used to predict the classification of DMV, among which the AUC of the 
MLP model reached a maximum of 0.923 (Figure 4). The feature importance analysis showed that VPC was a vital 

Table 2 Comparisons of the Features Were Obtained Through the K-Means Cluster Analysis, Including the Binary 
Class Feature of Duration of Mechanical Ventilation

Features All (n=426) Clusters P-Value

High Risk (n=107) Low Risk (n=319)

Age, years,(mean±SD) 40.8±13.8 58.1±8.3 35.6±8.6 <0.001

Male sex, n (%) 209(49.5) 57(53.8) 152(47.6) 0.175

BMI, kg m−2, (mean±SD) 20.9±3.9 24.1±4.8 19.6±3.7 <0.001
GCS score, point, median (IQR) 8(5–15) 6(5–14) 9(5–15) 0.020

ISS score, point, (mean±SD) 38.8±8.2 40.2±7.9 38.0±8.1 0.014

Chronic pulmonary disease, n (%) 58(13.1) 17(15.8) 51(15.9) 0.559

Three-dimensional reconstruction of chest images, median (IQR)

Volume of pulmonary contusion 134(11.6–38.7) 22.2(14.8–29.8) 12.5(9.9–14.9) <0.001

Number of ribs fractured 7(4–11) 9(5–11) 6(3–8) 0.012

Chronic cardiac failure, n (%) 45(10.6) 15(14.0) 30(9.4) 0.409

Associated injury types, n (%)

Traumatic brain injury 54(12.7) 19(17.7) 35(11.0) 0.386

Sternum fractures 131(3.4) 37(34.5) 94(29.5) 0.512
Flail chest 94(5.1) 38(35.5) 56(17.6) 0.058

Spine fractures 33(9.7) 10(9.3) 23(7.2) 0.813

Maxillofacial fractures 46(11.9) 16(15.0) 30(9.4) 0.428

Complications, n (%)

Hemothorax 185(39.8) 59(55.1) 126(39.5) 0.175

Pneumothorax 244(57.3) 72(67.3) 172(53.9) 0.721

Ventilator associated pneumonia 56(13.1) 24(22.4) 32(10.0) 0.108
Acute respiratory distress syndrome 124(29.1) 48(44.9) 76(23.8) 0.127

Laboratory value (initial value), median (IQR)

Hemoglobin, g dL−1 8 (6.4–11.8) 8 (6.8–11.7) 9 (7.8–11.5) 0.256
CRP 48h after admission, mg/L 14.6(10.8–21.4) 21.5(12.3–32.7) 14.3(11.0–17.4) <0.001

Blood lactate, mmol L−1 3.6(3.1–4.2) 3.4(3.1–4.2) 3.5(3.1–4.0) 0.607

Medical treatment, median (IQR)

DMV, n% 426(100) 107(100) 319(100) <0.001

Fluid infusion within 24 hours of admission, median (IQR)

RBC, mL 1150(650–1750) 1150(645–1750) 1450(850–1650) 0.549

Plasma, mL 915(565–1080) 905(576–1250) 970(750–1120) 0.075

Platelets, units 1(0–2) 1(0–2) 2(0–2) 0.073
All fluid infusion 5350(4800–7055) 5255(4550–7300) 5550(4350–7300) 0.544

(Continued)
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feature in the classification task, followed by age, BMI, CRP and ISS scores 48 hours after admission (Figure 4). In 
addition, the AUC of the RBNN reached 0.871 (Figure 5). The feature importance analysis of the RBNN model showed 
that VPC was the most vital feature in the classification task, followed by age and BMI. The accuracy and AUC of the 
other machine learning algorithms are shown in Table 3. The random forest classification achieved the highest accuracy, 
while the SGD classifier achieved the highest AUC.

Finally, we developed a decision tree using the CHAID growth approach to simplify interpretation in the clinic 
(Figure 6). We found that the algorithm correctly detected 86.4% of the cases. As an example of how to use the CHAID 
decision tree, if the patient was >46 years old, the number of NDMV cases was 49 (31%*37.1%), and the number of 
PDMV cases was 83 (31%*62.9%). Furthermore, when VPC was ≤17.6%, there were 21 PDMV cases (12%*41.2%), 
and the rest were normal cases (12%*58.8%). Finally, the number of PDMV cases caused by pneumothorax was 6 (6.1% 

Table 2 (Continued). 

Features All (n=426) Clusters P-Value

High Risk (n=107) Low Risk (n=319)

Operations, n (%)

Surgery on limbs and joints 18(4.2) 7(6.5) 11(3.4) 0.143

Surgery on pelvic 110(25.8) 34(31.8) 70(21.9) 0.664

Surgery on abdominal 7(1.6) 3(2.8) 4(1.3) 0.455
Surgery on thorax 15(3.5) 6(5.6) 9(2.8) 0.370

Surgery on brain 112(26.3) 38(35.5) 74(23.2) 0.135

Surgery on spine 21(4.9) 9(8.4) 12(3.8) 0.054
Thoracic close drainage 19(4.4) 6(5.6) 13(4.1) 0.740

Transcutaneous tracheostomy 101(23.7) 36(33.6) 65(20.4) 0.074

Abbreviations: IQR, interquartile range; BMI, body mass index; GCS, glasgow coma scale; ISS, injury severity score; CRP, C-reactive protein; DMV, 
duration of mechanical ventilation; RBC, red blood cell.

Figure 4 Prediction of DMV with multilayer perceptron (MLP). Input layer: feature variables (36units). Hidden Layer: 2units, activation function: hyperbolic tangent. Output 
layer: dependent variable DMV (2units), activation function: softmax, error function cross-entropy. The number of units in the hidden layer was determined by the testing 
data criterion: the best number of hidden units is the one that yields the smallest error in the testing data set. Train/Test/Validation split: 70/20/10. Percent in correct 
predictions on training set: 10.5%; percent in correct predictions on testing set: 15.4%; percent incorrect predictions on hold out set: 10.0%; NDMV refers to the prediction 
of the normal class; PDMV refers to the prediction of the prolonged DMV. AUC: 0.923(left pane). Feature importance analysis for predicting the DMV classes in the 
multilayer perceptron model (right pane).
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*23.1%). Therefore, the probability of PDMV in a 48-year-old patient with a blunt-force chest injury with a VPC greater 
than 17.6% and a pneumothorax was 1.41%.

Discussion
BCT patients admitted to the ICU often require mechanical ventilation due to severe hypoxemia. The prognosis of 
PDMV patients is usually poor, with high in-hospital complications and mortality.14 Over the past decade, researchers 
have found that a variety of factors can cause PDMV, including internal thoracic factors (VAP, PC, multiple rib fractures, 
hemothorax, pneumothorax, and ISS scores) and external thoracic factors (age, BMI, TBI, and GCS scores).17–21 Despite 
all these findings, the probability of PDMV in BCT patients is still high, and there is a need for a reliable tool that can 
accurately predict PDMV in BCT patients.8,9 We investigated whether a machine learning-based technique could be used 

Figure 5 Prediction of DMV with radial basis function neural network (RBNN). Input layer: feature variables (36units). Hidden Layer: 5units, activation function: softmax. 
Output layer: dependent variable DMV (2units), activation function: identity, error function sum of of squares. The number of units in the hidden layer was determined by 
the testing data criterion: the best number of hidden units is the one that yields the smallest error in the testing data set. Train/Test/Validation split: 70/20/10. Percentage in 
correct predictions on training set: 12.5%; percent in correct predictions on testing set: 14.2%; percent incorrect predictions on hold out set: 13.6%; NDMV refers to the 
prediction of the normal class; PDMV refers to the prediction of the prolonged DMV. AUC: 0.871(left pane). Feature importance analysis for predicting the DMV classes in 
the RBNN (right pane).

Table 3 Performance Measures for the 
Machine Learning and Deep Learnin 
Galgorithms to Predict the DMV (binary clas-
sification task).Analysis Was Done with 
k-Fold cross-Validation (k=3)

Algorithm Accuracy AUC

Logistic Regression 0.813 0.813
Random Forest classifier 0.875 0.812

SGD classifier 0.851 0.874

K-nearest neighbors 0.754 0.753
Decision Trees classifier 0.732 0.765

Gaussian Naive Bayes 0.781 0.764

Support Vector Machine 0.797 0.810

Abbreviations: AUC, area under the curve; Accuracy, TP 
+TN)/(TP+TN+FP+FN); SGD, stochastic gradient descent.
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to predict PDMV. Our findings suggest that DMV can be predicted using clinical data from BCT patients. Despite the 
small sample size in our study, the machine-learning algorithms showed promising results.

The results of a meta-analysis study showed that the development of machine learning for predicting DMV is 
hampered by sample size limitations, imperfect study designs, and the heterogeneity of techniques. Nevertheless, the 
combined algorithm of multiple prediction models can predict the duration of mechanical ventilation more accurately.26 

In addition, Parreco et al27 reported the predictive value of the gradient increasing decision tree algorithm for DMV in 
critically ill patients, with an AUC=0.852. In this study, the gradient increasing decision tree algorithm had a high value 
in predicting PDMV, but there was a lack of analysis for the trauma population. Abujaber et al28 compared the predictive 
value of different prediction models for PDMV in TBI patients and found that SVM had the highest predictive value with 
AUC=0.84. Lin et al29 also compared the prediction of multiple prediction models on the PDMV of critically ill patients 
admitted to the ICU in a single center, and the results showed that the extreme gradient increasing (XGBoost) model had 
the highest predictive value (AUC=0.908), with the feature importance including ventilator parameter settings, fluid/ 
nutrition and physiological indicators in turn. Our study cohort had two significant clusters, high-risk and low-risk, which 
indicated the validity of our hypothesis that PDMV was associated with other characteristics. This study showed that 
machine learning techniques could effectively predict NDMV and PDMV, with AUC values of 0.753–0.923. As our study 
is the first to use machine learning algorithms to predict DMV in BCT patients, it is not possible to compare the results 
with those of other studies. However, our study provides insight into the specific risk profile of BCT patients and better 
adjustment of resource allocation and weaning plans. It is also possible to create an open-source web-based DMV 
prediction tool based on the variables used by the machine learning algorithm.

Most of the previous studies were single-center or retrospective cohort studies, and few researchers used machine 
learning algorithms to predict PDMV in BCT patients. Mahmood et al21 found that a VPC greater than 20% and ARDS 
were important predictors of DMV prolongation. Previous studies by our research group also found that a VPC greater 
than 23.5% could predict tracheotomy in patients with multiple rib fractures.30 This was mainly because PC calculated 
based on 3D reconstruction technology reflects the severity of pulmonary contusion, and moderate to severe PC is prone 
to hypoxia and secondary pulmonary infection and ARDS, which are the main factors causing PDMV.21 Overall, VPC is 

Figure 6 Decision tree with CHAID growing method. Five-fold cross-validation. Percent correct predictions with this algorithm: 86.4%.
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relevant for multiple parameters (ARDS, VAP), and it may be important for DMV as well. In addition, our study found 
that age, BMI, ISS score and GCS score were predictors of DMV, which was consistent with the results of other 
studies.15–21 Our study quantified DMV risk by including all potential features in the evaluation, performing 
a significance analysis of features, and visualizing the results. The findings of our study may help clinicians evaluate 
BCT patients before intubation, more accurately set the expectations of patients and relatives, and help the whole 
monitoring team develop a personalized treatment and care plan to shorten the duration of DMV and increase patient 
weaning safety and satisfaction.

We also found that CRP levels 48 hours after admission may be associated with PDMV in BCT patients. CRP is 
a cytokine involved in the acute phase of inflammation that is mainly released by interleukin-6 and other proinflamma-
tory cytokines.31 When CRP binds to the Fc-γ receptor, CRP activates the classical complement cascade and accelerates 
phagocytosis.32 In addition, increases in CRP may be more pronounced in disease processes observed earlier than in 
other nonspecific markers, such as fever, and CRP levels may decline rapidly during recovery. Therefore, CRP can be 
used to screen for inflammation in the early stage of the disease and as an assessment tool for the effectiveness of 
treatment. A prospective observational study involving 72 critically ill trauma patients found that a CRP level greater 
than 10 mg/dl measured 48 hours to 72 hours after admission was the most effective predictor of mechanical ventilation 
longer than 7 days, followed by BMI.33 However, another study of mechanically ventilated patients with long-term 
chronic respiratory failure found that CRP did not predict successful weaning at a rate of 9% at 60 days. This suggests 
that CRP has low predictive value for the duration of mechanical ventilation in patients with chronic diseases.34 Other 
researchers have also found that elevated CRP levels within 48 hours of cardiac or noncardiac surgery can increase the 
risk of cardiovascular adverse events in hospitalized patients, and the risk of morbidity and mortality also significantly 
increases.35 The reason may be related to the degree of surgical injury.36 Overall, evidence on the effect of CRP on DMV 
in BCT patients at 48 hours after admission is limited and needs to be validated in more prospective studies. The 
inclusion of CRP as a biological marker in our algorithm led to an increase in diagnostic accuracy. Therefore, it is 
necessary to include other biomarkers to evaluate the diagnostic performance of the models in the future.

Our study found no significant difference in the proportion of individuals with chronic heart failure between the high- 
risk and low-risk groups. Interestingly, Cardiopulmonary interactions are present throughout the patient’s ventilator 
weaning, and the transition from positive pressure to spontaneous breathing causes abrupt changes in cardiac load and an 
increase in oxygen demand. These alterations may place an undue burden on the respiratory and cardiovascular systems, 
causing a rapid and significant increase in left ventricular filling pressure and ultimately leading to wean-induced 
pulmonary edema.37 We hypothesize that this lack of difference may be attributed to the absence of a significant increase 
in the proportion of patients with chronic heart failure who experience severe acute pulmonary edema during the weaning 
process. Nevertheless, further prospective studies are required to validate our conclusions.

Despite the novelty and strengths of our machine learning algorithm, some potential limitations also existed. First, 
this was a retrospective and single center study, so prospective investigation was still lacking, so external validation is 
needed in the future. Second, although we included many important variables from an extensive literature review, it was 
still possible that we might have missed some other potentially relevant variables, such as biomarkers similar to CRP. 
These aspects should be addressed in our future research.

Conclusion
Mechanical ventilation is one of the most common treatments for patients with BCT; however, PDMV can cause a series 
of serious complications. Patient-centered outcome prediction models to predict DMV can effectively use the existing 
social medical resources, allowing clinicians and medical decision makers to choose treatment options from different 
disciplines and formulate relative priority intervention programs. Our findings suggest that machine learning techniques 
can effectively predict risk factors for PDMV in BCT patients. Further prospective studies are needed for external 
validation and the development of a tool that can provide reliable predictive performance in the clinic.
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