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Abstract: Exploiting surface endocytosis receptors using carbohydrate-conjugated nanocarriers
brings outstanding approaches to an efficient delivery towards a specific target. Macrophages
are cells of innate immunity found throughout the body. Plasticity of macrophages is evidenced
by alterations in phenotypic polarization in response to stimuli, and is associated with changes
in effector molecules, receptor expression, and cytokine profile. M1-polarized macrophages are
involved in pro-inflammatory responses while M2 macrophages are capable of anti-inflammatory
response and tissue repair. Modulation of macrophages’ activation state is an effective approach for
several disease therapies, mediated by carbohydrate-coated nanocarriers. In this review, polymeric
nanocarriers targeting macrophages are described in terms of production methods and conjugation
strategies, highlighting the role of mannose receptor in the polarization of macrophages, and targeting
approaches for infectious diseases, cancer immunotherapy, and prevention. Translation of this
nanomedicine approach still requires further elucidation of the interaction mechanism between
nanocarriers and macrophages towards clinical applications.

Keywords: glyconanoparticles; immunotherapy; infectious diseases; mannose receptors; nutraceuticals

1. Introduction

Nanomedicine aims to improve health and life welfare with nanosized materials.
Nanoparticles can be designed for drug delivery by modulating surface properties and
composition to improve therapeutic effect and targeting specificity. Active targeting can be
obtained with surface functionalization of the nanoparticles using specific ligands to reach
the target of interest [1]. Taking advantage of this receptor-mediated specificity will reduce
toxicity and side-effects to healthy tissues.

Macrophages are innate immune cells widely present in the body acting to maintain
homeostasis and to resist pathogen invasion [2]. Macrophages are distributed according to
their functions, surface-expressed markers, and secreted cytokines in M1/M2-polarized
phenotypes. However, the simplicity of M1/M2 dichotomy of macrophage activation
is too broad to explain all the actual states of the macrophages as a response to several
stimuli. To have a proper description of the macrophage activation, it is generally accepted
to include information on macrophage source, type of activators, and markers [3]. An
imbalance in the M1/M2 ratio weakens the immune response and leads to inflamma-
tion. Hence, macrophages constitute an important player in the therapeutic strategies
against infections, inflammatory conditions, and cancer. Receptors frequently expressed
on the surface of macrophages constitute a potential target for nanomedicine-based ap-
proaches. Macrophage scavenger receptor, Toll-like receptors, glucan receptor, folate recep-
tor, and mannose receptor are among the most used surface receptors of macrophages [4].
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Mannose receptor (MR) is composed by several domains that allows recognition to various
molecules of the carbohydrate family and contributes to receptor-mediated endocytosis.
Upon internalization, nanocarriers can elicit macrophage polarization in vivo. Different
types of polymeric based carriers (e.g., nanoparticles, micelles, dendrimers) are emerging as
macrophage-targeted delivery systems [5]. Nanocarriers can also reset the macrophage ac-
tivation state, as it is the case of the conversion of M2 phenotype to M1 in tumor-associated
macrophages [6]. Understanding the interaction mechanisms between nanoparticles and
macrophages is essential to a successful and effective nanocarrier’s design towards a
therapeutic or prevention strategy.

2. Polymeric Nanoparticles as Biomedical Delivery Devices

Over the past few decades, the development of new strategies that surpasses the prob-
lems associated with conventional diagnosis and therapies have gained great importance
on the scope of nanomedicine. One of the main goals in this field is to design nanoparticles
capable of a targeted delivery and controlled release of bioactive compounds to a specific
site, increasing its therapeutic effect while minimizing its side effects [7,8]. Several types of
nanoparticles can be prepared from different building blocks like lipids, proteins, metals,
and polymers [7–9]. Polymeric nanoparticles have gained great importance as biocompati-
ble drug delivery systems given their simplicity and low-cost production [10]. The use of
polymeric nanoparticles in drug delivery has many advantages over the use of other types
of nanocarriers: a growing choice of biodegradable and biocompatible polymers, higher
encapsulation efficiencies, higher stability in physiological conditions, improved drug
bioavailability, and simpler preparation (for more detailed information on the synthesis
methods see ref. [11]).

The design of drug delivery systems needs to consider several characteristics, namely,
hydrophobicity, size, surface charge, biological interactions/toxicity, and biodegradability.
A wide variety of natural or synthetic polymers are available for the preparation of the
nanoparticles [12,13]. To produce nanoparticles, the most commonly used natural poly-
mers include chitosan, a linear polysaccharide extracted from the exoskeletons of marine
crustaceans [14], alginate that is isolated from brown algae [15], and gelatin obtained by
hydrolyzed collagen [16]. Natural polymers have the advantage of combining biological
properties like mimicking the extracellular matrix, allowing to sustain cell growth in tissue
engineering applications, and tunable mechanical properties like stimuli-responsiveness,
degradation, swelling, and crosslinking capabilities [13–15]. However, the application of
natural polymers is often hampered by contaminants and batch-to-batch variability. Other
constraints involve low hydrophobicity that compromises lipophilic drugs encapsulation,
and a rapid drug release from the matrix [17,18].

Limitations of natural polymers can be overcome with the use of synthetic polymers,
which are more reproducible in manufacture and more stable. Polymeric nanoparticles
obtained with synthetic polymers allow drug-controlled release for a period of days up to
several weeks [18]. Drawbacks associated with these type of nanoparticles involve their
limited aqueous solubility and the need of surfactants to form stable suspensions [19]. The
outcome of the nanoparticle as a drug delivery system can be modulated in the compo-
sition not only in the nature of the polymer, but also in the molecular weight, copolymer
composition, and selected surfactant. To produce a targeted drug release within the body,
the nanoparticles can be considered with additional properties to respond to external or
internal stimuli such as redox state or pH [20]. Polylactic acid (PLA), poly(glycolic acid)
(PGA), and their copolymers (PLGA) represent the most extensively used and studied
synthetic polymers for drug delivery [21–23]. The presence of ester linkages in their back-
bones make these polyesters biodegradable. In fact, in a living organism, these polymers
suffer a hydrolysis, and the resulting products are easily metabolized in the Krebs cycle
and eliminated as carbon dioxide and water [17]. Also widely applied in the production
of nanoparticles is poly-E-caprolactone (PCL) that allows a slow degradation rate in com-
parison with PLA and PLGA, and thus is more adequate for long-term drug delivery.
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Poly(alkylcyanoacrylate) (PACA) is an interesting polymer whose properties can be con-
trolled by the side of the introduced chains, being that the longer the side-chains the longer
the half-life of the nanoparticles [17].

Depending on the preparation method, used polymers and desired application, differ-
ent polymeric nanocarriers can be obtained such as polymer-drug conjugates, polymeric
micelles, polymeric nanogels, and dendrimers [24]. Two types of polymer nanoparti-
cles can be obtained for drug delivery: nanocapsules, composed of a liquid or semisolid
core covered by a polymer membrane; or nanospheres that consist in a solid polymer
matrix [11,12,23–25]. The drugs can be either entrapped in nanoparticles or adsorbed at
the surface. In nanocapsules, the drug can be encapsulated in the inner core, while in
nanospheres it is uniformly dispersed in the polymer matrix (Figure 1). These represent ver-
satile tools for surface modification, as well as shape, size, and even optical characteristics.
In nanomedicine, core–shell polymeric nanoparticles are also interesting, as the polymeric
platform allows a second shell, usually a solid, which may confer smart properties to the
nanoparticle (e.g., pH sensitive, thermo- and enzyme-responsive) [26–28].
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Figure 1. Schematic representation of the two types of polymeric nanoparticles: nanocapsules (A) and nanospheres (B).
Nanocapsules comprise an inner cavity, composed of water or a semi solid (oil), and covered with a polymer membrane,
while in nanospheres the entire mass is a polymer matrix. Drug molecules can be entrapped in both types of nanoparticles.

3. Production Methods for Polymeric Nanoparticles and Surface Properties Modifications

Currently, there are several methods developed and well-implemented for the prepa-
ration of polymeric nanoparticles. At first, one needs to ponder on (i) the physicochemical
properties of the bioactive compound to be delivered, (ii) the nature and type of poly-
mer, (iii) the target and biological environment, and (iv) the administration route. Based
on this information it is possible to select the most adequate production method among
emulsification-solvent evaporation, nanoprecipitation, emulsification reverse salting-out,
and emulsification solvent diffusion. These polymerization processes allow production of
nanoparticles with control of physicochemical and biological properties of the nanopar-
ticles that are formed (Figure 2). At least two steps are involved in these conventional
production methods: (i) polymer dissolution in an organic solvent followed by emulsifica-
tion in an aqueous phase, and (ii) solvent evaporation to obtain the nanoparticles [13,29].
Polymeric nanoparticles can also be produced using monomers in an emulsion or as a
micellar suspension by interfacial poly-condensation [13,17].
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Figure 2. Diagram representing the options of production methods to obtain polymeric nanoparticles. Abbreviations:
NMP (nitroxide-mediated polymerization); ATRP (atom transfer radical polymerization); RAFT (reversible addition and
fragmentation transfer chain polymerization).

Hydrophilicity of the drug delivery systems represents an important feature to be
considered for biological application. In fact, upon intravenous administration, hydropho-
bic nanoparticles are taken as foreign and the organism removes them from circulation to
the excretion organs (liver, spleen, and lymph nodes) using the mononuclear phagocytic
system [30]. If the intended treatment targets one of these organs, hydrophobic nanopar-
ticles are the best solution. When aiming different targets, systemic circulation needs to
occur, so the delivery systems reaches the diseased site. In this case, the surface of the
nanoparticles must be modified with hydrophilic polymers to prevent the action of the
mononuclear phagocytic system and phagocytosis. Hydrophilic nanoparticles will have
long circulation times and reduced nonspecific distribution [31,32]. The list of hydrophilic
polymers is long and include polyethylene glycol (PEG), poly-vinyl pyrrolidone (PVP),
pluronics (poly-ethylene oxides), poloxamers, vitamin E TPGS, polysorbate 20, polysorbate
80, and polysaccharides (e.g., dextran) [33]. A protective layer can be obtained at the surface
of the nanoparticles with these hydrophilic compounds, by adsorption or grafting shield
groups. In some cases, PEG can be incorporated as copolymer [30,34,35]. The most used
hydrophilic polymer for nanoparticles’ surface modification is PEG. The nature (flexible
chains) and the physicochemical (hydrophilicity) features of this polymer as well as the
presence of functional groups able to prevent plasma proteins binding are the reasons for
this success [36]. A significant decrease in the opsonization and macrophage internalization
of nanoparticles was observed with PEG coating, which lead to an enhanced long-term
blood circulation. PEGylated nanoparticles promote a higher drug uptake by target tissues
when compared to non-PEGylated ones [37–39].

In sum, a crucial feature of polymeric nanoparticles is their surface modification in
order to improve drug delivery. On the one hand, the addition of a stealth layer (PEG, PVA,
polysorbate) at the surface of nanoparticles allows an increased blood circulation time,
avoiding the binding of opsonins and the rapid clearance from the mononuclear phagocytic
system, and on the other hand, the functionalization at the surface with targeting ligands
(proteins, peptides, antibodies [40–42]) improves the specificity of the treatment [43,44].
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4. Carbohydrate-Functionalized Polymeric Nanoparticles

As stated before, polymeric nanoparticles have excellent features that make them
promising delivery systems for therapeutic applications. A higher specificity of drug
delivery to a certain site of action is achieved when targeting ligands are incorporated in
these nanocarriers. The functionalization of nanoparticles with carbohydrates, also known
as glyconanoparticles, plays a key role in receptor-mediated delivery, as it allows to
establish specific interactions with carbohydrate-binding proteins (lectins) [45,46]. Besides
molecular recognition, sugars can act as colloidal stabilizers [47], reduce toxicity [48] and
immunogenicity [49] and unlike PEG, increase circulation time in the bloodstream without
compromising cellular uptake [50].

Glycopolymers can be prepared either by post-polymerization modification, which
consists in the functionalization of a preformed polymeric backbone, or in the polymer-
ization of glycosylated monomers [51,52] that can be performed by several synthetic
routes that provide controllable architectures, stereochemistry, and molecular weights,
such as free radical polymerization (ring-opening polymerization (ROP)), ionic polymeriza-
tion, controlled radical polymerization (nitroxide-mediated polymerization (NMP), atom
transfer radical polymerization (ATRP), reversible addition fragmentation chain transfer
(RAFT), and enzyme-mediated polymerization [51,53–55]. Here, we will focus on the
post-functionalization of polymeric nanoparticles with carbohydrates, as it allows the at-
tachment of pendant carbohydrate moieties (Figure 3), making it ideal for targeted delivery.
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The coupling of a ligand to a nanoparticle can be achieved either by electrostatic
interactions or by covalent conjugation strategies [56,57]. The last requires the presence of
reactive functional groups (amine, carboxyl, sulfhydryl, hydroxyl, azide-reactive groups)
at the surface of nanoparticle that enable conjugation with ligands [58]. A very popular
method used for chemical conjugation is the carbodiimide method, which consists of the
activation of carboxylate functional groups that react with primary amines to form amide
bonds [58,59]. In this case, a direct conjugation is performed, but sometimes linkers are
used. For instance, Kim and collaborators used N,N′-dicyclohexyl carbodiimide (DCC) for
a two-step coupling reaction of a galactose moiety to polymeric nanoparticles composed
of cholic acid and diamine-terminated poly(ethylene glycol) as a linker [60]. Palmioli and
co-workers also described the functionalization of PLGA with sugar entities bearing a 2-(2-
aminoethoxy)ethanol linker through amide bond using N,N′-diisopropylcarbodiimide and
NHS [61].
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Crucho and colleagues produced a polymeric conjugate composed of PLGA modified
with sucrose and cholic acid moieties [62]. The functionalization of the PLGA backbone
was made through esterification using DCC/NHS reactions, and then sucrose and cholic
acid-functionalized PLGA nanoparticles were obtained by nanoprecipitation. Sucrose
addition provided colloidal stability to the nanoparticles, demonstrated by the decrease
of the negative surface charge. Rieger and collaborators reported a simple method for the
preparation of mannose-functionalized PLA NPs [63]. The synthesis approach consisted
in the co-nanoprecipitation evaporation of a mannosylated poly(ethylene oxide)-b-poly(ε-
caprolactone) (PEO-b-PCL) diblock copolymer with PLA. The amphiphilic copolymers
bearing the mannose moieties worked as surface modifiers and were able to specifically
bind to MR.

Freichels and co-workers prepared crosslinked hydroxyethyl starch (HES) nanocap-
sules, which is a hydroxyethylated glucose polymer, functionalized with (oligo)mannose [64].
The preparation of the nanocapsules consisted in interfacial addition of HES with 2,4-
toluene diisocyanate (TDI) in inverse miniemulsion. This procedure leaves an amount of
non-reacted amine groups that were used to perform the functionalization with three types
of mannose molecules: a-D-mannopyranosylphenyl isothiocyanate, 3-O-(a-D-mannopyranosyl)
-D-mannose (di-mannose), and α3,α6-mannotriose (tri-mannose). The amine groups on
the surface of nanocapsules were used to react directly with mannose isothiocyanate while
di- and tri-mannose were coupled through reductive amination. The obtained delivery
systems exhibit a specific binding to agglutinin and the presence of a PEG linker showed to
increase the interaction to the receptor, due to a higher accessibility of the sugar molecule.

Kim et al. developed a siRNA delivery system composed of PEI, PEG, and man-
nose [65]. PEI molecules were used to form the polymer/siRNA polyplex, PEG was used as
a stabilizer, and mannose as a targeting ligand for macrophages. Here, two different func-
tionalization methods were performed: one in which PEG and mannose molecules were
directly linked to PEI backbone (mannose-PEI-PEG), and another in which mannose chains
were conjugated to PEI using a PEG spacer, i.e., mannose was linked to PEG before reaction
of mannose-PEG chains to PEI backbone. In these reactions, like the ones described before,
α-D-mannopyranosylphenyl isothiocyanate was used for mannosylation and PEG was
conjugated to PEI via glutaraldehyde linkage. The researchers also found that the location
in which mannose ligands are conjugated affect the cytotoxicity of nanocarriers. Table 1
resumes examples of glycoproteins produced with electrostatic interactions and covalent
conjugation strategies identifying the ligand and the target defined for the nanocarriers.

Table 1. List of developed carbohydrate-functionalized polymeric nanoparticles.

Polymeric Nanocarrier
Composition Carbohydrate Ligand Functionalization Strategy Target Tissue/Cells Ref

Cholic acid and PEG Galactose N,N′-dicyclohexyl carbodiimide
reaction Liver-specific delivery [65]

PLGA NPs
Galactose
Glucose

Mannose

N,N′-diisopropylcarbodiimide/NHS
reaction - [61]

PLGA NPs Sucrose
Cholic acid DCC/NHS reactions - [62]

PLA and PEO-b-PCL
diblock copolymer NPs Mannose Nanoprecipitation-evaporation

approach Mannose receptors [63]
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Table 1. Cont.

Polymeric Nanocarrier
Composition Carbohydrate Ligand Functionalization Strategy Target Tissue/Cells Ref

Hydroxyethyl starch
nanocapsules

MannoseDimannose
Trimannose

Mannose:
-Amine to isothiocyanate group

reaction
Dimannose and trimannose:

-Reductive amination

Agglutinin (mannose
receptor) [64]

PEI-PEG NPs Mannose
Binding of mannose to PEI-PEG

NPsBinding of mannose to PEI NPs
via a PEG spacer

Macrophage cells [65]

PLGA NPs
Mannose
Mannan

Mannoseamine
DCC/NHS/EDA reaction

Macrophages
Leishmania-infected

mice
[66]

6-Amino-6-deoxy-
curdlan Mannose Amine to isothiocyanate group

reaction
Mouse peritoneal

macrophages [67]

5. Macrophages
5.1. Functions and Polarization State

The mononuclear phagocytic system, also designated as the reticuloendothelial system,
is composed of monocytes in the blood and macrophages in the tissues and is part of the
innate immune system. During the hematopoiesis process, mature monocytes circulate for
about 8 h, grow, and end up in specific tissues, as macrophages [68].

Macrophages are present throughout the body resident in tissues and also motile,
known as free or wandering macrophages. They can originate from circulating monocytes,
but also from embryonic hematopoietic stem cells or yolk sac [69]. Macrophages play
relevant roles in the immune response, as they act in tissue development, inflammation
related to pathogens, cancer, and organ transplantation. During phagocytosis, macrophages
engulf pathogens, mediated by receptors on macrophage surface that bind to the fragment
crystallizable (Fc) region of molecule from the pathogen. This process leads to the formation
of a phagosome that merges with the lysosome where the target is digested. Macrophages
act as antigen presenting cells, when displaying foreign material or parts of antigens on
its surface in association with class II major histocompatibility complex (MHC) molecules.
This triggers T-cells, and consequently, the adaptive immunity. Likewise, macrophages can
secrete several cytokines involved in the immune response, homeostasis, and inflammation,
which modulate their function and surface marker expression [70].

Macrophages are polarized to respond to alterations in their environment, being
classified as M1 macrophages and M2 macrophages [71]. Contact with pathogen-associated
molecular patterns (PAMPs), such as bacterial lipopolysaccharide (LPS) from Escherichia coli
(Gram-negative) or peptidoglycan (PGN) from Staphylococcus aureus (Gram-positive) drives
macrophages polarization towards M1 phenotype, with the ability to elicit proinflammatory
response and production of interleukin (IL) 6 (IL-6), IL-12, and tumor necrosis factor-
alpha (TNF-α), all pro-inflammatory cytokines. Alternatively, activated macrophages
are produced in the presence of the Th2 cytokines IL-4 and/or IL-13, which can lead
macrophage polarization to M2, characterized by anti-inflammatory responses and tissue
repair abilities [72].

Regulation of macrophage polarization phenotype is reversible and modulates their
immune function. An important feature in this mechanism is the expression of the cell
surface markers. M1 macrophages overexpress CD80, CD86, and CD16/32, while M2
exhibits more arginase-1 and mannose receptor (CD206).
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5.2. Macrophage Polarization Mediated by Nanocarriers

To date, several nanocarriers were able to induce inflammatory and immune responses
in vitro and in vivo [73–75]. Nanocarriers can be internalized by macrophages inducing
changes at the cell surface as well as secretion of cytokines and chemokines [76]. Under-
standing the mechanism of interaction between nanocarriers and macrophages will con-
tribute to an effective design of nanocarriers for a specific therapeutic strategy. Macrophage-
mediated therapies are emerging as a promising and effective approach towards the treat-
ment of several diseases. In particular, uptake of nanocarriers by macrophages implies
interaction between nanocarriers’ surface and macrophage cell membrane. Therefore, the
formed membrane-bound vesicle will have a size, composition, and internal environment
according to the internalization, resulting in endosomes, phagosomes, or macropinosomes.
In fact, the uptake mechanisms can be described as phagocytosis, micropinocytosis, en-
docytosis mediated by clathrin or by caveolin, or independent from both [77]. Passive
and active targeting approaches can be designed to achieve the intended effect. Size
and surface of the nanocarrier govern passive targeting, while for an active targeting
the surface of the nanocarrier requires functionalization with a specific ligand towards a
particular surface cell receptor. Carbohydrate-coated nanocarriers have been exploited to
target mannose receptors expressed in macrophages and dendritic cells (antigen presenting
cells, APCs) [51].

Conjugation of ligands at the surface of nanocarriers may modulate the immune
system. The use of targeted nanocarriers elicit the maturation of APCs, with alterations
at the surface expression of co-stimulatory molecules and in the secretion of cytokines
that activate T-cell responses [78–80]. Active targeting of nanocarriers towards endocytic
receptors present on macrophage surface can be achieved using C-type lectin receptors
(CLR) or the mannose receptor CD206.

5.3. Mannose Receptor

CD206 or mannose receptor (MR) has the ability to recognize mannosylated or fu-
cosylated glycoproteins and engulf them [81]. This 175 kDa endocytic receptor was first
identified in rabbit alveolar macrophages and is a type I transmembrane receptor com-
posed by an extracellular region containing a cysteine-rich (CR) domain that acts as second
lectin domain, and a fibronectin type II (FNII) domain that is involved in collagen binding,
and multiple C-type lectin-like domains (CTLDs) within a single polypeptide backbone
where the binding of sugars terminated in D-mannose, L-fucose, or N-acetyl glucosamine
occurs [82]. Based on their structure, CLR are grouped as transmembrane CLRs and soluble
CLRs (collectins). Type I transmembrane CLRs include MR and ENDO180 (mannose recep-
tor C type 2), while type II transmembrane CLRs include dendritic cell-specific intracellular
adhesin molecule 3 grabbing non-integrin (DC-SIGN), langerin, and macrophage galactose
type lectin (MGL) receptors [83].

MR expression is not restricted to resident macrophages and dendritic cells. It was also
found on immature monocyte-derived dendritic cells [84], hepatic endothelial cells [85], tra-
cheal smooth muscle cells [86], and kidney mesangial cells, among others [84]. Expression
of this receptor is modulated by cytokines, immunoglobulin receptors, and pathogens [87].
MR synthesis is more rapid in the presence of immunoglobulins IgG2a and IgG2b [88]. Cy-
tokines regulate MR expression as IL-4 [89], IL-13 [90], and IL-10 [91] enhance macrophages
receptors expression, while interferon-G (IFN-G) [92] down-regulate MR expression and
increase macrophage’s activation.

Macrophages cell surface express about 10–30% of MR at steady state and the re-
maining 70–90% have an intracellular location. Early endosomes contain MR internalized
and are able to send these receptors back to the cell surface through the interaction with
the clathrin-mediated endocytic machinery [80]. This mechanism is mediated by small
intracellular vesicles (below 0.2 µm) and drive the MR to be recycled to the macrophage
membrane or delivered into late endosomes, filled with lysosomal hydrolases. Here, under
acidic pH and hydrolase-rich environment, the final degradation of the internalized cargo
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happens. The ability of nanoparticles to modulate the macrophage state through MR was
described for several authors (Table 1). For example, chitin and mannose-coated beads
improved the production of tumor necrosis factor-alfa (TNF-α), IFN-G, and IL-12 by murine
spleen cells in relation to non-coated beads [93].

MR is also expressed in DCs and actively contributes to antigen recognition and pro-
cessing. Evidences confer MR an important part in the antigen-internalization mechanism
in DCs. For example, bovine serum albumin coated with mannose enhanced the uptake
and presentation of this antigen to T cells [94,95].

Macrophages are responsible for the internalization and degradation of pathogens,
acting as pattern recognition receptors, given the highly conserved C-type lectin receptors,
in a calcium dependent manner. Thus, this first line of defense binds to carbohydrate
molecules (e.g., mannose, fucose, and N-acetyl glucosamine) present on the surface of a
wide variety of pathogens, including Candida albicans [81], Leishmania donovani [96], and
Mycobacterium tuberculosis [97].

5.4. Mannose Receptor-Targeted Nanocarriers Interactions with Macrophages

Targeting MR in macrophages using polysaccharides or glycoproteins containing
mannose or fucose residues has been exploited to develop nanocarrier-based macrophage-
mediated therapies [98]. Mannose-based glycopolymers exhibited an increased internaliza-
tion by macrophages in comparison to galactose-containing glycoprolymers [99]. Given
the variability of ligand–target interaction according to the activation and differentiation
state of macrophages, studies should consider various types of carbohydrate moieties. The
design of the nanocarriers should also pay attention to their surface charge, as it affects
macrophage binding affinity. Anionic sialic acid is present on macrophages surface and
enhances phagocytosis of positively charged nanocarriers [100]. Nanocarriers coated with
albumin, folic acid, or cholesterol are easily internalized by caveolin-mediated endocytosis
which prevents lysosomal degradation. However, mechanisms of uptake are interchange-
able and blocking a path may “open” another endocytic path, which poses a challenge in
the design of a nanocarrier (Figure 4) [5,101].

Polymers 2021, 13, x  10 of 19 
 

 

 
Figure 4. Glyconanoparticle interaction with macrophages through receptor mediated endocytosis mechanism. 

5.4.1. Mannose Receptor-Targeting Nanocarriers towards Infection Resolution 
Macrophages are host cells of many intra-cellular pathogens (bacteria, parasites, and 

virus) causing infectious diseases that could be managed with nanocarriers targeting MR. 
Recent examples of carbohydrate-based polymeric nanocarriers towards macrophages are 
described and shown in Table 2. 

Tuberculosis is the bacterial infection responsible for more deaths worldwide. The 
treatment regimen involves oral administration of rifampicin, isoniazid, pyrazinamide, 
and ethambutol for long periods, usually over six months. The completion rate is highly 
dependent of patient compliance, but interruptions may occur due to adverse side-effects. 
Hence, new therapeutic approaches which are more efficient, with less side-effects and 
shorter duration of treatment are envisaged [102]. Aminoglycoside antibiotics are used 
against mycobacterial infections, but usually are not highly membrane permeable eliciting 
adverse side effects. Chitosan nanoparticles loaded with aminoglycoside were produced 
with dextran sulphate as counter ion to shield the positive charge of the antibiotic. In vivo 
results showed effective killing of intracellular M. tuberculosis upon oral administration of 
antibiotic-loaded nanocarriers [103]. Isoniazid, an anti-tuberculostatic agent, was 
incorporated in mannosylated gelatin nanoparticles. Macrophages were effectively 
targeted by these nanoparticles, as assessed by flow cytometry [104]. For rifampicin, 
several examples of nanocarriers have been described. Rifampicin was loaded in 
dendrimers able to enhance alveolar macrophage uptake and drug release at pH 5 [105], 
and also in flower-like polymeric micelles which surface was modified with hydrolyzed 
galactomannan [106]. The latter combined mannose and galactose were both recognized 
by CLRs. A complex nanocarrier based on poly(epsilon-caprolactone)-b-poly(ethylene-
glycol)-b-poly(epsilon-caprolactone) flower-like polymeric micelles (PMs) coated with 
chitosan or GalM-h/chitosan was produced allowing higher intracellular levels of 
rifampicin in murine macrophages, relative to its free and chitosan-loaded forms. 

The protozoa Leishmania is the causative agent of several infectious diseases upon 
invading macrophages in the liver and spleen (visceral leishmaniasis) or in the skin 
(cutaneous leishmaniasis). Leishmaniasis remains endemic in developing countries and 
without proper treatment leads to death. Pentavalent antimonials were the first anti-
leishmanial agents used, but given their toxicity, treatment evolved to amphotericin B, 
miltefosine, pentamidine, primaquine, paromomycin, and even natural compounds (e.g., 
amarogentin and andrographolide) [107]. Treatment is hampered by the intracellular 
localization of the protozoa inside the phagolysosome. The US FDA-approved poly(d,l-
lactide-coglycolide) (PLGA) polymer was functionalized with carbohydrate moieties 
(mannose, mannan, and mannosamine) to identity the most effective in targeting 
macrophages infected with Leishmania. In vitro data obtained with murine primary 

Figure 4. Glyconanoparticle interaction with macrophages through receptor mediated endocytosis mechanism.

5.4.1. Mannose Receptor-Targeting Nanocarriers towards Infection Resolution

Macrophages are host cells of many intra-cellular pathogens (bacteria, parasites, and
virus) causing infectious diseases that could be managed with nanocarriers targeting MR.
Recent examples of carbohydrate-based polymeric nanocarriers towards macrophages are
described and shown in Table 2.

Tuberculosis is the bacterial infection responsible for more deaths worldwide. The
treatment regimen involves oral administration of rifampicin, isoniazid, pyrazinamide, and
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ethambutol for long periods, usually over six months. The completion rate is highly depen-
dent of patient compliance, but interruptions may occur due to adverse side-effects. Hence,
new therapeutic approaches which are more efficient, with less side-effects and shorter
duration of treatment are envisaged [102]. Aminoglycoside antibiotics are used against my-
cobacterial infections, but usually are not highly membrane permeable eliciting adverse side
effects. Chitosan nanoparticles loaded with aminoglycoside were produced with dextran
sulphate as counter ion to shield the positive charge of the antibiotic. In vivo results showed
effective killing of intracellular M. tuberculosis upon oral administration of antibiotic-loaded
nanocarriers [103]. Isoniazid, an anti-tuberculostatic agent, was incorporated in mannosy-
lated gelatin nanoparticles. Macrophages were effectively targeted by these nanoparticles,
as assessed by flow cytometry [104]. For rifampicin, several examples of nanocarriers
have been described. Rifampicin was loaded in dendrimers able to enhance alveolar
macrophage uptake and drug release at pH 5 [105], and also in flower-like polymeric
micelles which surface was modified with hydrolyzed galactomannan [106]. The latter
combined mannose and galactose were both recognized by CLRs. A complex nanocarrier
based on poly(epsilon-caprolactone)-b-poly(ethylene-glycol)-b-poly(epsilon-caprolactone)
flower-like polymeric micelles (PMs) coated with chitosan or GalM-h/chitosan was pro-
duced allowing higher intracellular levels of rifampicin in murine macrophages, relative to
its free and chitosan-loaded forms.

The protozoa Leishmania is the causative agent of several infectious diseases upon
invading macrophages in the liver and spleen (visceral leishmaniasis) or in the skin (cuta-
neous leishmaniasis). Leishmaniasis remains endemic in developing countries and without
proper treatment leads to death. Pentavalent antimonials were the first anti-leishmanial
agents used, but given their toxicity, treatment evolved to amphotericin B, miltefosine,
pentamidine, primaquine, paromomycin, and even natural compounds (e.g., amarogentin
and andrographolide) [107]. Treatment is hampered by the intracellular localization of the
protozoa inside the phagolysosome. The US FDA-approved poly(d,l-lactide-coglycolide)
(PLGA) polymer was functionalized with carbohydrate moieties (mannose, mannan, and
mannosamine) to identity the most effective in targeting macrophages infected with Leish-
mania. In vitro data obtained with murine primary macrophages evidenced the immune-
modulatory properties of the nanocarriers, with activation of macrophages and produc-
tion of pro-inflammatory cytokines, upon clathrin-mediated endocytosis. Amphotericin
B-loaded on mannan-functionalized PLGA nanocarriers confirmed in vivo efficacy in re-
lation to Fungizone© alone, in a visceral leishmaniasis model [66]. MR was targeted by
coating polyanhydride nanoparticles with carbohydrates (galactose and di-mannose) by
Chavez-Santoscoy and co-workers [108]. The designed nanocarriers increased surface
expression of markers in alveolar macrophages, enhanced the expression of MR, and
promoted production of pro-inflammatory cytokines (IL-1b, IL-6, and TNF-a). Curcumin-
loaded mannosylated chitosan nanoparticles improved the drug mean residence time
within infected macrophages [109]. Effective endocytosis mediated by MR lead to better
pharmacokinetic parameters.

Table 2. Mannose receptor-targeting nanocarriers towards infection resolution.

Composition Carbohydrate Cargo Advantages Ref

Chitosan, dextran sulphate - Aminoglycoside
Oral administration allowed

effective killing of intracellular
M. tuberculosis

[103]

Gelatin Mannose Isoniazid Effective targeting of
macrophages [104]

Poly(epsilon-caprolactone)-b-
poly(ethylene-glycol)-b-

poly(epsilon-caprolactone) and
chitosan

Galactomannan Rifampicin
Improved cellular

internalization in murine
macrophages

[106]
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Table 2. Cont.

Composition Carbohydrate Cargo Advantages Ref

PLGA Mannose, mannan and
mannosamine Amphotericin B Improved in vivo efficacy

against visceral leishmaniasis [66]

Polyanhydride Galactose and
di-mannose - Increase production of

pro-inflammatory cytokines [108]

Chitosan Mannose Curcumin
Enhanced the drug residence

time within infected
macrophages

[109]

Gelatin Mannose Didanosine

Improved uptake by alveolar
macrophages, and in vivo
distribution mainly in the

lungs, spleen and lymph nodes

[110]

Stearate-g-chitosan Oligosaccharide Lamiduvine High cellular uptake with low
toxicity in viral infected cells [111]

Sialic acid and
poly(propyleneimine) Mannose Zidovudine

Low cell toxicity and in vivo
biodistribution on the lymph

nodes
[112]

Targeted mannose-coated gelatin nanoparticles were produced to enhance therapeutic
efficacy of didanosine towards human immunodeficiency virus [110]. Higher uptake by
alveolar macrophages was observed with the mannose coating, and in vivo biodistribution
studies revealed the presence of the nanocarriers in the spleen, lymph nodes, and lungs.
Lamiduvine delivery towards HIV was improved with the incorporation in stearate-g-
chitosan oligosaccharide polymeric micelles. The nanocarrier led to high internalization
and low cytotoxicity in viral transfected cells [111]. Another antiretroviral drug, zidovu-
dine, was incorporated within sialic acid and mannose dual-coated poly(propyleneimine)
dendrimer [112]. This nanocarrier produced less cell toxicity and hemolysis, most probably
related to the zidovudine-sustained release and enhanced internalization by macrophages.
In vivo biodistribution revealed targeting to sialo-adhesin and carbohydrate receptors in
the lymph nodes.

5.4.2. Mannose Receptor-Targeting Nanocarriers towards Tumor-Associated Macrophages

Macrophages accumulate in the tumor microenvironment, being designated as tumor-
associated macrophages (TAM). These represent the major contribution of tumor immune
escape, angiogenesis, growth, and metastasis [113]. Mannosylated nanocarriers can modu-
late macrophage polarization from M2 phenotype to the M1 phenotype enhancing anti-
tumor immunity. Delivery of Toll-like receptor (TLR) agonists reset TAM polarization
towards an antitumor M1 phenotype. Rodell and co-workers produced b-cyclodextrin
nanoparticles containing a TLR7/8 agonist that reprogrammed TAM and, as a consequence,
efficiently controlled tumor growth [114].

MR targeting can also contribute to improve gene delivery efficiency, by improving
transfection and tissue specificity. Reeducation of TAM can be accomplished with delivery
of siRNA, miRNA, or mRNA using mannosylated nanoparticles [115,116]. Likewise, chi-
tosan nanoparticles allowed to deliver therapeutic DNA by MR-mediated endocytosis [117].
Experimental data highlights less cytotoxicity, improved gene transfection, and induction
of IFN-γ production upon IL-12 gene delivery, in comparison to plain chitosan nanocarriers.
IL-12-based gene delivery can be applied for cancer immunotherapy, as it elicits a Th1-type
immunity and also cell-mediated immunity.

Instead of only modulating TAM polarization to control cancer progression, it is also
possible to completely neutralize or kill them, with the delivery of cytotoxic compounds
using TAM-targeted nanoparticles [118].
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Nanoparticle-based immunotherapies represent a promising approach to target tumor
environment, in particular TAM, instead of aiming for the tumor cells, preventing immune-
mediated adverse-effects. Another application could be cancer vaccination by targeting
immune cells in the lymph node.

5.4.3. Mannose Receptor-Targeting Nanocarriers towards Prevention Approaches

Oral delivery is the preferred route for drug/bioactive compounds administration, due
to effects both at a local and systemic level, minimal invasiveness, and cost-effectiveness [119,
120]. However, a question of bioavailability and efficacy emerges when these immunomod-
ulatory compounds are orally administered in its free form. This can be attributed to
compound degradation due to pH variation and enzymatic activity in the gastrointestinal
(GI) tract or poor permeability across intestinal biological membranes [119,121,122]. De-
livery systems such as carbohydrate-functionalized polymeric nanoparticles are able to
provide protection from degradation in the GI tract, increase absorption by the intestinal
epithelium due to its mucoadhesive properties (e.g., PLGA, chitosan, and alginate) and
cell or tissue-targeted delivery and sustained release [121,123–126]. Gentamicin (GM) is an
antibiotic that can only be administered in parenteral form or in topical formulations, and
it cannot be orally administered due to enzymatic degradation and poor bioavailability.
However, when GM was encapsulated in chitosan-functionalized PLGA nanoparticles
and orally given to healthy rabbits, it not only reached the GI tract, as it was able to
cross the membrane entering the blood stream [127]. Based upon these findings the
authors concluded that biodegradable chitosan-functionalized PLGA nanoparticles are
potential candidates for GM oral delivery. Furthermore, these polysaccharide polymers-
based nanoparticles show unique physicochemical properties, namely, biocompatibility,
biodegradability, non-toxicity, and low cost [128,129].

Immunomodulators targeting myeloid cells, particularly macrophages, are a proven
strategy to improve the host immunological status and immune response. Several studies
show that oral immunostimulation with bioactive compounds can be an effective pro-
phylactic strategy to prevent infectious disease or curtail its effects [130–132]. As already
mentioned, macrophages perform critical roles in innate immune response, including
inflammation and tissue repair, pathogen elimination, and coordination of the adaptive
immune response. Cell surface receptors that recognize polysaccharide residues such as
mannose, galactose, or N-acetylglucosamine residues are paramount for macrophage acti-
vation and response. Carriers comprising a matrix of polysaccharide moieties, or surface
ligands composed of carbohydrates, are suitable candidates for macrophage targeting or
stimulation. A chitosan nanoparticle functionalized with a high molecular weight ulvan
polysaccharide, activated Senegalese sole (Solea senegalensis) macrophages and triggered a
stronger immune response than the ulvan extract free form. Ulvan is a complex polysaccha-
ride composed of glucuronic acid and sulphated rhamnose, known to activate and induce
a potent stimulating effect on macrophage oxidative burst [133]. It was hypothesized that
ulvan stimulating properties improved in the chitosan/ulvan nanoparticles possibly due
to particle endocytic uptake by macrophages [134]. Particle size is an important feature
for cell uptake: when comparing microparticles to nanoparticles, the latter is generally
having higher cell internalization rates, and thus can be utilized to target cellular and
intracellular receptors due to their smaller size and mobility [135]. Furthermore, several
studies explored mannose-functionalized nanoparticles recognition by the macrophage
MR as a way to stimulate macrophages [67,136].

The potential to use orally delivered carbohydrate-functionalized polymeric nanopar-
ticles to target macrophages is recognized, mostly because of the unique structural features
of polysaccharides referred above. As research progresses in the field of nutraceuticals,
these glyconanoparticles seem to be a highly suitable delivery system for biologically active
compounds targeting macrophages.
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6. Future Perspectives

Further application of carbohydrate-functionalized polymeric nanoparticles depends
on more efficient production methods and improved selectivity towards macrophages or
other defined targets (Table 3). The design should consider drug release rate to assure rapid
release of the cargo at the target site. The amount of loaded cargo is also crucial, since a
balance needs to be achieved between high capacity and safety of the total administered
dose. Altogether, the product should be scalable and cost-effective to attract investors and
industries. However, not all these requirements are currently met. In fact, the production
methods are hardly reproducible, as the molecular weight, functional groups, and purity
of polymers depends on the source and batch. More knowledge on the mechanism of
interaction between glyconanoparticles and targeted macrophages will certainly allow to
optimize these parameters and obtain a product for further translation. In fact, the potential
of the carbohydrate-functionalized nanoparticles is highlighted by the increasing number
of patents found on the World Intellectual Property Organization and recently discussed
by Patil and Deshpande [73].

Table 3. A resume of the advantages and limitations of mannose receptor-targeting polymeric
nanocarriers.

Advantages Limitations

Surface chemistry can be controlled to reduce
impact in the nanoparticles toxicity,

immunogenicity, and biodistribution
Production of heterogeneous populations

Improved
pharmacokinetics/pharmacodynamics profile

Nanoparticles stability during storage, in
contact with blood and tissues

Effective internalization in targeted cells Scale up and time of production, particularly
for functionalized nanoparticles

Site-specific delivery with reduced side-effects

High binding affinity for targeted cells

7. Conclusions

Carbohydrates play a fundamental role in many aspects of receptor-mediated delivery
and therapies. The insertion of carbohydrates in biodegradable polymeric nanoparticles
enhances their biocompatibility and favors their use for biomedical applications. In this
review, we focused on the preparation methods and use of carbohydrate-functionalized
polymeric nanoparticles for macrophage targeting. The sugar moieties present in these
nanocarriers are able of specifically interacting with receptors at the surface of macrophage
cells and trigger immune responses. The study of this interaction makes the development
of new macrophage-mediated therapies possible, with the mannose receptor binding
being the most exploited, due to its abundant expression in dendritic cells and increased
internalization. Mannose-targeting nanocarriers have shown to be effective in increasing
the production of pro-inflammatory cytokines, in infection resolution, modulate tumor-
associated macrophages’ polarization, and improving nutraceuticals oral administration.
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