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Abstract 15 

Characterizing the transcriptional and translational gene expression patterns at the 16 
single-cell level within their three-dimensional (3D) tissue context is essential for revealing how 17 
genes shape tissue structure and function in health and disease. However, most existing spatial 18 
profiling techniques are limited to 5-20 µm thin tissue sections. Here, we developed Deep-19 
STARmap and Deep-RIBOmap, which enable 3D in situ quantification of thousands of gene 20 
transcripts and their corresponding translation activities, respectively, within 200-µm thick tissue 21 
blocks. This is achieved through scalable probe synthesis, hydrogel embedding with efficient 22 
probe anchoring, and robust cDNA crosslinking. We first utilized Deep-STARmap in 23 
combination with multicolor fluorescent protein imaging for simultaneous molecular cell typing 24 
and 3D neuron morphology tracing in the mouse brain. We also demonstrate that 3D spatial 25 
profiling facilitates comprehensive and quantitative analysis of tumor-immune interactions in 26 
human skin cancer. 27 

 28 
Introduction 29 
 The spatial regulation of gene expression and translation is critical for tissue function1–6. 30 
In situ profiling technologies enable the study of both the transcriptome and translatome within 31 
their original spatial contexts7–10. However, most spatial omics techniques are confined to 32 
analyzing thin tissue sections (5-20 µm). Many functional and anatomical studies in tissue 33 
biology require 3D profiling in tissue blocks across multiple cellular layers11,12. For instance, in 34 
neuroscience, 3D morphological profiling and long-range projection mapping13–16, in situ 35 
electrophysiology17–22, and in vivo neural activity imaging23–25 in the brain require direct 36 
measurements in 3D brain volumes (100-300 µm) where thin tissue sections are inadequate. In 37 
cancer pathology, 3D samples offer a more accurate representation of tumor architecture, 38 
microenvironment, and cell-cell interactions in patient samples26.  39 

Although reconstructing 3D volumes using serial thin sections is feasible, this method 40 
faces three significant challenges. Firstly, tissue sectioning often fragments cells, resulting in 41 
partial RNA readouts and an increased risk of RNA content loss during handling, complicating 42 
the accurate analysis of the transcriptome. Secondly, tissue deformation during sectioning 43 
presents a persistent challenge for computational reconstruction methods. Thirdly, this 44 
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approach requires substantial manual labor. Therefore, developing effective spatial omics 45 
methods for 3D profiling from thick tissue blocks is imperative. 46 

Current thick-tissue spatial profiling approaches achieved quantitative in situ 47 
measurements of transcriptome in thick samples using single or multi-round Fluorescence In 48 
Situ Hybridization (FISH)27–40, but are limited in several aspects. The number of genes they can 49 
analyze, typically fewer than 300, and the size of the imaging areas, often restricted to a single 50 
brain region. These limitations arise primarily because these methods often employ linear 51 
coding instead of exponential coding, and rely on RNA integrity to preserve the imaging signal, 52 
significantly reducing their efficiency of RNA detection, scalability of gene numbers and tissue 53 
volume, and flexibility of sample handling and imaging time28–40. Additionally, the displacement 54 
of RNA molecules between imaging rounds further restricts the number of imaging cycles that 55 
can be performed27. Moreover, current thick-tissue spatial profiling methods are limited to 56 
mapping spatial transcriptomics and lack the capability to map the translatome, thus hindering 57 
multiplexed characterization of gene translation at single-cell resolution. 58 

Here, we have developed Deep-STARmap and Deep-RIBOmap to address the 59 
aforementioned limitations by introducing a novel and scalable strategy for probe synthesis and 60 
embedding as well as robust cDNA amplicons crosslinking, enabling scalable in situ 61 
quantification of thousands of RNA transcripts and their respective translational activities within 62 
large intact thick tissue samples. Utilizing Deep-STARmap and Deep-RIBOmap, we profiled the 63 
transcription and translation of 1,017 genes in intact mouse brain tissue at 300 nm voxel size 64 
within a thick hydrogel-tissue scaffold, revealing heterogeneity in protein translation across cell 65 
types. Additionally, by combining our method with multicolor fluorescence labeling (Tetbow)14, 66 
we simultaneously profiled neuronal morphology and molecular signatures in single cells, 67 
achieving multimodal mapping of the adult mouse brain in a scalable manner. Lastly, we 68 
demonstrated the applicability of our method on human cutaneous squamous cell carcinomas 69 
(cSCC) samples, uncovering tumor-immune interactions with more accurate and quantitative 70 
spatial distributions compared to thin tissue analyses. We anticipate that Deep-STARmap and 71 
Deep-RIBOmap will also yield important biological insights into the pathophysiology of cancers 72 
and other diseases. 73 
 74 
Results 75 
Deep-STARmap and Deep-RIBOmap workflow 76 

We designed the workflow of Deep-STARmap and Deep-RIBOmap (Fig. 1a) as follows: 77 
it begins with the hybridization of pre-designed oligonucleotide probe sets to target either all 78 
RNA molecules of a gene or ribosome-bound RNAs, respectively, in PFA-fixed tissues followed 79 
by hydrogel matrix embedding; the samples are then subjected to protein digestion and lipid 80 
removal to enhance enzyme penetration, ensuring sufficient depth coverage in thick tissue 81 
samples; subsequently, in situ cDNA amplicons are synthesized through enzymatic ligation and 82 
rolling circle amplification (RCA); each cDNA amplicon contains a pre-designed gene-specific 83 
identifier, which is finally decoded through cyclic sequencing, imaging, and stripping steps 84 
(SEDAL sequencing30). In comparison with previously published thick-tissue STARmap protocol 85 
(linear encoding, 28 genes), the new developments of Deep-STARmap and Deep-RIBOmap 86 
solved the issues of scalable probe preparation, cDNA amplicon anchoring, signal decay, and 87 
translation mapping capability as detailed below. 88 
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STARmap employs a padlock probe, designed to target specific mRNA species of 89 
interest, along with a primer that binds to the same mRNA transcript adjacent to the padlock 90 
probe binding site. In the previous publication of the STARmap protocol adapted for thick 91 
tissue30, each primer contains a 5′ Acrydite modification to anchor the probe into the hydrogel. 92 
However, this modification is expensive to synthesize and not scalable for large gene numbers. 93 
In this report, Deep-STARmap incorporates a common “flanking linker sequence” at the 5′ end 94 
of all primers. This addition enables an Acrydite-modified adapter to hybridize and covalently 95 
crosslink with the flanking linker, allowing the whole probe set of primers to be conjugated to 96 
polyacrylamide hydrogels during polymerization (Fig. 1b). Covalent crosslinking is achieved 97 
with a nucleoside analog, 3-cyanovinylcarbazole nucleoside (CNVK)41, incorporated into the 98 
adapter. Upon 366 nm UV irradiation, the CNVK-containing adapter undergoes rapid 99 
photocrosslinking to the complementary strand via an adjacent pyrimidine base, a process 100 
shown to be non-damaging to DNA42,43. Experimental optimization revealed that an adapter-to-101 
primer ratio of 5:1 is sufficient for complete conversion of primer, and higher ratios do not 102 
increase the number of amplicons in mouse brain samples (Extended Data Fig. 1a-c). Notably, 103 
probes with a photocrosslinked 5′ Acrydite adapter performed equivalently to those with 5′ 104 
Acrydite modifications incorporated during solid phase synthesis (Fig. 1c). It is worth noting that 105 
the photocrosslinked adapter approach is markedly more efficient and scalable, as it employs a 106 
universal flanking linker sequence and corresponding adapter for all primers to allow pooled 107 
synthesis. In contrast, attachment of 5′ Acrydite for each individual probe during solid phase 108 
synthesis is extremely costly, especially in the setting of >5,000 probes with up to 70 bases in 109 
length. Due to its high multiplexing capability, our method enables the embedding of a large 110 
number of probe sets into the hydrogel, expanding the number of targetable RNA species from 111 
dozens to thousands. Our findings demonstrate that UV crosslinking significantly enhances 112 
probe incorporation efficiency, resulting in a higher detection yield of cDNA amplicons compared 113 
to mere adapter-primer hybridization. This method substantially outperforms the approach of 114 
relying solely on hydrogel physical retention (Fig. 1c). We also demonstrated that anchoring 115 
probe sets into the hydrogel is more efficient than the previously reported strategies40,44 of 116 
anchoring RNA molecules into the hydrogel in our experimental setting. (Extended Data Fig. 1f, 117 
g).  118 

After hydrogel polymerization using a mixture of redox initiator and thermal initiator to 119 
embed the tissue and polymerizable primers (Extended Data Fig. 1d, e), we performed protein 120 
digestion, enzymatic ligation, and rolling circle amplification (RCA) to construct in situ cDNA 121 
amplicons. We observed that primer polymerization alone could not efficiently retain cDNA 122 
amplicons as puncta for more than 4 imaging cycles, potentially because they are prone to 123 
displacement, disassemble, and even fragmentation caused by buffer-dependent hydrogel 124 
expansion and contraction between imaging cycles, resulting in progressively lower SNR (Fig. 125 
1d). To maintain the position and integrity of the amplicons through multiple detection cycles, a 126 
second round of hydrogel embedding was introduced following RCA, which outperformed 127 
several alternative re-embedding strategies (Extended Data Fig. 2a-d). Collectively, the 128 
implementation of these strategies devised explicitly for Deep-STARmap significantly enhances 129 
its robustness and scalability, enabling consistent spatial transcriptomics readouts across 200-130 
µm thick sections of the mouse brain (Fig. 1e). 131 
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Next, we leveraged the insights gained from developing Deep-STARmap to establish 132 
Deep-RIBOmap for investigating spatial translatomics in thick tissue samples. RIBOmap utilizes 133 
a tri-probe design strategy to selectively detect and amplify ribosome-bound mRNAs: in addition 134 
to the padlock and primer, an additional splint DNA probe hybridizes to ribosomal RNAs 135 
(rRNAs)45. Building upon this design, Deep-RIBOmap incorporates a “flanking linker sequence” 136 
at the 5′ end of both the primer and the splint DNA probe (Fig. 1f). An Acrydite-modified adapter 137 
covalently crosslinks to these flanking linkers, enabling the integration of the entire tri-probe set 138 
into polyacrylamide hydrogels during polymerization. Using the same workflow as Deep-139 
STARmap, Deep-RIBOmap achieves spatial translatomic profiling in thick tissue blocks. 140 

 141 
Deep-STARmap and Deep-RIBOmap in mouse brain with 1,017 genes 142 

To evaluate the scalability of Deep-STARmap and Deep-RIBOmap for high-throughput 143 
3D intact tissue transcriptomic and translatomic sequencing, we applied these techniques to 144 
thick mouse brain sections (Methods), targeting a curated list of 1,017 genes. This gene list was 145 
compiled from reported cell-type marker genes in adult mouse CNS single-cell RNA sequencing 146 
(scRNA-seq) datasets and spatial transcriptomic mouse brain atlases46–49. Gene identities 147 
encoded by five-nucleotide sequences on the padlock probes were read out through six rounds 148 
of sequencing by ligation with error rejection (SEDAL).  149 

We performed pairwise Deep-STARmap and Deep-RIBOmap mapping on adjacent 150-150 
µm-thick coronal sections of the mouse hemisphere, encompassing multiple brain regions 151 
(198,675 cells for Deep-STARmap and 164,029 cells for Deep-RIBOmap). To annotate cell 152 
types and align them with established nomenclature, we integrated our Deep-STARmap and 153 
Deep-RIBOmap with a published spatial brain atlas with curated cell typing annotations, using 154 
two different approaches independently. In the first approach, we used FuseMap50, a recently 155 
developed integration method that transfers cell type annotations leveraging both spatial and 156 
cellular information (Figure 2a). We also benchmarked the results using a second approach, 157 
where an established method, Harmony51, is used solely relying on single-cell gene expression 158 
information (Figure 2b). Both methods were applied independently to the same datasets and 159 
yielded consistent results: the confusion matrix of major cell type assignments showed that 160 
FuseMap’s cell types were highly concordant (82.4% matched labels) with those identified by 161 
the traditional single-cell sequencing integration method (Fig. 2c). Since FuseMap is a pre-162 
trained model that integrates multiple large-scale spatial transcriptomic datasets and cell-type 163 
annotations of the mouse brain50 and has demonstrated higher accuracy in sublevel transferred 164 
annotations, we proceeded with FuseMap for downstream analyses. 165 

FuseMap integration, followed by nearest-neighbor label transfer, identified 19 main cell 166 
types, including 9 neuronal, 5 glial, 1 immune, and 4 vascular cell clusters, all of which exhibited 167 
canonical marker genes and expected spatial distributions. Further hierarchical clustering within 168 
each main cluster resulted in 137 subclusters (Fig. 2d). These major and subcluster annotations 169 
were consistent with previously published brain atlas datasets (Fig. 2d)49,52,53. Our spatial 170 
transcription and translation patterns of canonical cell-type marker genes and neurotransmitter 171 
genes aligned well with previously published spatial transcriptomic and translatomic sequencing 172 
results (Extended Data Fig. 3a, b). Based on these cell typing results, we generated spatial cell 173 
maps of the imaged hemibrain region. Our analysis demonstrated consistent cell typing 174 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2024. ; https://doi.org/10.1101/2024.08.05.606553doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606553
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

between Deep-STARmap and Deep-RIBOmap in terms of gene expression patterns, cell-type 175 
composition, and spatial distribution of cell types (Fig. 2d and Extended Data Fig. 3c). 176 

By exploiting the single-cell and spatial resolution of paired Deep-STARmap and Deep-177 
RIBOmap datasets, we probed the heterogeneity in translational regulation across various cell 178 
types and brain regions. To investigate translationally regulated genes across different cell 179 
types, we first performed gene clustering using Deep-STARmap and Deep-RIBOmap profiles, 180 
identifying 18 gene modules (Extended Data Fig. 4a) with distinct functions and expression 181 
patterns (Extended Data Fig. 4b). Prior research has shown that non-neuronal cells, 182 
particularly oligodendrocytes, exhibit significant translational regulation45. We analyzed a gene 183 
module comprising 74 genes predominantly expressed across the oligodendrocyte lineage, from 184 
oligodendrocyte progenitor cells (OPCs) to mature subtypes (OLG1 and OLG2). Our findings 185 
recapitulate previous observations45, demonstrating that genes with higher translation efficiency 186 
in OPCs are linked to oligodendrocyte differentiation, while those with elevated translation 187 
efficiency in mature oligodendrocytes are associated with myelination (Extended Data Fig. 4c,). 188 

Beyond our extensive transcriptome analysis of the brain, we focused on investigating 189 
translational control at the subcellular level. Translation localized to the soma and processes in 190 
brain tissue plays a pivotal role in the organization and plasticity of neuronal and glial networks 191 
in response to physiological stimuli during neurodevelopment and memory formation (Extended 192 
Data Fig. 5a). To dissect this localized translation, we categorized Deep-RIBOmap reads in 3D 193 
thick tissue blocks into somata-localized reads (within the cell body, identified using Watershed 194 
3D54) and processes-localized reads (the rest of the reads). We then identified the top 10% of 195 
genes with the highest and lowest processes-to-somata ratios, designating them as enriched in 196 
processes and somata, respectively (Extended Data Fig. 5b, d). Gene ontology (GO) analysis 197 
indicated that genes enriched in processes are involved in cell projection, cell junction, and cell-198 
cell signaling, while those enriched in somata are associated with the extracellular matrix and 199 
various receptors (Extended Data Fig. 5c).  200 

Given the ability of Deep-STARmap and Deep-RIBOmap to measure multiple layers of 201 
cells, we next tested whether our methods could resolve volumetric patterns of cell organization 202 
in 3D. We performed a detailed analysis of the nearest-neighbor distances among various 203 
interneuron subtypes. Prior studies have demonstrated that interneurons of identical subtypes 204 
frequently form juxtaposed pairs in the mouse visual cortex. Our result substantiates these 205 
findings, indicating that an inhibitory neuron is predominantly adjacent to another of the same 206 
subtype (Lamp5, Vip, Sst, or Pvalb) rather than other inhibitory subtypes (Extended Data Fig. 207 
5e, f). This close spatial proximity might be related to the formation of gap junctions, which are 208 
crucial for synchronized firing patterns and may enhance visual responses in the cortex55–57. 209 

 210 
Single-cell morphology analysis of molecular cell types with Tetbow 211 

Understanding the brain function necessitates a detailed mapping of its neuroanatomy. 212 
Electron microscopy (EM) remains the gold standard for neuroanatomical studies, offering 213 
nanometer-scale resolution58,59. However, EM reconstructions are largely incompatible with 214 
molecular cell-typing, resulting in a trade-off between spatial resolution and molecular 215 
information. Additionally, the current analytical throughput of EM is inadequate for studying the 216 
long-range spatial organization of mouse and mammalian neurons. The integration of stochastic 217 
multicolor labeling techniques13,14,60 with spatial transcriptomic mapping offers a promising 218 
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solution. This combined approach enables the generation of comprehensive, co-profiling of 219 
transcriptome and morphology of individual neurons within densely labeled neural circuits. 220 

To simultaneously interrogate transcriptomic readouts and morphology within single cells 221 
by exploiting the unique advantages of thick tissue mapping, we integrated the stochastic 222 
multicolor genetic labeling tool, Tetbow14, into our workflow (Fig. 3a). Tetbow enables bright and 223 
high-resolution mapping of intermingled neurons in situ by tagging individual neurons with 224 
stochastic combinations of three cytoplasmically-localized fluorescent proteins. It has also been 225 
demonstrated that systemically delivered AAVs allow a more uniform distribution of labeled cells 226 
and color diversity61. Thus, we utilized the AAV-PHP.eB61 variant to co-administer three 227 
separate vectors encoding three fluorescent proteins, along with a tTA expression vector to 228 
activate combinatorial fluorescent protein expression across the entire brain. (Fig. 3b, 229 
Extended Data Fig. 6a). 230 

After tissue sectioning and embedding the probe sets into the hydrogel through 231 
polymerization, we performed imaging for the three Tetbow fluorescent proteins (FPs) along 232 
with DAPI, and observed bright, high-quality labeling of diverse neuronal cell types across all 233 
regions of the brain (Fig. 3a). Following morphology imaging, we digested the FPs from the 234 
sample using tissue clearing to enable subsequent transcriptome profiling of 1,017 genes. 235 
cDNA amplicons were constructed and sequenced as previously described. We additionally 236 
used DAPI as a fiducial marker for image registration between the two imaging modalities to 237 
correspond each FP-labeled neuron to its molecular subtype identity resolved by Deep-238 
STARmap (Extended Data Fig. 6b, c). 239 

To visualize the morphological diversity of labeled neurons, we established a semi-240 
automated morphological reconstruction pipeline in Bitplane Imaris. In total, we reconstructed 241 
the dendritic arbors of 40 principal cells and interneurons within the imaged volume, spanning 242 
across 34 molecular subtypes (Fig. 3c). We focused our study on the dendritic arbor to 243 
maximize the accuracy of our traces, as it has been demonstrated that fine axonal morphologies 244 
cannot be consistently and faithfully recapitulate without a membrane-localized marker60. In 245 
agreement with past findings62,63, we were able to resolve the characteristic dendritic trees of 246 
principal pyramidal neurons in different brain regions, including CA1 hippocampal 247 
(TEGLU_3,7,8,9,10,11,12,14,15,18,21,22,26,35,37,39,41) and layer V neocortical pyramidal 248 
neurons (TEGLU_4,5,6).  As expected, we resolved the most prominent dendritic structure of 249 
pyramidal neurons: the apical dendrite, which in CA1 hippocampal neurons extends towards the 250 
stratum lacunosum-moleculare (SLM), while in layer V neocortical neurons extend towards the 251 
cortical surface, both branching to form tree-like structures. Similarly, although cortical 252 
GABAergic inhibitory interneurons constitute a minority of the total neocortical neuronal 253 
population, we additionally confirmed that their morphology was resolvable with our approach, 254 
and that they exhibit a wide diversity of dendritic morphologies. In this study, we also elucidate 255 
the morphological diversity of several major subclasses of GABAergic neurons64, classified by 256 
their transcriptomic profiles, within the mouse cerebral cortex. In conclusion, we simultaneously 257 
profiled molecular cell types and morphologies at single-cell resolution in the adult mammalian 258 
brain in a scalable way. 259 
 260 
Deep-STARmap in human cutaneous squamous cell carcinoma 261 
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Deep-STARmap’s potential extends beyond neuroscience. One particularly promising 262 
application lies in the field of oncology, where a comprehensive understanding of the spatial 263 
organization of tumors, their microenvironments and immune interactions is crucial. Skin 264 
cancers account for ~90% of all human malignancies. The second-most prevalent skin cancer is 265 
cutaneous squamous cell carcinoma (cSCC), which arises from keratinocytes (the major cell 266 
type of the epidermis). Over 1 million new cSCC cases are diagnosed annually in the United 267 
States65, with an estimated 3.7% of cSCCs leading to metastatic disease and 1.5% of cases 268 
resulting in death from disease65. The leading risk factor for cSCC is chronic ultraviolet radiation 269 
(UVR) exposure, which has mutagenic effects on the skin. UVR-induced somatic mutations 270 
translate to a large burden of tumor neoantigens that are thought to be responsible for the high 271 
immunogenicity of cSCCs66. Of note, immunosuppressed patients are at a 65-100 fold higher 272 
risk of developing cSCC and are significantly more likely to be diagnosed with multiple and 273 
metastatic cSCCs due to a failure of cancer immunosurveillance67,68. Immunotherapies such as 274 
immune checkpoint inhibitors have shown promise in the treatment of advanced cSCC69, 275 
however many patients fail to respond and the biomarkers, precise cell subpopulations, and 276 
mechanisms underlying response versus resistance are not well understood. There is great 277 
interest in assessing the spatial organization and signaling between tumor, immune, and 278 
stromal cells in the native tumor microenvironment. Prior spatial studies of cSCC have been 279 
limited to thin or 2D tissue samples that do not capture the full complexity of tumor architecture, 280 
as human skin’s barrier function makes it resistant to enzymatic digestion and macromolecule 281 
penetration. Thus, we applied Deep-STARmap to more comprehensively assess tumor 282 
organization and tumor-immune cell interactions in cSCC. 283 

We curated a targeted list of 254 genes from previously published scRNA-seq studies of 284 
normal skin and skin cancers, including markers for common skin and immune cell types70–73. 285 
Deep-STARmap was performed on a 60-µm-thick section of human cSCC obtained from Mohs 286 
micrographic surgery (MMS), a sample that included both cSCC tumor and adjacent normal skin 287 
(Extended Data Fig. 7a). Following cell segmentation in 3D, data processing, and integration 288 
with a published cSCC scRNA-seq dataset71, we conducted cell typing and visualized cell 289 
clusters on the UMAP space based on single-cell RNA expression (Fig. 4a). 9 cell types were 290 
identified using known marker genes: keratinocytes, tumor-specific keratinocytes (TSKs), 291 
fibroblasts, endothelial cells, B cells, Langerhans cells, macrophages/dendritic cells (DCs), 292 
cytotoxic T cells, and regulatory T cells/exhausted T cells (Fig. 4a, b). Deep-STARmap enabled 293 
dissection of tumor spatial organization at single-cell resolution. Consistent with histologic tumor 294 
spatial patterns noted at the time of MMS, tumor-specific keratinocytes in this sample were 295 
primarily localized to the center of the tissue while non-tumor keratinocytes were localized to 296 
normal skin at the sample periphery (Fig. 4c). 297 
  298 
Mapping cell-cell interactions in human cSCC 299 

To characterize cell-cell interactions, we generated a mesh graph via Delaunay 300 
triangulation of cells and computed a near-range cell-cell adjacency matrix from spatial 301 
connectivity as previously described74,75. This allowed us to identify the nearest neighbors of 302 
each cell and to quantify the number of edges between cells of each type with cells of the same 303 
or other cell types. A heat map of cell type frequencies among first-tier neighbors revealed clear 304 
patterns of cell type-specific cell-cell communication (Fig. 4d). The same analysis was 305 
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performed on a thin 15-µm section of the cSCC sample taken within the same 3D volume 306 
(Extended Data Fig. 7b, c). As expected, more cell-cell contacts were detected in thick tissue 307 
(mean of 14.3 connected cells) compared to thin tissue (mean of 6.0 connected cells) 308 
(Extended Data Fig. 7d, e). 309 

Across the cSCC sample, strong interactions were detected among cells of the same 310 
type, with more same cell type interactions identified in thick tissue compared to pseudo-thin 311 
tissue (Extended Data Fig. 7b, c). Similarly, immune cell interactions with other immune cell 312 
types such as macrophages/DCs with T cells were more strongly detected in thick compared to 313 
pseudo-thin tissue (Extended Data Fig. 7b, c). Interestingly, tumor-specific keratinocytes only 314 
interacted strongly with two cell types: other tumor-specific keratinocytes or Langerhans cells 315 
(Fig. 4d, e). This was again more evident in thick tissue than thin tissue, demonstrating that the 316 
additional 3D morphological information provided by Deep-STARmap increases the sensitivity 317 
and robustness for quantifying cell-cell contacts. 318 

Langerhans cells (LCs) are the major resident antigen-presenting cells of the skin and 319 
are known to interact with keratinocytes via E-cadherin. LCs have been reported to encounter 320 
cSCC cells prior to other DC subtypes76 and stimulate cytotoxic CD8 T cells and NK cells more 321 
efficiently than other DC subsets77. In our cSCC sample, LCs interacted with T cells and tumor-322 
specific keratinocytes, but not normal keratinocytes outside the tumor, indicating tumor-specific 323 
immune responses (Fig. 4e). Taken together, our Deep-STARmap cSCC data identified a 324 
disease-relevant interaction between tumor-specific keratinocytes and Langerhans with more 325 
accurate and quantitative spatial distribution compared to thin tissue analyses. 326 
 327 
Discussion 328 
 In this study, we present Deep-STARmap and Deep-RIBOmap as novel imaging 329 
platforms for in situ transcriptomic and translatomic sequencing within intact tissue blocks. To 330 
enable robust performance and scalability over existing approaches, we introduced new 331 
strategies for thick tissue RNA imaging, including scalable probe synthesis, efficient probe 332 
anchoring, and robust cDNA crosslinking. These technological developments are pivotal for 333 
scaling up 3D in situ transcriptomic and translatomic profiling to encompass thousands of genes 334 
and across larger tissue regions. This scalability facilitates the integration of molecular 335 
characterizations with morphology mapping in neuroscience within thick tissue blocks. We 336 
demonstrated that Deep-STARmap and Deep-RIBOmap could profile the transcription and 337 
translation of over 1,000 genes within intact thick mouse brain tissue sections, significantly 338 
expanding the readouts from larger cell populations. Incorporating combinatorial fluorescence 339 
labeling using the Tetbow system allowed high-throughput in situ co-profiling of spatial 340 
transcriptomics and single-neuron morphology in thick tissue blocks, enabling multimodal 341 
mapping on a volumetric scale previously unattainable. For example, our platform is potentially 342 
compatible with MAPseq15 and BARseq16 to uncover the organizing principles of neuronal 343 
circuitry in thick tissue blocks. Moreover, our platform can be further applied to decode the 344 
spatial transcriptomics and translatomics of specific neurons with activity dynamics being 345 
collected by live imaging. 346 
 Our platform can also be generalized to study various heterogeneous cell populations in 347 
diverse tissues. We demonstrated that our 3D in situ profiling platform is adaptable for profiling 348 
difficult-to-digest human skin cancer samples, providing more accurate and quantitative 349 
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measurements of tumor-immune spatial patterns. Furthermore, we anticipate that our 3D in situ 350 
profiling platform will be highly useful for studying human organoid cultures, which are 351 
extensively used to replicate in vivo 3D organ development from 2D embryonic germ layers 352 
during organogenesis78. These organoids, typically measuring hundreds of micrometers, 353 
necessitate in situ profiling in both healthy and diseased states to advance our understanding of 354 
human tissue development, pathology, and therapeutic responses. 355 

In summary, 3D in-situ spatial transcriptomics and translatomics, exemplified by Deep-356 
STARmap and Deep-RIBOmap, offer a robust methodology for integrating molecular data with 357 
high-resolution cellular imaging. This comprehensive approach allows for detailed analysis of 358 
anatomical and functional dynamics within tissues. Such techniques are poised to substantially 359 
enhance our understanding of the underlying mechanisms of tissue functionality and pathology, 360 
thereby facilitating deeper scientific exploration and potential therapeutic innovations. 361 
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Methods 390 
Mouse lines 391 

All animal procedures adhered to the care guidelines approved by the Institutional 392 
Animal Care and Use Committee (IACUC) of the Broad Institute of MIT and Harvard, under 393 
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animal protocol #0255-08-19. For the experiments, C57/BL6 mice aged between 6 to 10 weeks 394 
were procured from The Jackson Laboratory (JAX). Mouse were housed with 4~5 animals per 395 
cage with arbitrary food and water in a room with 18~23�°C temperature and 40–60% humidity 396 
under a 12-h light-dark cycle.  397 
Human cutaneous squamous cell carcinoma samples 398 

Human cutaneous squamous cell carcinoma tissue was obtained from deidentified 399 
discarded hospital specimens approved under the Massachusetts General Hospital Research 400 
Committee/IRB protocol #2013P000093. 401 
Tetbow AAV injections 402 
 The AAV plasmids utilized in this study include pAAV-TRE-mTurquoise2-WPRE 403 
(Addgene #104110), pAAV-TRE-EYFP-WPRE (Addgene #104111), pAAV-TRE-tdTomato-404 
WPRE (Addgene #104112), and pAAV-ihSyn1-tTA (Addgene #99120). Tetbow components 405 
were packaged into AAV.PHP.eB as previously described61. In brief, for each capsid, HEK 293T 406 
cells (ATCC CRL-3216) were transfected with a combination of pAAV plasmid and two AAV 407 
packaging plasmids (kiCAP-AAV-PHP.eB and pHelper) in a 1:4:2 weight ratio, using 408 
polyethylenimine, with a total of 40 μg of DNA per 150-mm culture dish. Fluorescence 409 
expression, when applicable, was evaluated via microscopy, and the media was refreshed 20-410 
24 hours post-transfection. Viral particles were collected 72 hours post-transfection from both 411 
the cells and the medium by centrifugation, forming cell pellets. These cell pellets were then 412 
resuspended in a buffer containing 500 mM NaCl, 40 mM Tris, 10 mM MgCl2, pH ~10 and 100 413 
U/mL of salt-activated nuclease (SAN, 25 U/μL, Arcticzymes, 70910-202) and incubated at 37°C 414 
for 1.5 hour. Following incubation, the cell lysates were subjected to centrifugation at 2,000g to 415 
remove cellular debris. The viral particles were then isolated through a series of iodixanol 416 
gradient steps (15%, 25%, 40%, and 60%). Viruses were collected from both the 40/60% 417 
interface and the 40% iodixanol layer. The concentration of the viral particles and buffer change 418 
were achieved using Pierce™ Protein Concentrators (Thermo Scientific, 88528), and they were 419 
subsequently suspended in sterile phosphate-buffered saline (PBS). To quantify viral titers, viral 420 
genomes were measured using quantitative PCR (qPCR). The procedure included treating 421 
samples with DNase I (Roche Diagnostics, 4716728001) to eliminate non-packaged DNA and 422 
subsequently with proteinase K (Roche Diagnostics, 03115828001) to digest the viral capsid, 423 
thereby exposing the viral genomes for qPCR quantification. A linearized genome plasmid 424 
served as the reference standard. The viral titers for tTA, tdTomato, EYFP, and mTurquoise2 425 
were 2.15 × 1013, 2.31 × 1013, 3.04 × 1013, and 2.63 × 1013 vg/ml, respectively. 426 
 Intravenous administration of AAV.PHP.eB mixture (1 × 1011 vg tTA, 3.33 × 1011 vg 427 
tdTomato, 3.33 × 1011 vg EYFP, 3.33 × 1011 vg mTurquoise2) was performed via injection into 428 
the retro-orbital sinus of adult female C57BL/6 mice (8-10 weeks of age). Twenty-eight days 429 
post-injection, the mice were anesthetized with isoflurane. Transcardial perfusion was carried 430 
out, initially with 50 mL of cold PBS, followed by 50 mL of 4% PFA. The entire brain was then 431 
post-fixed in 4% PFA at 4°C for 3 hours. Subsequently, the brain was washed multiple times 432 
with PBS and placed in a 30% sucrose solution (in PBS) at 4°C overnight or until it had sunk. 433 
Finally, the brain was embedded in O.C.T. (Fisher, 23-730-571) and frozen in liquid nitrogen 434 
and stored at -80 °C. Thick tissue sections were prepared and carefully transferred into 435 
pretreated glass-bottom plates. 436 
Chemicals and enzymes 437 
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Chemicals and enzymes listed as name (supplier, catalog number): 12-Well Plate, No. 438 
1.5 Coverslip, 14 mm Glass Diameter, Uncoated (MatTek, P12G-1.5-14-F); PlusOne Bind-439 
Silane (Sigma, 17-1330-01); 16% PFA, EM grade (Electron Microscope Sciences, 15710-S); 440 
Methanol (Sigma-Aldrich, 34860-1L-R); Tween-20, 10% solution (Teknova, T0710); Triton-X100, 441 
10% solution (Sigma-Aldrich, 93443-100ML); 10X PBS (Thermo Fisher, 70011044); 1X PBS 442 
(Thermo Fisher, 10010049); 20X SSC buffer (Thermo Fisher, 15557044); Methacrylic acid N-443 
hydroxysuccinimide ester, 98% (Sigma-Aldrich, 730300-1G); Acrylamide solution, 40% (Bio-Rad, 444 
161-0140); Bis Solution, 2% (Bio-Rad, 161-0142); Ammonium persulfate (Sigma-Aldrich, 445 
A3678-100G); N,N,N′,N′-Tetramethylethylenediamine (Sigma-Aldrich, T9281-50ML); OmniPur 446 
SDS, 20% (Calbiochem/Sigma, 7990-200ML); NeuroTrace Fluorescent Nissl Stains, yellow 447 
(Molecular Probes/Fisher Scientific, N21480); COVER GLASS CIRCLE, 12mm, #2, 1oz/BX 448 
(Electron Microscopy Sciences, 72226-01); Gel Slick Solution (Lonza, 50640); Formamide, 449 
Deionized (Sigma aldrich, 4650-500ML); Antarctic Phosphatase Reaction Buffer (New England 450 
Biolabs, B0289S); Antarctic Phosphatase (New England Biolabs, M0289L); BSA (New England 451 
Biolabs, B9200S); Glycine (Sigma aldrich, 50046-250G); Ribonucleoside Vanadyl Complex 452 
(New England Biolabs, S1402S); DMSO, anhydrous (Invitrogen/Thermo Fisher, D12345); 453 
DNase/RNase-Free Distilled Water (Invitrogen/Thermo Fisher, 10977023); 4’,6-diamidino-2-454 
phenylindole (DAPI)  (Thermo Fisher, 62248); Acetic acid (Sigma-Aldrich, A6283-100ML); Poly-455 
D-Lysine (Thermo Fisher, A3890401); dNTP mix (thermofisher, 18427089); 5-(3-aminoallyl)-456 
dUTP (Invitrogen, AM8439); BSPEG9 (thermofisher, 21582); Proteinase K Solution (Invitrogen, 457 
25530049); SUPERase•In RNase Inhibitor (Thermo Fisher, AM2696); T4 DNA Ligase (Thermo 458 
Fisher, EL0012); Phi29 DNA Polymerase (Thermo Fisher, EP0094); Yeast tRNA (Thermo 459 
Fisher, AM7119) 460 
Deep-STARmap and Deep-RIBOmap probe design 461 

The Deep-STARmap and Deep-RIBOmap padlock and primer probes were developed 462 
based on the methodologies outlined in Wang et al. and Zeng et al., with specific 463 
modifications30,45. Each Deep-STARmap and Deep-RIBOmap primer incorporated a “flanking 464 
linker sequence” (CCTACCAGTACGACGTATTTAGCAA) at the 5′ end to enable hybridization 465 
with an Acrydite-modified oligonucleotide. The Deep-RIBOmap additionally required a splint 466 
probe, composed of three segments: a 25-nucleotide sequence at the 5′ end complementary to 467 
the 18S ribosomal RNA (rRNA), a stretch of 50 deoxyadenosine nucleotides (dA), and a 12-468 
nucleotide padlock template at the 3′ end. To prevent the 3′ terminus of the splint probes from 469 
serving as an RCA primer, a 3′ Inverted dT modification was included. Additionally, each splint 470 
probe incorporated a “flanking linker sequence” (CCTACCAGTACGACGTATTTAGCAA) at the 471 
5′ end to facilitate the hybridization process with the Acrydite-modified oligonucleotide. 472 
Adapter and primer pre-treatment 473 

The CNVK-containing adapter ([5Acryd]GCTA[cnvK]ATACGTCGTACTGGTAGG[Inv-dT], 474 
ordered from Gene Link with PAGE purification) undergoes rapid photo cross-linking to the 475 
complementary strand through an adjacent pyrimidine base upon UV irradiation. The irradiation 476 
process was conducted using the Boekel UV Crosslinker (234100) equipped with 368 nm-477 
wavelength bulbs (Boekel Part Number 920-0307). The adapter to primer was maintained at a 478 
molar ratio of 5:1. 479 
Deep-STARmap and Deep-RIBOmap protocol 480 
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Glass-bottom 12-well plates (Mattek, P12G-1.5-14-F) were treated with oxygen plasma 481 
using the Anatech Barrel Plasma System at 100W and 40% O2 for 5 min. Following this, the 482 
plates were immersed in a 1% methacryloxypropyltrimethoxysilane (Bind-Silane) solution for 60 483 
min at room temperature. The plates then underwent three consecutive ethanol washes and 484 
were allowed to air dry. Subsequently, a 0.1 mg/mL Poly-D-lysine solution was applied to the 485 
plates for 1 hour, followed by three rinses with distilled water.  486 

Tissue slices were transferred and adhered to pre-treated glass-bottom 12-well plates. 487 
The samples were permeabilized using 1 mL of pre-chilled methanol at -20°C for one hour. 488 
During this period, PBST solution, comprising 0.1% Triton-X 100 in PBS, was prepared. The 489 
samples were then washed with 500 µL of PBSTR (0.1 U/mL SUPERase·In in PBST) for 30 min. 490 
This was followed by a quenching step with 500 µL of quenching solution (1 mg/mL Yeast tRNA, 491 
100 mM Glycine in PBSTR) at room temperature for 30 minutes, followed by another 30-min 492 
wash with PBSTR. Subsequently, hybridization buffers were prepared. The base composition of 493 
the hybridization buffer included 2× SSC, 10% formamide, 1% Triton-X 100, 20 mM RVC, 0.1 494 
mg/mL yeast tRNA, 0.1 U/µL SUPERase·In, and 0.2% SDS. For the Deep-STARmap samples, 495 
this buffer was supplemented with pooled Deep-STARmap padlock and pre-treated primer at a 496 
concentration of 5 nM per oligo. For the Deep-RIBOmap samples, the hybridization buffer 497 
additionally contained 100 nM of pre-treated splint probe for RIBOmap. The samples were 498 
incubated in 300 µL of hybridization buffer in a 40°C humidified oven with gentle shaking for 36 499 
hours. After incubation, the samples were washed for 30 min with PBSTR, followed by a 30-min 500 
wash in high salt buffer (4× SSC in PBSTR) at 37°C. Finally, the samples were washed once 501 
more with PBSTR at 37°C. 502 

To cast the tissue-hydrogel hybrid, the samples were first incubated with monomer 503 
buffer (4% acrylamide, 0.2% bis-acrylamide, 2× SSC) supplemented with 0.2% TEMED and 504 
0.25% VA-044 at 4°C for 60 min. Following incubation, the buffer was aspirated, and 55 µL of a 505 
polymerization mixture (0.2% TEMED, 0.2% ammonium persulfate, and 0.25% VA-044 in 506 
monomer buffer) was added to the center of the sample and immediately covered with a Gel 507 
Slick-coated coverslip. The polymerization process was conducted in a 40°C N2 oven for 90 min. 508 
Subsequently, the sample was washed with PBSTR three times for 15 min each. For Tetbow 509 
samples, the tissue was stained with DAPI for 3 hours and then immersed in a washing and 510 
imaging buffer (10% formamide in 2× SSC buffer) containing 0.1 U/µL SUPERase·In RNase 511 
inhibitor. Confocal images of Tetbow fluorescent proteins (tdTomato, EYFP, and mTurquoise2) 512 
and DAPI were acquired using an inverted confocal microscope, Leica TCS SP8 (version 513 
3.5.5.19976), equipped with a 405 nm and 442 nm diode, a white light laser, HyD detectors, and 514 
a 25× water-immersion objective (NA 0.95). The voxel size for imaging was 0.32 μm × 0.32 μm 515 
× 0.70 μm. The following wavelengths were used for imaging: 405 nm for DAPI, 442 nm for 516 
mTurquoise2, 506 nm for EYFP, and 550 nm for tdTomato. 517 

The tissue-gel hybrids were then digested with 1 mL Proteinase K mixture (0.4 mg/mL 518 
Proteinase K in 2× SSC and 1% SDS) at 37°C for overnight, then washed by PBSTR 3 times for 519 
30 min each. The sample was then incubated in ligation mixture (0.25 U/µL T4 DNA ligase, 520 
1:100 BSA, 0.2 U/µL SUPERase·In RNase inhibitor) at room temperature overnight with gentle 521 
shaking and then washed with PBSTR three times for 30 mins each. Then the sample was 522 
incubated with 400 μl rolling-circle amplification mixture (0.5 U/µL Phi29 DNA polymerase, 250 523 
µM dNTP, 20 µM 5-(3-aminoallyl)-dUTP, 1:100 BSA and 0.2U/µL of SUPERase·In RNase 524 
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inhibitor in 1X Phi29 buffer) at 4°C for 60 min for equilibrium before incubating at 30 °C for 8-14 525 
hours for amplification and then washed with PBST 3 times for 30 mins each. The samples were 526 
then treated with 20 mM methacrylic acid N-hydroxysuccinimide ester in 100 mM sodium 527 
bicarbonate buffer for 4 hours to overnight at room temperature. Following the exact same 528 
procedures casting tissue-hydrogel hybrid, cDNA amplicons were re-embedded with 2% 529 
acrylamide, 0.05% bis-acrylamide to enable cDNA amplicon crosslinking in the tissue-hydrogel 530 
setting, and such cross-linking is essential to maintain the position and integrity of the amplicons 531 
through many cycles of detection. Samples were stored in PBST or wash and imaging buffer at 532 
4°C until imaging and sequencing. 533 
 Before SEDAL, the samples were treated with the dephosphorylation mixture (0.25 U/μL 534 
Antarctic Phosphatase, 1× BSA, in 1× Antarctic Phosphatase buffer) at 37 °C for 4 hours and 535 
washed by PBST three times for 30 min each. Each sequencing cycle began with treating the 536 
sample three times, 15 min each, with the stripping buffer (60% formamide and 0.1% Triton X-537 
100 in water) at room temperature, followed by washing with PBST three times for 15 min each. 538 
Then the samples were incubated with a at minimal 300 µL sequencing-by-ligation mixture (0.2 539 
U/μL T4 DNA ligase, 1× BSA, 10 μM reading probe, and 5 μM fluorescent decoding 540 
oligonucleotides in 1× T4 DNA ligase buffer) at room temperature for overnight, followed by 541 
rinsing with washing and imaging buffer three times for 10 min each before imaging. Images 542 
were acquired using the same Leica TCS SP8 with a 25× water-immersion objective (NA 0.95). 543 
The voxel size for imaging was 0.32 μm × 0.32 μm × 0.70 μm. For each round, images were 544 
acquired with Alexa 488, 546, 594, and 647 illumination. DAPI was dissolved in wash and 545 
imaging buffer and used for nuclei staining for 3 hours before the first round. The DAPI signal 546 
was collected at the first cycle of imaging with an additional 405 nm wavelength. Six cycles of 547 
imaging were performed to detect 1017 genes. 548 
Data processing for Deep-STARmap and Deep-RIBOmap. 549 

Deconvolution: Image deconvolution was achieved with Huygens Essential version 550 
23.4.0 (Scientific Volume Imaging, The Netherlands, http://svi.nl). We applied the classic 551 
maximum likelihood estimation method with a signal-to-noise ratio of 10 and 10 iterations. 552 

Image registration, spot calling, and barcode filtering:  For image registration, spot 553 
calling, and barcode filtering, we utilized our custom software package, Starfinder 554 
(https://github.com/wanglab-broad/starfinder). This software corrects chromatic aberrations, 555 
enhances signals, registers images, and extracts positive reads (amplicons). Adjustments were 556 
made to accommodate the large datasets generated by thick tissue profiling. In short, image 557 
clarity is enhanced by intensity normalization and histogram equalization where images in the 558 
first sequencing round are used as reference. To ensure accurate and reliable identification of 559 
each cDNA amplicon’s barcode, we utilized a two-step registration process. First, we conducted a 560 
global registration using 3D fast Fourier transform. Next, we applied a non-rigid registration using 561 
MATLAB v.2023b’s ‘imregdemons’ function. This method adjusts for any shifts and distortions 562 
between imaging sessions, ensuring precise alignment of the same amplicon’s positions across 563 
different sequencing rounds. Since the amplicon size is larger than amplicons in thin tissue, we 564 
applied a medium filter with ‘medfilt2’ function in a 3-by-3 or 2-by-2 (depending on the average 565 
amplicon size) neighborhood around the corresponding pixel in the input image. Dots with 566 
intensity at their centroids less than the threshold were removed. The process of identifying 567 
individual amplicons in 3D was carried out using the ‘imregionalmax’ function in MATLAB to find 568 
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local maxima within the images from the first sequencing round. The dominant color for each 569 
amplicon across all rounds of sequencing was then determined by estimating the amplicon size 570 
and integrating the voxel volume intensity in each channel. Each dot’s color composition was 571 
represented by an L2-normalized vector with four elements, and dots showing multiple 572 
maximum values within this vector were excluded. Initial filtering of dots was based on quality 573 
scores, which were computed as the average of –log(color vector value in the dominant channel) 574 
across all sequencing rounds. This metric quantified the degree to which each dot in each 575 
sequencing round was derived from a single color rather than a blend of colors. Subsequently, 576 
the barcode codebook was translated into color space, following the expected color sequence of 577 
the two-base encoded barcode DNA sequence. Only dots that met the quality threshold and had 578 
a matching barcode sequence in the codebook were retained, with all others being discarded. 579 
The 3D physical locations and gene identities of these filtered dots were then preserved for 580 
subsequent analysis. 581 

3D segmentation: 3D image segmentation was performed based on the DAPI staining 582 
image and the composite image containing amplicon channels to create reference 583 
segmentations as previously described with minor adjustments45,74,79. Unlike thin tissue analysis, 584 
where images are stitched before segmentation, this approach is impractical for thick tissue 585 
profiling because the stitched files are too large for effective segmentation. Therefore, 586 
segmentation was performed on each field of view (FOV) individually, and the identified 587 
amplicons were stitched afterward. For each FOV, images targeting different cellular 588 
compartments were first processed using a median filter and then binarized with an 589 
automatically determined threshold in FIJI. Distance Transformed Watershed 3D was 590 
subsequently applied to generate a 3D segmentation mask for each cellular region. Connected 591 
components (objects) with fewer than 500 voxels were removed from the binary image. Finally, 592 
the images were dilated using a disk structure element with a radius of 10. 593 

Reads assignment and stitching: Filtered amplicons overlapping each segmented cell 594 
region in 3D were assigned to their respective regions to compute a per-cell gene expression 595 
matrix. The TileConfiguration file generated from FIJI grid stitching was then used to merge 596 
detected amplicon signals from each FOV, ensuring the removal of duplicated cells and 597 
associated reads. Further strategies to exclude low-quality cells were applied as previously 598 
described in thin tissue analysis30,45,74. 599 

Cell type classification via FuseMap: Cell type classification was performed using 600 
transfer learning with a pretrained FuseMap model, as previously described50. This model maps 601 
and annotates new query data with cell-type labels based on cell embeddings. In this study, a 602 
previously published brain spatial atlas served as the reference for training the FuseMap model, 603 
while thick tissue sections were used as the query datasets for annotation. 604 

Harmony integration: To benchmark FuseMap performance, Harmony integration was 605 
employed. First, Deep-STARmap data were combined with Deep-RIBOmap data after 606 
preprocessing, followed by batch correction using the pp.combat function. Harmony integration 607 
was then applied to the combined dataset to create a joint PCA embedding80. A k-nearest 608 
neighbor (KNN) classifier was trained on the integrated PC space using cosine distance as the 609 
metric. This classifier was used in a label transfer process to annotate each cell based on its 610 
neighboring reference cells in the KNN graph. The label transfer was performed for the 611 
annotation at the “Rank4_Refine” level. 612 
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Gene Ontology (GO) enrichment analysis 613 
GO enrichment analysis was conducted using the DAVID database 614 

(https://david.ncifcrf.gov/)81,82. gProfiler (https://biit.cs.ut.ee/gprofiler/gost) was utilized for GO 615 
analysis. Enriched GO terms were selected from biological processes (BP) and cellular 616 
components (CC) with FDR < 0.05 for both cell-type-resolved Deep-STARmap and Deep-617 
RIBOmap profiles, as well as for somata-enriched translation genes and processes-enriched 618 
translation genes. 619 
Gene Clustering 620 

The gene expression (log2_norm1e4) of the 4 samples were first averaged across the 621 
cell types within each sample, respectively. Subsequently, the average expression values were 622 
standardized by calculating the Z-score within each sample. The standardized vectors were 623 
merged and clustered with the Leiden algorithm from Scanpy83 (Version 1.9.3).  624 
Near-range cell–cell adjacency analysis 625 

Near-range cell-cell adjacency analysis was performed to quantify the number of edges 626 
between cells of each main cell type and cells of other main cell types, as previously 627 
described75,84. The adjacency value between cell types A and B was defined as the number of 628 
A-B edges within a 1-hop neighborhood on the Delaunay tissue graph, calculated using 629 
scipy.spatial. Raw counts were normalized against a null distribution created by 1,000 random 630 
spatial shifts of cells. 631 
Morphological reconstructions 632 

3D reconstructions of single-neuron morphologies were generated from 3D image stacks 633 
using Imaris (Oxford Instruments; v. 9.7.2-10.1.1). Dendritic arbors of Tetbow-labeled neurons 634 
were initially reconstructed semi-automatically with the filament tracer in autodepth mode. 635 
These reconstructions were then extensively manually corrected and curated using the filament 636 
tracer in manual mode. A fully connected neuronal structure was reconstructed wherever 637 
possible while remaining faithful to the image data. Any processes that could not be definitively 638 
linked to the main structure were left unconnected. 639 
 640 
 641 
 642 

 643 
 644 
 645 
 646 
 647 
 648 

Reference 649 
1. Tabula Sapiens Consortium* et al. The Tabula Sapiens: A multiple-organ, single-cell 650 

transcriptomic atlas of humans. Science 376, eabl4896 (2022). 651 
2. Elmentaite, R., Domínguez Conde, C., Yang, L. & Teichmann, S. A. Single-cell atlases: 652 

shared and tissue-specific cell types across human organs. Nat. Rev. Genet. 23, 395–410 653 
(2022). 654 

3. Hwang, B., Lee, J. H. & Bang, D. Single-cell RNA sequencing technologies and 655 
bioinformatics pipelines. Exp. Mol. Med. 50, 1–14 (2018). 656 

4. Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of 657 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2024. ; https://doi.org/10.1101/2024.08.05.606553doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606553
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023). 658 
5. Brar, G. A. & Weissman, J. S. Ribosome profiling reveals the what, when, where and how 659 

of protein synthesis. Nat. Rev. Mol. Cell Biol. 16, 651–664 (2015). 660 
6. Ingolia, N. T. Ribosome profiling: new views of translation, from single codons to genome 661 

scale. Nat. Rev. Genet. 15, 205–213 (2014). 662 
7. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-663 

cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023). 664 
8. Zhuang, X. Spatially resolved single-cell genomics and transcriptomics by imaging. Nat. 665 

Methods 18, 18–22 (2021). 666 
9. Lein, E., Borm, L. E. & Linnarsson, S. The promise of spatial transcriptomics for 667 

neuroscience in the era of molecular cell typing. Science 358, 64–69 (2017). 668 
10. Liao, J., Lu, X., Shao, X., Zhu, L. & Fan, X. Uncovering an Organ’s Molecular Architecture 669 

at Single-Cell Resolution by Spatially Resolved Transcriptomics. Trends Biotechnol. 39, 670 
43–58 (2021). 671 

11. Clarifying Tissue Clearing. Cell 162, 246–257 (2015). 672 
12. Ueda, H. R. et al. Tissue clearing and its applications in neuroscience. Nat. Rev. Neurosci. 673 

21, 61–79 (2020). 674 
13. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in 675 

the nervous system. Nature 450, 56–62 (2007). 676 
14. Sakaguchi, R., Leiwe, M. N. & Imai, T. Bright multicolor labeling of neuronal circuits with 677 

fluorescent proteins and chemical tags. Elife 7, (2018). 678 
15. Kebschull, J. M. et al. High-Throughput Mapping of Single-Neuron Projections by 679 

Sequencing of Barcoded RNA. Neuron 91, 975–987 (2016). 680 
16. Chen, X. et al. High-Throughput Mapping of Long-Range Neuronal Projection Using In Situ 681 

Sequencing. Cell 179, 772–786.e19 (2019). 682 
17. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. 683 

Nature 551, 232–236 (2017). 684 
18. Manz, K. M., Siemann, J. K., McMahon, D. G. & Grueter, B. A. Patch-clamp and multi-685 

electrode array electrophysiological analysis in acute mouse brain slices. STAR Protoc 2, 686 
100442 (2021). 687 

19. Li, Q. et al. Multimodal charting of molecular and functional cell states via in situ electro-688 
sequencing. Cell 186, 2002–2017.e21 (2023). 689 

20. Gouwens, N. W. et al. Integrated Morphoelectric and Transcriptomic Classification of 690 
Cortical GABAergic Cells. Cell 183, 935–953.e19 (2020). 691 

21. Fuzik, J. et al. Integration of electrophysiological recordings with single-cell RNA-seq data 692 
identifies neuronal subtypes. Nat. Biotechnol. 34, 175–183 (2016). 693 

22. Cadwell, C. R. et al. Electrophysiological, transcriptomic and morphologic profiling of single 694 
neurons using Patch-seq. Nat. Biotechnol. 34, 199–203 (2016). 695 

23. Xu, S. et al. Behavioral state coding by molecularly defined paraventricular hypothalamic 696 
cell type ensembles. Science 370, (2020). 697 

24. Yang, W. & Yuste, R. In vivo imaging of neural activity. Nat. Methods 14, 349–359 (2017). 698 
25. Bugeon, S. et al. Publisher Correction: A transcriptomic axis predicts state modulation of 699 

cortical interneurons. Nature 609, E10 (2022). 700 
26. Almagro, J., Messal, H. A., Zaw Thin, M., van Rheenen, J. & Behrens, A. Tissue clearing to 701 

examine tumour complexity in three dimensions. Nat. Rev. Cancer 21, 718–730 (2021). 702 
27. Fang, R. et al. Three-dimensional single-cell transcriptome imaging of thick tissues. Elife 703 

12, (2023). 704 
28. Wang, Y. et al. EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular 705 

organization. Cell 184, 6361–6377.e24 (2021). 706 
29. Gandin, V. et al. Deep-tissue spatial omics: Imaging whole-embryo transcriptomics and 707 

subcellular structures at high spatial resolution. bioRxiv (2024) 708 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2024. ; https://doi.org/10.1101/2024.08.05.606553doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606553
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

doi:10.1101/2024.05.17.594641. 709 
30. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional 710 

states. Science 361, (2018). 711 
31. Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 712 

497, 332–337 (2013). 713 
32. Kanatani, S. et al. Whole-Brain Three-Dimensional Imaging of RNAs at Single-Cell 714 

Resolution. bioRxiv 2022.12.28.521740 (2022) doi:10.1101/2022.12.28.521740. 715 
33. Clarke, D. N., Formery, L. & Lowe, C. J. See-Star: a versatile hydrogel-based protocol for 716 

clearing large, opaque and calcified marine invertebrates. Evodevo 15, 8 (2024). 717 
34. Choi, H. M. T. et al. Programmable in situ amplification for multiplexed imaging of mRNA 718 

expression. Nat. Biotechnol. 28, 1208–1212 (2010). 719 
35. Choi, H. M. T., Beck, V. A. & Pierce, N. A. Next-Generation in Situ Hybridization Chain 720 

Reaction: Higher Gain, Lower Cost, Greater Durability. (2014) doi:10.1021/nn405717p. 721 
36. Shah, S. et al. Single-molecule RNA detection at depth by hybridization chain reaction and 722 

tissue hydrogel embedding and clearing. Development 143, 2862–2867 (2016). 723 
37. Choi, H. M. T. et al. Mapping a multiplexed zoo of mRNA expression. Development 143, 724 

3632–3637 (2016). 725 
38. Choi, H. M. T. et al. Third-generation hybridization chain reaction: multiplexed, quantitative, 726 

sensitive, versatile, robust. Development 145, (2018). 727 
39. Yang, B. et al. Single-cell phenotyping within transparent intact tissue through whole-body 728 

clearing. Cell 158, 945–958 (2014). 729 
40. Sylwestrak, E. L., Rajasethupathy, P., Wright, M. A., Jaffe, A. & Deisseroth, K. Multiplexed 730 

Intact-Tissue Transcriptional Analysis at Cellular Resolution. Cell 164, 792–804 (2016). 731 
41. Yoshimura, Y. & Fujimoto, K. Ultrafast reversible photo-cross-linking reaction: toward in situ 732 

DNA manipulation. Org. Lett. 10, 3227–3230 (2008). 733 
42. Yoshimura, Y., Ohtake, T., Okada, H. & Fujimoto, K. A new approach for reversible RNA 734 

photocrosslinking reaction: application to sequence-specific RNA selection. Chembiochem 735 
10, 1473–1476 (2009). 736 

43. Fujimoto, K., Konishi-Hiratsuka, K., Sakamoto, T. & Yoshimura, Y. Site-specific cytosine to 737 
uracil transition by using reversible DNA photo-crosslinking. Chembiochem 11, 1661–1664 738 
(2010). 739 

44. Chen, F. et al. Nanoscale imaging of RNA with expansion microscopy. Nat. Methods 13, 740 
679–684 (2016). 741 

45. Zeng, H. et al. Spatially resolved single-cell translatomics at molecular resolution. Science 742 
380, eadd3067 (2023). 743 

46. Zeisel, A. et al. Molecular Architecture of the Mouse Nervous System. Cell 174, 999–744 
1014.e22 (2018). 745 

47. Saunders, A. et al. Molecular Diversity and Specializations among the Cells of the Adult 746 
Mouse Brain. Cell 174, 1015–1030.e16 (2018). 747 

48. Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. 748 
Nature 563, 72–78 (2018). 749 

49. Shi, H. et al. Publisher Correction: Spatial atlas of the mouse central nervous system at 750 
molecular resolution. Nature 625, E6 (2024). 751 

50. He, Y. et al. Towards a universal spatial molecular atlas of the mouse brain. bioRxiv (2024) 752 
doi:10.1101/2024.05.27.594872. 753 

51. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with 754 
Harmony. Nat. Methods 16, 1289–1296 (2019). 755 

52. Dong, H. W. & The Allen Institute for Brain Science. The Allen Reference Atlas, (Book + 756 
CD-ROM): A Digital Color Brain Atlas of the C57BL/6J Male Mouse. (Wiley, 2008). 757 

53. Website. Allen Mouse Brain Atlas https://mouse.brain-map.org/ (2004). 758 
54. Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: integrated library and plugins 759 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2024. ; https://doi.org/10.1101/2024.08.05.606553doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606553
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

for mathematical morphology with ImageJ. Bioinformatics 32, 3532–3534 (2016). 760 
55. Amitai, Y. et al. The spatial dimensions of electrically coupled networks of interneurons in 761 

the neocortex. J. Neurosci. 22, 4142–4152 (2002). 762 
56. Ebina, T. et al. 3D clustering of GABAergic neurons enhances inhibitory actions on 763 

excitatory neurons in the mouse visual cortex. Cell Rep. 9, 1896–1907 (2014). 764 
57. Gibson, J. R., Beierlein, M. & Connors, B. W. Two networks of electrically coupled inhibitory 765 

neurons in neocortex. Nature 402, 75–79 (1999). 766 
58. Xu, C. S. et al. Enhanced FIB-SEM systems for large-volume 3D imaging. Elife 6, (2017). 767 
59. Scheffer, L. K. et al. A connectome and analysis of the adult central brain. Elife 9, (2020). 768 
60. Cai, D., Cohen, K. B., Luo, T., Lichtman, J. W. & Sanes, J. R. Improved tools for the 769 

Brainbow toolbox. Nat. Methods 10, 540–547 (2013). 770 
61. Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central 771 

and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017). 772 
62. Spruston, N. Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. 773 

Neurosci. 9, 206–221 (2008). 774 
63. Jiang, S. et al. Anatomically revealed morphological patterns of pyramidal neurons in layer 775 

5 of the motor cortex. Sci. Rep. 10, 7916 (2020). 776 
64. Zeng, H. What is a cell type and how to define it? Cell 185, 2739–2755 (2022). 777 
65. Guzman, A. K., Schmults, C. D. & Ruiz, E. S. Squamous Cell Carcinoma: An Update in 778 

Staging, Management, and Postoperative Surveillance Strategies. Dermatol. Clin. 41, 1–11 779 
(2023). 780 

66. Borden, E. S. et al. Neoantigen Fitness Model Predicts Lower Immune Recognition of 781 
Cutaneous Squamous Cell Carcinomas Than Actinic Keratoses. Front. Immunol. 10, 2799 782 
(2019). 783 

67. Levine, D. E., Karia, P. S. & Schmults, C. D. Outcomes of Patients With Multiple Cutaneous 784 
Squamous Cell Carcinomas: A 10-Year Single-Institution Cohort Study. JAMA Dermatol. 785 
151, 1220–1225 (2015). 786 

68. Gonzalez, J. L. et al. Multiple Cutaneous Squamous Cell Carcinoma in Immunosuppressed 787 
vs Immunocompetent Patients. JAMA Dermatol. 155, 625–627 (2019). 788 

69. Migden, M. R. et al. PD-1 Blockade with Cemiplimab in Advanced Cutaneous Squamous-789 
Cell Carcinoma. N. Engl. J. Med. 379, 341–351 (2018). 790 

70. Joost, S. et al. The Molecular Anatomy of Mouse Skin during Hair Growth and Rest. Cell 791 
Stem Cell 26, 441–457.e7 (2020). 792 

71. Ji, A. L. et al. Multimodal Analysis of Composition and Spatial Architecture in Human 793 
Squamous Cell Carcinoma. Cell 182, 1661–1662 (2020). 794 

72. Jerby-Arnon, L. et al. A Cancer Cell Program Promotes T Cell Exclusion and Resistance to 795 
Checkpoint Blockade. Cell 175, 984–997.e24 (2018). 796 

73. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell 797 
RNA-seq. Science 352, 189–196 (2016). 798 

74. Shi, H. et al. Spatial atlas of the mouse central nervous system at molecular resolution. 799 
Nature 622, 552–561 (2023). 800 

75. He, Y. et al. ClusterMap for multi-scale clustering analysis of spatial gene expression. Nat. 801 
Commun. 12, 5909 (2021). 802 

76. Fujita, H. et al. Langerhans cells from human cutaneous squamous cell carcinoma induce 803 
strong type 1 immunity. J. Invest. Dermatol. 132, 1645–1655 (2012). 804 

77. Klechevsky, E. et al. Functional specializations of human epidermal Langerhans cells and 805 
CD14+ dermal dendritic cells. Immunity 29, 497–510 (2008). 806 

78. Calà, G., Sina, B., De Coppi, P., Giobbe, G. G. & Gerli, M. F. M. Primary human organoids 807 
models: Current progress and key milestones. Front Bioeng Biotechnol 11, 1058970 808 
(2023). 809 

79. Ren, J. et al. Spatiotemporally resolved transcriptomics reveals the subcellular RNA kinetic 810 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2024. ; https://doi.org/10.1101/2024.08.05.606553doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606553
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

landscape. Nat. Methods 20, 695–705 (2023). 811 
80. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of 812 

large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009). 813 
81. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths 814 

toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–815 
13 (2009). 816 

82. Shannon, P. et al. Cytoscape: a software environment for integrated models of 817 
biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003). 818 

83. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression 819 
data analysis. Genome Biol. 19, 15 (2018). 820 

84. Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 821 
171–178 (2022). 822 

 823 
 824 
 825 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2024. ; https://doi.org/10.1101/2024.08.05.606553doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606553
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 826 
Fig. 1 | Deep-STARmap and Deep-RIBOmap enable spatiotemporally resolved 827 
transcriptomics and translatomics in 200 µm thick tissue blocks. a, Schematic summary of 828 
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Deep-STARmap and Deep-RIBOmap workflow. b, In situ sequencing of transcriptional states in 829 
thick tissue blocks: The primer, featuring a flanking linker sequence at its 5′ end, is covalently 830 
crosslinked (pink rhombus) to an Acrydite-modified oligonucleotide adapter (pink). This 831 
crosslinking occurs through a photo-crosslinking reaction between CNVK and pyrimidines via a 832 
[2+2] cycloaddition upon UV-A irradiation (366 nm). Following the preparation of thick tissue 833 
slices (see Methods), the adapter (pink)-primer (black) complex and padlock (black) probes with 834 
unique gene identifiers (red) hybridize to intracellular mRNAs (gray dashed line) within the intact 835 
tissue. The probe set is copolymerized with acrylamide, forming a DNA-gel hybrid (blue wavy 836 
lines) through the adapter’s functionalized acrylic group, followed by the removal of unbound 837 
lipids and proteins. Subsequently, enzymatic ligation and rolling circle amplification (RCA) 838 
construct in situ cDNA amplicons. These cDNA amplicons are further anchored into the 839 
hydrogel network via hydrogel re-embedding. Barcodes on the unique gene identifiers are read 840 
out via cyclic in situ sequencing with error reduction by dynamic annealing and ligation (SEDAL). 841 
This comprehensive quantification of RNA enables the elucidation of gene expression patterns 842 
and the identification of cell types within the native 3D tissue context. c, Left: Schematics and 843 
representative fluorescent images of negative and positive control experiments in 100 µm tissue 844 
sections of the mouse cerebral cortex. Using a 5′ Acrydite adapter photocrosslinked with the 845 
primer produces equivalent results to direct 5′ Acrydite modification of the primer, both 846 
surpassing the performance of adapter-primer hybridization alone or hydrogel physical retention. 847 
Right: Quantification of cell images showing the average amplicon reads per cell (n=4 images 848 
per condition). Red: DNA amplicons from 4 cell type markers. Blue: DAPI. Scale bar: 20 µm. 849 
Two-sided independent t-test, ****P < 0.0001. Data shown as mean ± standard deviation. d, Left: 850 
Schematics and representative fluorescent tissue images of 6 rounds of sequencing with and 851 
without cDNA re-embedding. In the absence of cDNA re-embedding, PEGylated 852 
bis(sulfosuccinimidyl)suberate (BSPEG) is used to crosslink cDNA. This results in background 853 
accumulation and reduced cDNA detection efficiency. Fluorescent images show Ch1 to Ch4 854 
(color-coded channels for barcode decoding) and cell nuclei (blue) in mouse brain slices. Right: 855 
Quantification of cell images showing the average amplicon retention rate after 6 rounds of 856 
sequencing (n=4 images per condition). Two-sided independent t-test, ****P < 0.0001. Data 857 
shown as mean ± standard deviation.  e, Representative raw fluorescent tissue images across 858 
200 µm and quantification of DNA amplicon signal intensity at different tissue depths. f, Deep-859 
RIBOmap probe design: Primer (black) and padlock (black) probes with unique gene identifiers 860 
(red) hybridize to intracellular mRNAs (gray dashed line), while splint probes (green) bind to the 861 
18S rRNA of ribosomes. Splint probes serve as splints for proximity ligation and circularization 862 
of padlock probes. Both the primer and splint probe feature a flanking linker sequence at their 5′ 863 
ends and are covalently crosslinked (pink rhombus) to an acrydite-modified oligonucleotide 864 
adapter (pink). 865 
 866 
  867 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2024. ; https://doi.org/10.1101/2024.08.05.606553doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606553
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 868 
Fig. 2 | Spatial single-cell transcriptomic and translatomic profiling of 1,017 genes in 869 
thick mouse brain slices: a-b, Uniform Manifold Approximation and Projection (UMAP) plot 870 
visualizations of transcriptional and translational profiles of 362,704 cells collected from mouse 871 
coronal hemibrains using FuseMap (a) and integration using Harmony (b). Surrounding 872 
diagrams display 137 subclusters derived from 19 main clusters. c, Confusion matrix of cell type 873 
labels obtained from FuseMap and Harmony integration, visualizing cell types with more than 874 
100 cells in the sample. d, 3D molecular cell-type maps derived from Deep-STARmap (left) and 875 
Deep-RIBOmap (right) across adjacent 150-µm thick sections from the mouse hemisphere. 876 
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Each dot represents one cell, colored by its subcluster identity, using the same color code as in 877 
(a).  878 
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 879 
 880 

 881 
Fig. 3 | Characterizing the morphological features of transcriptomic types. a, Deep-882 
STARmap combined with Tetbow enables simultaneous profiling of gene expression and 883 
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neuron morphologies. AAV-PHP.eB delivers vectors encoding fluorescent proteins and the tTA 884 
expression vector. Following tissue sectioning and embedding probe sets into hydrogel, Tetbow 885 
fluorescent proteins and DAPI are imaged. After protein digestion, cDNA amplicons are 886 
constructed and sequenced. DAPI co-staining serves as a fiducial marker for image registration 887 
between FP images and in situ sequencing images, enabling the identification of Tetbow-888 
labeled neurons by molecular subtype. b, Left: Volume rendering of neurons in the 889 
hippocampus and thalamus labeled with Tetbow. Neurons exhibit unique colors generated by 890 
the stochastic and combinatorial expression of three fluorescent proteins (tdTomato, EYFP, and 891 
mTurquoise2), enabling high-resolution identification and differentiation of individual neurons. 892 
Right: Zoom-in view of volume rendering of mouse cortical pyramidal neurons labeled with 893 
Tetbow. c, Representative individual morphological reconstructions of 30 transcriptome-defined 894 
subtypes of excitatory and inhibitory neurons. These reconstructions illustrate the distinct 895 
morphologies associated with each neuronal subtype, providing insights into the structural 896 
diversity within the neural network. Scale bar: 50 µm. 897 
 898 
 899 
 900 
  901 
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 902 
Fig. 4 | Mapping cell-cell interactions in human cSCC. a, UMAP plot visualization of 903 
transcriptional profiles of 51,471 cells, integrated using Harmony with a published cSCC scRNA-904 
seq dataset. Cells are color-coded according to their cell-type identity. b, Dot plot illustrating the 905 
top differentially expressed marker genes for each major cluster. The color scale represents the 906 
log2 fold change in gene expression compared to the mean gene expression values across all 907 
cells. The dot size indicates the percentage of cells expressing the genes within each major cell 908 
type. c, 3D molecular cell-type maps generated from Deep-STARmap, using the same color 909 
coding as in (a). d, Zoomed-in view of the interaction between Langerhans cells and tumor-910 
specific keratinocytes within a mesh graph of physically neighboring cells. Each cell is depicted 911 
as a spot colored according to its main cell type, with physically neighboring cells connected by 912 
edges. e, 3D cell-cell adjacency quantified by the normalized number of edges between pairs of 913 
cell types.   914 
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 915 
Extended Data Fig. 1 | Optimization of probe crosslinking. a, Representative fluorescent 916 
imaging illustrating probe anchoring efficiency in a hydrogel matrix with various adapter-primer 917 
ratios. Red: DNA amplicons from 4 cell type markers. Blue: DAPI. Scale bar: 10 µm. b, 15% 918 
TBE-Urea gels demonstrating UV crosslinking efficiency with varying adapter-primer molar 919 
ratios. CNVK- and Acrydite-containing adapter used for UV crosslinking is  920 
[5Acryd]GCTA[cnvK]ATACGTCGTACTGGTAGG[Inv-dT] (24 nt). Primer used is 58 bp ssDNA 921 
with a 24 nt flanking liner at the 5′ end. M, Marker: IDT ssDNA 20/100 Ladder. c, Quantification 922 
of cell images showing the average amplicon reads per cell (n=4 images per condition). Two-923 
sided independent t-test, ****P < 0.0001. Data presented as mean ± standard deviation. d, 924 
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Representative fluorescent imaging demonstrating probe anchoring efficiency with and without 925 
the use of the VA-044 thermal initiator in the first round of polymerization. Red: DNA amplicons 926 
from 4 cell type markers. Blue: DAPI. Scale bar: 10 µm. e, Quantification of cell images showing 927 
the average amplicon reads per cell (n=4 images per condition). Two-sided independent t-test, 928 
****P < 0.0001. Data presented as mean ± standard deviation. f. Representative fluorescent 929 
imaging demonstrating detection efficiency of covalently anchored RNA molecules or probes 930 
within the hydrogel in the Deep-STARmap setting. Red: DNA amplicons from 4 cell type 931 
markers. Blue: DAPI. Scale bar: 50 µm. g, Quantification of cell images showing the average 932 
amplicon reads per cell (n=4 images per condition). Two-sided independent t-test, ****P < 933 
0.0001. Data presented as mean ± standard deviation. 934 
 935 
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 937 
Extended Data Fig. 2 | Optimization of re-embedding strategy. a, Mechanism of cDNA 938 
crosslinking using hydrogel re-embedding. Amine-modified nucleotides were incorporated into 939 
the RCA reaction. MA-NHS enables rapid conjugation to nucleophilic groups on the amplicons 940 
via its NHS ester under mild conditions. These functionalized methacrylamide moieties are then 941 
integrated into the hydrogel, effectively immobilizing the cDNA amplicons. b, Mechanism of 942 
cDNA crosslinking using BSPEG. Amine-modified nucleotides were incorporated into the RCA 943 
reaction followed by BSPEG crosslinking, where the NHS esters of BSPEG react with the amino 944 
groups on the amplicons. c, Mechanism of cDNA crosslinking using Click chemistry. Azide and 945 
alkyne groups were incorporated during the RCA process, followed by the addition of copper to 946 
catalyze the azide-alkyne cycloaddition, forming a stable triazole ring as a crosslinking method. 947 
d, Representative fluorescent imaging demonstrating sequencing signal-to-noise ratio using 948 
different cDNA crosslinking strategies. BSPEG and Click chemistry crosslinking result in higher 949 
background noise compared to hydrogel re-embedding after several rounds of sequencing. 950 
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Additionally, the incorporation of azide and alkyne moieties during RCA significantly reduced 951 
amplification efficiency, leading to fewer amplicons. 952 
 953 

 954 
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Extended Data Fig. 3 | Spatially single-cell transcriptomic and translatomic profiling of 955 
1017 genes in the mouse brain. a, Dot plot illustrating the expression levels of representative 956 
markers across various major cell types using Deep-STARmap and Deep-RIBOmap. The color 957 
scale represents the log2 fold change in gene expression compared to the mean gene 958 
expression values across all cells. The dot size indicates the percentage of cells expressing the 959 
genes within each major cell type. xyz size: 4.5 mm, 4.5 mm, 150 µm. b, Deep-STARmap (left) 960 
and Deep-RIBOmap (right) images of example cell marker genes and neurotransmitter genes. c, 961 
Hierarchical taxonomy of cell types showing the main level and subtype level cell-type 962 
identification and annotations.  963 
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 964 

 965 
Extended Data Fig. 4 | Comparison of spatial translatome and transcriptome in the 966 
mouse brain and cell-cell adjacency analysis. a, Heatmap showing the gene clustering using 967 
the RIBOmap and STARmap results by cell type (Z-score expression). b, Visualization of 968 
enriched GO terms within each gene module, categorized and color-coded by module. In the 969 
enrichment map, nodes represent enriched GO terms, with the size of each node reflecting the 970 
number of genes associated with that term. Edges between nodes indicate shared genes 971 
among the GO terms. c, Heatmap displaying gene clustering based on Deep-STARmap and 972 
Deep-RIBOmap results across the three oligodendrocyte lineage cell types (left). The right 973 
panel shows the translational efficiency (TE) of these genes within each oligodendrocyte lineage 974 
cell type (Z-score expression). 975 
  976 
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 977 

 978 
Extended Data Fig. 5 | Localized translation in the somata and processes of neuronal and 979 
glial cells in the mouse brain. a, Schematic illustration of a hippocampal slice highlighting the 980 
somata and processes of hippocampal neurons. b, Processes read percentages of individual 981 
translating genes with genes rank-ordered based on their processes reads percentage. c, 982 
Significantly enriched GO terms for processes-enriched and somata-enriched translating genes. 983 
d, Spatial translation map of representative genes with enriched translation in processes (top) 984 
and somata (bottom) within the hippocampus, depicting somata reads in blue and process 985 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2024. ; https://doi.org/10.1101/2024.08.05.606553doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606553
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 

reads in red. e-f, Nearest-neighbor distance distributions in Deep-STARmap sample, comparing 986 
distances from cells in specific inhibitory neuronal subclasses to cells within the same subclass 987 
(“to self”) and to cells in different subclasses (“to other”). 988 
 989 
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 991 
Extended Data Fig. 6 | Quantification of Tebow-labeled neurons. (a) Another zoom-in view 992 
of volume rendering of mouse cortical pyramidal neurons labeled with Tetbow. (b,c) Cell count 993 
quantification of Tebow-labeled neurons across major cell types (b) and subtypes (c). 994 
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 996 

 997 
Extended Data Fig. 7 | Cell-cell adjacency analysis in 2D and 3D. a, Molecular tissue region 998 
maps visualized in 3D. Each dot represents a cell. Three molecular regions can be identified: 999 
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tumor region, fibroblast region, and normal skin region. These regions were identified by 1000 
analyzing low-frequency, large-scale patterns within the spatial neighbors graph. b-c, 1001 
Quantification of cell-cell adjacency in 3D (b) and 2D (c) by the normalized number of edges 1002 
between pairs of cell types. The 2D analysis is performed by projecting 15 μm (~1 cell layer) 1003 
slices along the z-axis, taken within the same 3D volume as shown in Fig. 4. The 3D analysis 1004 
reveals stronger cell-cell adjacency enrichment. d-e, The 3D analysis detects stronger cell-cell 1005 
interactions because the number of connected cells (edges of a given cell in the mesh graph via 1006 
Delaunay triangulation) is greater than in 2D. The 2D nearest-neighbor distances cannot 1007 
accurately represent the 3D cellular environment. 1008 
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