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The landscape of multiscale transcriptomic
networks and key regulators in Parkinson’s disease
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Genetic and genomic studies have advanced our knowledge of inherited Parkinson’s disease

(PD), however, the etiology and pathophysiology of idiopathic PD remain unclear. Herein, we

perform a meta-analysis of 8 PD postmortem brain transcriptome studies by employing a

multiscale network biology approach to delineate the gene-gene regulatory structures in the

substantia nigra and determine key regulators of the PD transcriptomic networks. We identify

STMN2, which encodes a stathmin family protein and is down-regulated in PD brains, as a key

regulator functionally connected to known PD risk genes. Our network analysis predicts a

function of human STMN2 in synaptic trafficking, which is validated in Stmn2-knockdown

mouse dopaminergic neurons. Stmn2 reduction in the mouse midbrain causes dopaminergic

neuron degeneration, phosphorylated α-synuclein elevation, and locomotor deficits. Our

integrative analysis not only begins to elucidate the global landscape of PD transcriptomic

networks but also pinpoints potential key regulators of PD pathogenic pathways.
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Parkinson’s disease (PD) is a common neurodegenerative
disorder characterized pathologically by the loss of dopa-
minergic (DA, or tyrosine hydroxylase positive, TH+)

neurons in the substantia nigra (SN) and the presence of Lewy
bodies and Lewy neurites in affected brain regions. Previous
research has identified over 20 PD causal mutations in SNCA,
LRRK2, VPS35, PINK1, DJ-1, Parkin, FBXO7, DNAJC6,
ATP13A2, DCTN1, and SYNJ1 (for review, see ref. 1 and MDS
Taskforce database: www.mdsgene.org). Tremendous effort has
been made to characterize the functions of these genes. For
example, SNCA has been reported to be localized at presynapse
through lipid-raft binding2 and play a role in vesicular traffick-
ing3. LRRK2 has been implicated in a variety of cellular processes,
including autophagy4, mitochondrial function5, and vesicular
trafficking6. VPS35 is a core component of the retromer complex
responsible for the retrograde transport of proteins in endosomes
to the trans-Golgi network7. These PD genes are involved in
multiple cellular pathways, including ubiquitin–proteasome
degradations, chaperone activities and endosomal–lysosomal
dynamics, as well as mitochondrial maintenance and mitophagy1.

However, genetic variants account for ~20% of PD cases8,
while the etiology of the majority or sporadic cases is largely
unclear. Idiopathic PD is believed to result from the complex
interplay among multiple genes and environmental factors.
Exposure to particular pesticides is associated with increased risk
of PD9, while caffeine consumption can reduce PD risk10. Thus,
large-scale epidemiological longitudinal data are needed to truly
evaluate the risks of PD. Furthermore, genome-wide association
studies (GWAS) have so far reported 41 PD-associated risk
loci in various cohorts11–13, yet translation of the findings
into biological understanding remains a major challenge and
requires better and innovative tools to dissect the molecular
mechanisms of PD.

The development of high-throughput molecular profiling
techniques has advanced the research of complex diseases with
detailed regulatory machineries hidden underneath. Gene net-
work analysis has been extensively utilized as an unbiased
approach to identify gene co-expression/co-regulation patterns in
higher organisms for discovery of novel pathways and gene tar-
gets in various biological processes and complex human dis-
eases14–23. For example, our previous study integrated large-scale
genetic and gene expression data as well as clinical and patho-
logical traits into multiscale network models of Alzheimer’s dis-
ease (AD)16, and several predicted key regulators of AD
pathogenesis such as TYROBP, DTL/CDT2, and GJA1 were
subsequently validated in various model systems24–27. However,
such network biology approaches have not been applied to PD
research yet due to the lack of molecular profiling data from a
large number of postmortem brain samples. As a result, little is
known about the global as well as local structures of gene inter-
actions and regulations in PD, thus hindering our understanding
of idiopathic PD.

In this study, we develop multiscale gene network models of
PD based on an ensemble of all the existing human brain gene
expression data sets in PD followed by a comprehensive func-
tional validation of a top key regulator. We identify a neuron-
specific synaptic signaling gene module most associated with PD
and pinpoint STMN2 as one top key regulator of the module.
Knockdown of Stmn2 in mouse DA neurons leads to impaired
synaptic vesicle (SV) endocytosis. Knockdown of Stmn2 in the
mouse SN further causes DA neuron loss, increased α-synuclein
phosphorylation, and locomotor deficits. The network models not
only shed a light on the global landscape of molecular interactions
and regulations in PD but also reveal detailed circuits and
potential key regulators of PD pathogenic pathways for further
experimental investigation.

Results
An integrative multiscale network biology framework for PD.
We employed an integrated network biology framework to sys-
tematically model a large transcriptomic data set in PD (Sup-
plementary Fig. 1a). By searching the Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/) database using Par-
kinson’s Disease and human substantia nigra as key words, we
collected gene expression data from eight human PD studies28–32

(Supplementary Table 1). The curated gene expression data went
through log2 transformation, quantile normalization, and cor-
rection for known covariates by a linear regression model. The
differentially expressed genes (DEGs) between the case and
control groups were identified by a meta-analysis followed by
Benjamini–Hochberg (BH) correction. Gene ontology (GO)
analysis was performed on the DEGs to identify dysregulated
pathways in PD. The expression data from all the PD samples in
the collection were merged into a global PD expression data set
(n= 83) by Z-score transformation, and the same process was
applied to the control samples (n= 70). The batch effect of these
studies was removed by Z-score transformation as shown in
Supplementary Fig. 1b. Subsequently, Multiscale Embedded Gene
co-Expression Network Analysis (MEGENA)20 was performed
on the global PD and control data sets separately. The co-
expressed gene modules in the global PD network were then
characterized by their enrichment for the PD DEGs and the cell-
type specific markers33,34. In parallel, we constructed the module-
based Bayesian regulatory networks (BN)35,36 to infer the reg-
ulatory relationships among the genes in each gene module. Key
network hub genes in the top-ranked module were further
prioritized based on differential expression and network neigh-
borhood enrichment of the PD DEGs for experimental validation.

PD DEGs are enriched for disease-associated pathways. We
identified 946 DEGs between the PD and control groups in the
meta-analysis of the eight curated data sets at 5% FDR and
standard mean difference (SMD) >0.5 (Supplementary Data 1).
To investigate whether the DEGs identified were associated with
the clinical traits, we performed a separate meta-analysis to
identify DEGs by excluding GSE4903628, which was the only data
set in our collection with a complete clinical assessment and a
sufficient number of samples for correlation analysis. This sepa-
rate analysis yielded 420 DEGs (Supplementary Data 2), and
1,633 genes correlated with Braak score (Supplementary Data 3)
and there was a significant overlap between the negative Braak-
correlated genes (BCGs) and the downregulated DEGs (multiple-
testing corrected Fisher’s Exact Test (cFET) p= 2.7E-54, 5.7-fold
enrichment (FE)) as well as between the positive BCGs and the
upregulated DEGs (cFET p= 9.5E-05, 4.3 FE) (Supplementary
Fig. 2a, b), suggesting the robustness of meta-analysis to identify
DEGs associated with disease progression. Therefore, we focused
on the 946 DEGs identified in the meta-analysis of the eight
curated data sets for the downstream analysis. Gene Ontology
(GO) analysis (Supplementary Data 4) showed that the down-
regulated DEGs were enriched for synaptic function and
metabolism-related GO terms, such as synaptic signaling,
synaptic vesicle cycle, and organophosphate metabolic process,
indicating that neuronal activity particularly neurotransmission
was impaired in PD, while the upregulated DEGs were associated
with spinal cord development and embryonic digit morphogen-
esis. These DEGs are largely consistent with the previously
published meta-analyses in PD postmortem brains. Glaab and
Schneider applied protein–protein interaction network (PPIN)-
based enrichment analysis to identify synaptic transmission and
dopamine metabolism as the top disrupted pathways in PD37. In
Oerton and Bender’s analysis, 21 of the 32 top-ranked
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downregulated genes and 2 of the 11 top-ranked upregulated
genes were present in our meta-analysis with consistent regula-
tion (cFET p= 5.9E-19, 11.6 FE and cFET p= 0.02, 12.3 FE,
respectively)38. Zheng et al. showed that electron transport chain,
oxidative phosphorylation and metabolic pathways were most
affected in PD32. Taken together, our meta-analysis provides a
PD DEG signature that extends the published work for further
analysis.

PD MEGENA modules show cell-type-specific features. A total
of 90 parent-child modules with module size >50 were identified
from the global PD data set using MEGENA (Fig. 1a). These
modules were then rank-ordered by their relevance to PD (Fig. 1b;
Supplementary Table 2) which was calculated from the enrichment
for the above identified DEGs (Fig. 1c), PD GWAS hits down-
loaded from GWAS catalogue (https://www.ebi.ac.uk/gwas/) and
an independent set of PD genes curated from the Kyoto Ency-
clopedia of Genes and Genomes (KEGG hsa05012). Each module
was annotated by the most significantly associated GO term
(Fig. 1e for major pathways; for the complete list, see Supple-
mentary Data 5).

As the central nervous system (CNS) is composed of multiple
types of cells with distinct contributions to PD pathogenesis and
progression, we examined the cell-type specificity of the modules
using the gene signatures of six major brain cell types, including
neurons, astrocytes, microglia, endothelial cells, oligodendrocyte
precursor cells (OPC), and oligodendrocytes generated from the
human brain33,34 (Fig. 1d; Supplementary Data 6). The results
reflected the cell-type-specific functional modules of highly
coordinated molecular dysregulations in PD. The module M4
was ranked as the top for its most significant enrichment of the
overall PD DEGs (cFET p= 7.9E-26, 2.3 FE) and downregulated
DEGs (cFET p= 2.7E-29, 2.7 FE) followed by its three child
module branches M116-M562, M114-M557, and M117. M4 was
associated with synaptic signaling (cFET p= 7.7E-05, 2.1 FE) and
enriched for neuron-specific markers (cFET p= 6.2E-28, 3.9 FE).
The other branches of the top-ranked modules included the M2
branch (M30-M475 and M32) and the M6 branch (M160-M615-
M1001 and M165-M628-M1010). The M2-M30-M475 branch
was also associated with synapse-related functions and enriched
for neuron-specific markers (Supplementary Table 2; Supple-
mentary Data 4). This is not surprising as multiple PD risk genes
are associated with synaptic transmission, such as LRRK2 and
SYNJ16. The M32 and M6-M160/M165 branches, although not
showing any cell-type specificity, were significantly enriched for
the downregulated PD DEGs and associated with electron
transport chain and complex metabolic process, respectively,
suggesting shared disease mechanisms across different cell types.
On the other hand, M16 was most significantly enriched for the
upregulated PD DEGs (Fig.1c) and the oligodendrocyte-specific
markers (Fig. 1d; Supplementary Table 2), suggesting that
oligodendrocytes play a significant role in the disease progression.
The KEGG PD pathway (hsa05012) comprised 142 genes was
enriched for the downregulated genes in PD (cFET p= 2.1E-07,
3.8 FE) and most enriched in the M2-M32 and M165-M628-
M1010 branches (Supplementary Table 2).

Key regulators of the top module are dysregulated in PD. To
better understand the PD network, we investigated the underlying
network topological structures of the top module, the neuron-
specific M4 that was comprised of 947 genes and was enriched for
the downregulated DEGs (Fig. 1f). As the links in the MEGENA
network were undirected and represented gene co-expression or
co-regulation, we further constructed a module-based BN using
the same set of gene expression profiles from the PD patients to

infer the potential regulatory relationships among genes, as we
did in the previous study of AD16. Distinct from co-expression
networks which are built upon correlations in the linear space,
BNs are able to capture nonlinear relationships due to the data
discretization and modeling on categorical distributions. Thus,
BN can be used in complement to MEGENA for candidate dis-
covery and prioritization. Network hubs identified in both the
MEGENA network and the BN are likely to be more robust than
those identified by a single network. We identified 33 and 45 key
regulators of M4 by MEGENA and the key driver analysis (KDA)
of the M4-based BN, respectively. The two sets of regulators
shared 16 genes including 10 downregulated and 1 upregulated
genes in PD in comparison with the normal control. We then
rank-ordered these key regulators based on their enrichment of
the PD DEGs in their two-layer network neighborhoods. The
network neighborhood of a given gene refers to the genes that are
N-layers (N= 1, 2, …) away from the gene in a given network.
We identified RALYL, BASP1, ANKRD34C, STMN2, and
SYNGR3 as the top five key regulators of M4 by combining the
rankings from both the MEGENA network and the M4-based BN
(Supplementary Table 3). We hypothesize that perturbation of
these key regulators of M4 could potentially influence the gene
networks and ultimately introduce PD-like phenotypes. To fur-
ther prioritize the key hub genes for experimental validation, we
examined their differential expression in the human SN (Sup-
plementary Fig. 4) and in different cell types in the adult mouse
SN39. All of five top key regulators were downregulated in the
human SN with PD, while only Stmn2 and Syngr3 had a pre-
ferable expression in the DA neurons over the other neuronal
subtypes in the adult mouse SN (Supplementary Table 4). Syngr3
homozygous knockout mice demonstrated a significant decrease
in locomotor activity compared with their age- and sex-matched
controls (Supplementary Fig. 5e, data downloaded from https://
www.mousephenotype.org) and Syngr3 mediated presynaptic
dysfunction induced by Tau40, which was consistent with our
prediction that Syngr3 was involved in neurotransmitter transport
(Supplementary Data 7). Therefore, we selected STMN2 for fur-
ther functional investigation.

Network-specific functional annotation of PD GWAS genes.
The links between the genes in the MEGENA network suggest
high correlation and potential co-regulation in similar biological
processes. Therefore, the network neighborhoods can be used to
annotate biological functions of the known PD risk genes. The PD
MEGENA network includes 125 known PD GWAS genes curated
in the GWAS catalog (https://www.ebi.ac.uk/gwas/). For each
GWAS gene, we assigned the top pathway enriched in its two-
layer network neighborhood as the putative annotation (Supple-
mentary Data 8). For example, AAK1 was predicted to be asso-
ciated with synaptic signaling (cFET= 0.023, 4.4 FE), and indeed
it was reported to regulate clathrin-mediated endocytosis41. Such
contextual annotation of the PD GWAS genes can be applied to
any gene in the network to understand their disease-specific
function. For example, STMN2, one top hub in M4 and a known
regulator of microtubule dynamics42–44, was predicted to be
highly associated with synaptic signaling according to our net-
work based annotation (cFET p= 1.9E-04, 4.4 FE; Supplementary
Data 7).

In addition, we examined how the network neighborhood of
each PD GWAS gene was enriched for the PD DEG signature
(Fig. 2a; Supplementary Data 9). Strong enrichment indicates
more functional involvement in PD pathogenesis beyond the
implicated genetic association with the disease. The top GWAS
genes whose network neighborhoods were most significantly
enriched for the genes downregulated in PD versus control were
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INPP5F, GCH1, and RIT2 (Fig. 2b–d) and the latter two were
downregulated in PD (Supplementary Data 1). The top two
GWAS genes, whose network neighborhoods were highly
enriched for the genes upregulated in PD, were BAG3 (Fig. 2e),
which was upregulated in PD, and BDNF (Fig. 2f), which was
downregulated in PD (Supplementary Data 1). STMN2 fell into
the neighborhood of INPP5F (Fig. 2b). Although STMN2 is not a
known genetic risk factor for PD, our results indicate that STMN2
is functionally linked to some PD risk genes and potentially plays
a critical role in mediating molecular alterations in PD.

Stmn2 knockdown causes presynaptic dysfunction in DA
neurons. Stmn2 is known to regulate microtubule dynamics, axon
formation and neurite outgrowth during development42–44 and
regeneration after injury45, while we predict that Stmn2 may
regulate presynaptic activity in PD (Supplementary Data 7). To
test the hypothesis, we employed a live cell imaging assay utilizing
pHluorin (described in the Methods section) in cultured mid-
brain DA neurons where Stmn2 was highly expressed39 (Sup-
plementary Fig. 5a, b). pHluorin is a variant of green fluorescence
protein (GFP) sensitive to pH. When targeted to the acidic lumen
of synaptic vesicles, pHluorin is quenched but fluoresces upon
exocytosis when exposed to the extracellular buffer (pH 7.4).
Conjugating pHluorin to vesicular transporters, such as vesicular
glutamate transporter 1 (vGLUT1) or vesicular monoamine
transporter-2 (vMAT2) was used to examine synaptic vesicle
kinetics in a quantitative manner46–48. DA neurons expressing
CMV-vMAT2-pHluorin were recorded at 9–11 days after Stmn2-
shRNA transfection. Stmn2-shRNA-treated DA neurons
demonstrated impaired SV endocytosis after and during stimu-
lation compared with scrambled shRNA-treated DA neurons
(Fig. 3a, c), while the exocytosis was not significantly affected
(Fig. 3a, b). We also observed enlarged boutons in Stmn2
knockdown DA neurons where the pHluorin assay was recorded
(Fig. 3d, e), while no obvious degeneration of the soma or cell
death was seen at the time of recording. Interestingly, bouton size
was not significantly affected in the cultured TH-negative neu-
rons (Supplementary Fig. 5d, e). Our data thus corroborate the
network based prediction and points to a key role of STMN2 in
regulating presynaptic activity.

Knockdown of Stmn2 perturbs STMN2-centered subnetworks.
We then sought to validate in vivo whether the perturbation of
STMN2, one of the top key regulators in the top-ranked module
M4 would preferentially induce changes of the gene expression in
STMN2’s network neighborhoods as well as STMN2-correlated
genes in PD. To mimic the decreased STMN2 expression in PD
brains (Supplementary Fig. 4), we performed genetic knockdown
in mouse brains with a red-fluorescent-protein (RFP)-tagged
Adeno-associated virus (AAV2/1) containing the validated Stmn2
shRNA sequence. After confirmation of the knockdown efficiency
in N2A cells and wild-type mouse brains (Supplementary Fig. 6),
we performed a unilateral injection of the virus into the right SN
of 2-month-old male C57BL/6J mice. The injected mice were
sacrificed at 1 month post injection, and the infected SN was
isolated for RNA sequencing. DEG analysis identified 527 upre-
gulated and 115 downregulated genes caused by Stmn2 knock-
down (fold change > 1.2 and FDR < 0.05; Fig. 4a; Supplementary
Data 10). Stmn2 itself was most downregulated, indicating the
knockdown efficiency. The genes downregulated by Stmn2
knockdown were associated with sterol/lipid biosynthesis and
metabolism (cFET p= 1.4E-10, 59.2 FE), while those upregulated
by Stmn2 knockdown were associated with immune/inflamma-
tory response (cFET p= 3.9E-44, 3.6 FE). As Stmn2 is not known
as a transcription factor or cofactor, the upregulation of these

immune-related genes is likely to be secondary. Specifically,
knockdown of Stmn2 upregulated nine PD GWAS genes
(GPNMB, SREBF1, STAB1, LHFPL2, PRRG4, CTSB, FNDC3B,
PPFIBP1, and COL5A2), and downregulated one PD GWAS gene
(SYT4) at the mRNA level. While STAB1, LHFPL2, PRRG4,
FNDC3B, PPFIBP1, and COL5A2 were not reported to be func-
tionally related to PD, we predicted that they were associated with
immune response, oxidoreductase activity, and EGF pathway
annotated based on their network neighborhoods. Indeed,
GPNMB was elevated in the SN of human PD brains and played
an anti-inflammatory role in a CD44-dependent manner49.
SREBF1, a key regulator of the lipogenesis pathway, was found to
stabilize PINK1 during mitophagy initiation50,51. CTSB, known to
encode cysteine cathespsin B, was essential in lysosomal degra-
dation of α-synuclein52. Upregulation of these PD GWAS genes
suggested a compensatory mechanism in response to Stmn2
deficiency, while SYT4-mediated somatodendritic release of DA
was a key mechanism for the autoregulatory control of DA release
in the brain53.

We then examined how Stmn2 knockdown impacted STMN2-
correlated genes identified in the PD patients (Supplementary
Data 11). After mapping mouse genes to the human homologues,
we found a significant overlap between the genes positively
correlated with STMN2 in PD patients and those downregulated
in Stmn2 knockdown mice (cFET p= 1.4E-27, 5.7 FE) and
between the genes negatively correlated with STMN2 in the PD
patients and the genes upregulated in Stmn2 knockdown mice
(cFET p= 0.04, 1.6 FE). The DEGs downregulated in Stmn2
knockdown mice were significantly enriched in the module M4
(FET p= 0.015, 2.0 FE, Fig. 4b) as well as in the two-layer
MEGENA network neighborhood of STMN2 (FET p= 4.3E-06,
8.6 FE; Fig. 4c), while the upregulated DEGs in Stmn2 knock-
down mice were not significantly enriched in either M4 or
STMN2’s MEGENA network neighborhood. As the majority of
the DEGs in Stmn2 knockdown mice were upregulated and
involved in immune response, which was absent in the meta-
analysis of the data sets from the postmortem PD brains, we
posited that this Stmn2 knockdown mouse model might partially
recapitulate the PD pathogenic processes in the human brain.

Knockdown of Stmn2 impairs locomotor functions in mice. We
next examined whether knockdown of Stmn2 could induce PD-
like behavioral and pathological changes. We performed a uni-
lateral injection of AAV2/1 carrying either the Stmn2-targeting
shRNA or a scrambled sequence into the SN of 2-month-old male
mice. We assessed the locomotor activity by performing Rota-rod
and open field tests in the fourth week after injection (Fig. 5a). The
mice with Stmn2-shRNA injection spent significantly less time on
the rod than the mice with scrambled shRNA injection (Student’s
t test p= 0.008, Fig. 5b). In open field, the Stmn2-shRNA-treated
mice showed fewer vertical episode counts than scrambled
shRNA-treated ones (Student’s t test p= 0.038, Fig. 5c), while
there was no difference in the total distance between the two
groups (Fig. 5d) and a trend toward shorter center distance tra-
veled (Fig. 5e) in the Stmn2 knockdown mice. As the injection was
given in mice unilaterally, administration of amphetamine could
induce rotational asymmetry in mice, which was commonly used
for testing DA-dependent progression in locomotor function
lesion54. The amphetamine treatment indeed induced a significant
increase in contralateral rotation in the Stmn2-knockdown mice
(Fig. 5f). Taken together, our data suggested that Stmn2 knock-
down caused DA related locomotor dysfunction.

Stmn2 knockdown reduces striatal DA content and DA term-
inals. We further examined the striatal DA content by performing
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Fig. 3 pHluorin assay in cultured DA neurons with Stmn2 knockdown. a SV endocytosis and exocytic fraction in midbrain DA neurons with or without
Stmn2 knockdown. Two-sided Student’s t test for two-group comparison. t=−2.6572, df= 19, p-value= 0.01556 for endocytosis time constant, which is
the τ of the fitted one-phase exponential decay indicated by the blue dash line; t= 0.87198, df= 19, p= 0.3941 for exocytic fraction, which is the
normalized peak height. b SV exocytosis in midbrain DA neurons with or without Stmn2 knockdown. The exocytosis time constant is the τ of the fitted one-
phase exponential decay indicated by the blue dash line. This is a subset of neurons recorded in (a). Two-sided Student’s t test for two group comparison.
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high-performance liquid chromatography (HPLC). We found a
50% reduction of DA as well as the three major metabolites
(DOPAC, 3-MT, and HVA) in the ipsilateral (right) striatum
compared with the contralateral (left) side in the mice with Stmn2

shRNA injection (Fig. 6a). We also examined the density of
dopamine transporter positive (DAT+) terminals in the dorsal
and ventral striatum based on DAT fluorescence intensity. We
noticed a reduction of DAT+ terminal density in both the dorsal
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and ventral striatum of the ipsilateral side in the mice with Stmn2
shRNA injection compared with that in the mice with scrambled
shRNA injection (Fig. 6b, c), suggesting the knockdown of Stmn2
led to the terminal degeneration of DA neurons in both SN and
the ventral tegmental area (VTA). By tracing the AAV RFP tag, we
confirmed the viral spreading into the SN-adjacent brain regions,
including VTA (Supplementary Fig. 6h).

Stmn2 knockdown leads to DA neuron loss. We then asked if
impaired locomotor activity and reduced striatal DA content were
associated with the loss of DA neurons by performing stereological
counting of TH+ neurons of the substantia nigra compacta (SNc)
and VTA in the injected mice. We found a striking (~70%)
reduction of TH+ neurons in the SNc of the mice with Stmn2-
shRNA injection compared with the mice with scrambled shRNA
injection (Fig. 7a, b). A 40% reduction of TH+ neurons in the VTA
was also observed (Fig. 7c). Increased cleaved caspase-3 immunos-
taining was found in the Stmn2-shRNA injected midbrain (Fig. 7d),
confirming that the reduction of TH+ cell number was likely due to
apoptotic cell death. We also examined the TH-/NeuN+ neurons in
the substantia nigra reticulata (SNr) and found no significant cell
loss in this region (Fig. 7e, f), suggesting that TH+ neurons were
particularly vulnerable when Stmn2 was depleted.

Stmn2 knockdown increases α-synuclein Ser129 phosphoryla-
tion. To investigate further the link between Stmn2 and PD,

which was pathologically associated with aggregated or modified
α-synuclein, we examined the Ser129 phosphorylation of α-
synuclein, a hallmark of synucleinopathy lesions in human55 via
immunofluorescence. We observed puncta of phosphorylated α-
synuclein proteins detected with anti-pSer129 α-synuclein anti-
body only in the Stmn2 shRNA mice, but not in the scrambled
shRNA mice (Fig. 7g, h), indicating that reduced Stmn2 expres-
sion caused an increase of Ser129 phosphorylation of α-synuclein,
a critical toxic modification of α-synuclein related to
idiopathic PD.

Discussion
Our multiscale network analysis of the gene expression data from
a large number of postmortem PD brains has revealed network
structures and key regulators functionally connected to known
PD risk genes. Functional validation of one top-ranked key reg-
ulator STMN2 demonstrates its critical role in controlling DA
neuron function/viability and regulating α-synuclein modifica-
tion, which are highly relevant to PD pathogenesis.

The emergence of systems/network biology has revolutionized
the discovery of novel mechanisms and promising drug targets
for complex diseases, such as cancer, diabetes, and AD16,56,57.
The lack of large-scale molecular profiling data from PD post-
mortem brains has impeded the application of such systems
biology approaches to PD. Although many gene expression stu-
dies of PD postmortem brains have been reported, each
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individual study involves a small number of samples and thus
each alone is insufficient to derive a holistic picture or detailed
signaling circuits of PD-related pathways. Here, we sought to
address the above unmet challenge in PD research by assembling
the gene expression profiles of the postmortem human brains
from eight published PD studies into one gene expression data
set, which enabled co-expression and causal network inference to
systematically uncover intrinsic network structures and key reg-
ulators of PD. The comparison between the MEGENA modules
and those from the traditional Weighted Gene Co-expression
Network Analysis (WGCNA) has shown that MEGENA could
provide consistent yet complementary information at a higher
resolution in the PD context (See Supplementary Note 1 and
Supplementary Data 12). Different from the simple clustering
analysis offered by WGCNA, MEGENA can identify more
coherent and functionally relevant modules with high-resolution
topological network structures and clearly defined key regulators
for downstream analyses. By investigating the neighborhood of a
gene within the gene co-expression and causal networks, we were
able to annotate and predict biological functions for each gene in
a disease-specific manner, thus complementing the current
GWAS studies with functional contexts.

The network modules that are most associated with PD contain
genes involved in a number of diverse pathways, including

synaptic transmission, oxidative phosphorylation, mitochon-
drion, myelination, and response to unfolded protein. STMN2 is
one key regulator of the top PD-associated module. STMN2 has
an overall reduced expression in the PD brains, and is predicted
to play a role in synaptic transmission. STMN2, also known as
superior cervical ganglion 10 (SCG10), is a ~20 kDa phospho-
protein of the stathmin family. Overexpression of Tau
downregulated Stmn2 in PC12 cell line58; administration of 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) also caused
downregulation of Stmn2 level and the rescue of MPTP-induced
PD-like phenotype restored Stmn2 expression in mice59, impli-
cating a potential association between Stmn2 and PD. Despite its
known functions in regulating microtubule dynamics during
development and after injury, knockdown of Stmn2 led to
impaired SV endocytosis in cultured DA neurons. Furthermore,
the direct perturbation of Stmn2 in the mouse SN recapitulated
the gene expression pattern and the network structure identified
from the SN of the PD subjects. Moreover, perturbation of Stmn2
expression in mouse midbrain led to PD-like pathologies and
behavioral abnormality, though the underlying mechanisms
remain to be characterized.

Unlike monogenic form of PD, idiopathic PD is polygenic and
has a complex etiology with interaction with environmental fac-
tors. In addition to STMN2, which we provide proof-of-principle
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validation of PD relevance in our study, we also predict many
other putative regulators that could contribute to sporadic PD
pathogenesis. For example, BASP1 belongs to the family of
growth-associated proteins, which also includes GAP43/BASP2.
Basp1−/− mice exhibited high postnatal mortality but can be

rescued by overexpression of Gap43, suggesting a functional
similarity between the two genes60. Interestingly, Stmn2 knock-
down in the mouse SN led to a decrease in Gap43 but not Basp1
at the mRNA level, implicating a functional difference between
Basp1 and Gap43. RALYL, another top-ranked regulator, is
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reported to be an interacting protein of LRRK2 in a yeast 2 hybrid
analysis61. RALYL was downregulated by Stmn2 knockdown
in vivo. Reduced expression of RALYL has been implicated in
worse prognosis in clear-cell renal cell carcinoma62 but its
function in the human brain remains unclear. Thus, our study
begins to reveal a global landscape of gene interaction and reg-
ulatory circuits underlying PD pathogenesis.

Distinct from the causal genetic variants in PD, many of the
hub genes identified in our PD network have not been reported to
be genetically linked to the disease, including our top hub gene of
interest, STMN2. However, these key hub genes are predicted
and/or confirmed to govern the expressions of many other genes,
including disease-associated GWAS genes in the disease-specific
networks and therefore are considered as drivers that can modify
disease onset and progression. Indeed, we previously identified
TYROBP as a key driver in AD pathogenesis16, and yet no SNPs
are known to be associated with sporadic AD in the TYROBP
locus. TYROBP has been identified as a binding partner for
TREM2, CD33, and CR3 with increased expression in AD
patients16. Knockout of Tyrobp was neuroprotective in a mouse
model of early Alzheimer’s pathology63. Therefore, they may
serve as novel drug targets in addition to the disease-causing
genetic variants. Our validation experiments provide strong evi-
dence supporting a role for the key regulator Stmn2 in mod-
ulating PD-related pathogenesis. Our future experiments will
include assessment of other predicted key regulators of PD and
discovery of novel compounds that can restore the expression or
activity of key regulators of PD.

In summary, our integrative network biology approach has
systematically uncovered a number of gene subnetworks and key
regulators of PD. Our study of postmortem PD brains, however,
offers only a snapshot at the late stage of the disease where the
majority of DA neurons degenerated. This limitation poses hur-
dles to directly reconstruct molecular processes of the disease
progression. The incomplete clinical assessment and limited
number of samples in the published cohorts also prevent us from
conducting stringent association study of the molecular data with
clinical and pathophysiological traits. Our approach is expected to
be improved with comprehensive longitudinal studies, increased
sample size, and better diagnosis of PD. Nonetheless, our study
provides a proof of principle of an integrated systems approach to
a complex disease. It is imperative that future investigation should
develop a large and coherent multi-Omics cohort from PD brains
with high quality genetic, epigenetic, transcriptomic, and pro-
teomic data, which will ultimately enable the discovery of more
robust regulators for idiopathic PD.

Methods
Data collection and analysis. Publicly available data sets comparing the expres-
sional difference between Parkinson’s disease patients and controls were

downloaded from GEO using two key words, including Parkinson’s disease and
human substantia nigra. Only studies with sample size >= 5 in each group were
included. Altogether we obtained eight data sets that focused specifically on SN, as
listed in Supplementary Table 1. The downloaded gene expression profile of each
data set was already preprocessed using either RMA or MAS. Out of the eight data
sets we collected, only one (GSE8397) has two regions (lateral and medial SN)
assayed for the same subject and both of them were from SN. We used the lateral
SN to represent the gene expression within the SN as the original publication
claimed that lateral SN is more vulnerable in PD29. Thus we ensured that each
sample in our analysis was from different individuals. The data were log2 trans-
formed, quantile normalized, and corrected for covariates, such as gender and age
etc. using a linear regression model lm(expression~as.factor(gender)+ as.numeric
(age)+ as.numeric(RIN)) in R/3.4.3, if the information was available. As the
samples were profiled from different platforms with unique probe sets, we inves-
tigated the expression on the gene level. For genes with multiple probes measured,
we chose the probe with the largest variance to represent the gene expression.

DEG analysis and Braak correlation analysis. Metafor 2.0.064 was used to per-
form meta-analysis to identify differential gene expression across the eight data sets
in our collection. For each gene profiled in all the eight data sets, we calculated the
standardized mean difference (SMD) between the PD and control groups across all
the data sets and then tested for heterogeneity using metafor package in R. If the
data are significantly heterogeneous (p < 0.05), a random effect model was fitted; if
not, a fixed effect model was fitted. BH correction was used to control multiple-
testing errors. Genes with FDR < 0.05 and mean SMD > 0.5 were considered as
differentially expressed genes (DEGs). We chose the cutoff based on the guideline
by Cohen et al.65 that SMD= 0.5 represented a medium effect size. In one specific
data set GSE49036, the gene expression data came together with complete Braak
stage assessment. Therefore, we performed Spearman correlation analysis between
the gene expression and the Braak score to identify BCGs (BH-corrected p-value <
0.05). Note that in this data set, samples from patients with incidental Lewy Body
Disease (iLBD) were excluded for the DEG analysis, but included for Braak cor-
relation analysis.

Network construction and key regulator identification. Each QCed data set was
split into disease and control groups. Z-score transformation was applied for each
gene across all the samples (both disease (PD) and control samples) within each
data set to control possible biases from different platforms and processing methods.
We then merged the transformed data into a global disease data set (n= 83) or a
control (n= 70) data set. Module detection and key hub identification were done in
the disease-specific expression profile using MEGENA20. Modules were ranked
based on enrichment with PD DEGs.

BN was constructed from genome-wide gene expression profile through a
Monte Carlo Markov Chain (MCMC) simulation-based procedure by using
software RIMBANET35,36. We made use of known transcription factor (TF)-target
relationships derived from brain tissue-related cell types from the ENCODE
project66,67. The TFs were allowed to be parental nodes of their targets, but the
targets were not allowed to be parental nodes of the TFs. Such relationships were
used as structural priors to assist with the topological computation. We followed a
network averaging strategy with which 1000 networks were generated from the
MCMC procedure starting with different random structure, and links that shared
by more than 30% of the networks were used to define a final consensus network
structure. An iterative de-loop procedure was executed to ensure that the consensus
network was a directed acyclic graph, removing the most-weakly supported link of
all links involved in any loop. Following Zhang et al.16, we performed KDA on the
consensus Bayesian network to identify key hub genes which regulated a large
number of downstream nodes.

To identify WGCNA modules, we first determined the soft power beta to be 4.5
as it gave the optimal fit for a scale free topology (R2= 0.98, slope=−2.67). We
then determined the module membership by the dynamic cutting tree algorithm

Fig. 7 Pathological characterization in the SN of mice with Stmn2 knockdown. a Immunohistochemistry staining with anti-TH antibody in the SN from mice
injected with AAV carrying scrambled or Stmn2 shRNAs. b Stereological counting of TH+ neurons in SN of mice injected with AAV carrying scrambled or
Stmn2 shRNAs and the result was analyzed by two-sided Student’s t test. N= 5 in each group. t= 3.7256, df= 8, p-value= 0.005824. c Stereological
counting of TH+ neurons in VTA of mice injected with AAV carrying scrambled or Stmn2 shRNAs and the result was analyzed by two-sided Student’s t
test. N= 5 in each group. t= 4.1854, df= 8, p-value= 0.003057. d Immunofluorescent staining with anti-cleaved caspase-3 and TH antibody in the SN of
mice injected with AAV carrying scrambled or Stmn2 shRNA. Red dash squares were zoomed in with higher magnification. Representative images from
N= 6 in each group. e, f Immunofluorescent staining with anti-NeuN and anti-TH and quantification of TH−/NeuN+ cells in the SNr of mice injected with
AAV carrying scrambled or Stmn2 shRNA. SNr highlighted by yellow dash circle and SNc highlighted between two yellow dash lines. Two-sided Student’s t
test, N= 6 in each group, t= 1.362, df= 10, p= 0.2031. g, h Immunofluorescent staining with anti-pS129 of α-synuclein (pS129-α-syn) antibody and
quantification of pS129-α-syn puncta in the SN of mice injected with AAV carrying scrambled or Stmn2 shRNA. Red dash squares were zoomed in with
higher magnification. Representative images from N= 6 in each group. Two-sided Student’s t test p= 0.004, t=−3.7825, df= 10, p= 0.004. All data are
present as mean ± SEM. Source data are provided as a Source Data file
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implemented in the R package WGCNA. This process yielded 24 well-separated
modules with a minimal size of 20.

The hub genes were first evaluated for the enrichment of the PD DEGs in their
network neighborhoods in the MEGENA and BN networks separately, and the two
enrichment scores for each hub were then combined into a final ranking score Gj =
∏igji, where gji is the discriminant value of a key hub gene j in the network i,
defined as (maxj(rji) + 1 − rji)/∑jrji and rji is the ranking of the enrichment score
for the key hub gene j in the network i16. A smaller rji indicates a higher rank of a
gene with a larger enrichment score. A gene with a larger final score Gj is
considered as a more important key hub gene in both networks.

Gene set enrichment analysis. Modules and network neighborhood genes of key
hubs were intersected with GO terms, signaling pathways, and cell-type specific
expression gene signatures. The significance level of the overlap between two gene
sets was determined by Fisher’s exact test. For all the module-related enrichment
analyses, the genes in all the modules were used as the background. For the net-
work neighborhood enrichment analysis, all the genes in a given network (i.e., the
MEGENA or Bayesian network in PD) were taken as the background. For GO
analysis, the genes shared by a query gene set (e.g., the genes in all the modules, all
the genes in the MEGENA network and so on) and the set of all the genes present
in the GO database were used as the background. The size of the background used
for the abovementioned enrichment analyses can be found in the associated
Supplementary Tables, i.e., the column background size. The p-values were com-
puted based on the hypergeometric distribution followed by BH correction for
multiple testing.

Cell cultures and shRNA transfection. Mouse N2A neuroblastoma cells (ATCC
CCL-131) were cultured in DMEM supplemented with 10% fetal bovine serum
(FBS) at 37 °C with 5% CO2. Approximately 80,000 cells were seeded into 12-well
plates 24 h before lipofectamine 3000 (Life Technology, CA, USA) transfection.
Seventy-two hours after transfection, cells were collected in RIPA buffer for
western blot.

The Institutional Animal Care and Use Committee (IACUC) of Icahn School of
Medicine at Mount Sinai approved all the animal-related experiments. We have
complied with all relevant ethical regulations for animal testing and research.
Mouse midbrain neurons were cultured from P0-P1 wild-type C57BL/6J mice
(Jackson Laboratory, ME, USA). Typically, four P0-P1 mouse brains were required
for a midbrain culture. Only the ventral midbrain containing SN and VTA was
collected to enrich the TH-positive population (~30% of the total neurons per
culture dish based on our estimate). The brain tissues were then incubated with
papain (Worthington Biochemical Corp., NJ, USA) for 10 min with humidified
oxygenation. Cells were then disassociated, washed twice, and plated on the poly-
ornithine-coated coverslips at a density of 75,000 cells per cm2 in the culture media
containing (v/v) 60% Neurobasal-A, 20% Basal Media Eagle, 10% FBS (Atlanta
Biologicals, GA, USA) supplemented with 1× B27 and 2 mM GlutaMAX (Thermo
Fisher Scientific, MA, USA)46,47. The calcium phosphate transfection method was
employed to achieve sparse expression and to enable the analysis of a single neuron
during the imaging experiments. Following transfection at DIV 3–5, the growth
medium was replaced with fresh medium supplemented with an antimitotic agent,
ARA-C (Sigma-Aldrich, MO, USA) and glial cell line-derived neurotrophic factor
(GDNF) (Millipore, MA, USA). The Stmn2 shRNA plasmids were purchased from
Origene, MD, USA (TF511127), in which the Stmn2 shRNA expression was driven
by a universal U6 promoter with an RFP tag driven by CMV promoter on the same
construct.

Phluorin-based optical assay for endo-/exocytic kinetics. The phluorin-based
optical assay was adopted from46–48 and performed on DIV12–16 for midbrain
cultures. For live cell imaging, cells were mounted on a custom-made laminar-flow
stimulation chamber with constant perfusion (at a rate of ~0.2–0.3 mL per min) of
a Tyrode’s salt solution containing (in mM) 119 NaCl, 2.5 KCl, 2 CaCl2, 2 MgCl2,
25 HEPES, 30 glucose, 10 µM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and
50 µM D, L-2-amino-5-phosphonovaleric acid (AP5) and buffered to pH 7.40. All
chemicals were purchased from Sigma-Aldrich, except for bafilomycin A1 (1 µM,
Calbiochem/Sigma-Aldrich, MO, USA, 196000-1SET). Temperature was clamped
at 30.0 °C at the objective throughout the experiment. Field stimulations were
delivered at 10 V per cm by A310 Accupulser and A385 stimulus isolator (World
Precision Instruments, FL, USA). Images were acquired using a highly sensitive,
back-illuminated EM-CCD camera (iXon+Model # DU-897E-BV, Andor Corp.,
CT, USA). An Olympus IX73 microscope was modified for laser illumination
building a solid-state 488 nm OPSL smart laser at 50 mW (used at 10% and output
at ~2 mW at the back aperture) into a laser combiner system for millisecond on/off
switching and camera blanking control (Andor Corp, NY, USA). An Olympus
PLAPON 60XO 1.42 NA objective with a 525/50 m emission filter and 495LP
dichroic filters was used for pHluorin fluorescence excitation and collection
(Chroma, VT, USA, 49002). Images were sampled at 2 Hz with an Andor Imaging
Workstation driven by Andor iQ-CORE-FST (ver 2.x) iQ3.0 software. NH4Cl
solution containing (in mM) 50 NH4Cl, 70 NaCl, 2.5 KCl, 2 CaCl2, 2 MgCl2, 25
HEPES, 30 glucose, 10 µM CNQX, and 50 µM AP5 and buffered to pH 7.40 was
used to reveal the total pHluorin expression (total vesicle pool) for normalizing

exocytosis. We stimulated the neurons with a short train of 100 pulses (10 Hz 10 s)
to measure the endocytosis time constant after the short stimulation (the τ of a
fitted one-phase exponential decay after the peak) and the fraction of exocytosis
(The peak height of 100 pulses trace divided by the peak height of NH4Cl trace).
We also stimulated the neurons with a long train of 300 pulses (10 Hz, 30 s).
Bafilomycin (1 µM) was used to block vesicle re-acidification and a train of 1200
pulses (10 Hz, 120 s) was given for measurement of recycling pool and exocytosis
time constant (the τ of a fitted one-phase exponential decay since the stimulation
starts until the plateau is reached). The peak height difference between 300 pulses
and 1200 pulses w/ Bafilomycin traces normalized by the recycling pool refers to
the endocytosis fraction during stimulation. Only the neurons co-transfected with
the CMV-VMAT2-pHluorin and U6-Stmn2 shRNA-CMV-RFP or U6-scrambled
shRNA-CMV-RFP plasmids were recorded for the pHluorin assay. The staging
information for each recorded neuron was registered to ensure the re-identification
of the same neuron after immunostaining. After recording, the coverslips were
fixed and stained with anti-TH antibody to confirm whether the recorded neurons
were TH positive.

In vivo Stmn2 knockdown mouse model and behavioral tests. Thirty 2-month-
old male C57BL/6J mice were purchased from Jackson Laboratory (ME, USA). The
IACUC guidelines were strictly followed during animal maintenance and proce-
dure. AAVs carrying either scrambled shRNA or Stmn2-targeting shRNA were
packaged by the Boston Children’s Hospital Viral Core. In total, 2 μl of virus with a
titer of 1 × 10E13 gc per mL were injected into the right SN (injection coordinates
based on Bregma: anterior–posterior: −3.28 mm; medial–lateral: −1.5 mm;
dorsal–ventral: −4.1 mm). Behavioral tests were performed during the fourth week
after injection.

The locomotor function was tested using a rotarod setting with incremental
speed from 4 to 40 RPM. The duration of time an individual mouse remained on
the rotarod served as the readout of the experiment. The average duration of three
trials was used to represent the performance of the mice.

The overall behavior features were examined by open field test. Individual mice
were placed into the 16″ × 16″ animal cage of a Versamax monitor system
(Accuscan, NY, USA) in a quiet dark room and allowed to move freely for an hour.
The mouse horizontal and vertical movement was monitored and recorded by a
grid of 32 infrared beams at ground level and 16 elevated (3″) beams. Then saline
was administrated by intraperitoneal (IP) injection, and the mice were placed back
into the same cage for 30 min. Finally, amphetamine was administrated by IP
injection at a dose of 2.5 mg per kg, and the mice were monitored for another hour
in the cage. A series of parameters including total distance, vertical movement, and
rotational behavior were analyzed.

Immunostaining and stereological counting. Cells were fixed by 4% PFA for 10
min and permeabilized in PBS with 0.2% Triton X-100 for 10 min. Then cells were
blocked in PBS with 5% BSA for 1 h and incubated with primary antibody diluted
in the blocking buffer at 37 °C for 1 h. Cells were then incubated with secondary
antibody diluted in the blocking buffer at room temperature for 1 h. The cells were
washed four times with PBS between each step, and were incubated in PBS
overnight at 4 °C before mounting to reduce background. After behavioral test,
mice were anesthetized by ketamine (Vedco Inc. MI, USA, KetaVed) and then
perfused with PBS and 4% PFA. The whole brain was taken out and subjected to
post fixation in 4% PFA for 24 h and then incubated in 15% and 30% sucrose until
fully dehydrated. The brain was cryo-sectioned at 40 μm in thickness using a Leica
CM3050s cryostat (Germany). The immunohistochemistry (DAB) was performed
according to the manual provided by VECTOR LABORATORIES (Burlingame,
CA, USA). For stereology counting, one in every five sections was selected with a
random start, and a total of 5–8 brain slices were counted for each mouse using the
Stereo Investigator software. Primary antibodies used included Rabbit polyclonal
anti-STMN2 (Invitrogen, CA, USA #720178; 1:1000 for western blot and 1:250 for
immunostaining); mouse monoclonal anti-beta-actin (Cell Signaling, MA, USA
#3700; 1:5000 for western blot); mouse monoclonal anti-TH and rabbit polyclonal
anti-TH (Sigma-Aldrich, MO, USA T2928, T8700; 1:1000 for immunostaining);
rabbit monoclonal anti-cleaved caspase-3 (Cell Signaling, MA, USA #9579; 1:500
for immunostaining); rat monoclonal anti-DAT (EMD-Millipore, MA, USA
MAB369; 1:500 for immunostaining), and chicken polyclonal anti-GFP tag (Life
Technology, CA, USA A10262; 1:1000 for immunostaining); rabbit monoclonal
anti-Ser129 phosphorylated α-synulein (Abcam, UK, #51253; 1:250 for
immunostaining).

Sample preparation for DA measurement and RNA sequencing. After beha-
vioral test, mice were decapitated and the whole brain was taken out for quick
dissection on ice. Striatal samples were sliced and punched to ensure equal amount
of tissues. Midbrain samples were carefully isolated, and both samples were
separated into the left and right, and were kept at −80 °C until use. Striatal DA
content measurement was carried out in neurochemistry core in Vanderbilt Uni-
versity using HPLC. The total RNA were extracted from midbrain samples using
Qiagen RNeasy mini kit (Cat No. 74104) and we sent 2.5 μg of each sample to
Novogene, CA, USA for pair-end RNA sequencing using 250–300 bp insert cDNA
library (rRNA depleted by Ribo-ZeroTM Magnetic Kit) on Illumina (CA, USA)
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HiSeq4000 platform. We applied FastQC (http://www.bioinformatics.babraham.ac.
uk/projects/fastqc/) for quality check and then STAR68 for alignment followed by
edgeR package69 for differential gene expression analysis.

Fractionation of midbrain samples. Right midbrain samples were homogenized
in fresh-made brain homogenization buffer (20 mM HEPES pH 7.4, 0.32 M
sucrose, 1 mM NaHCO3, 2.5 mM CaCl2, 1 mM MgCl2, protease, and phosphatase
inhibitor cocktail (Thermo Fisher Scientific, MA, USA)). The homogenate was
centrifuged at 500 rcf for 10 min at 4 °C and supernatant was collected as the
starting point. After BCA quantification, the supernatant containing ~250 µg
protein was taken from each sample and lysed with 2× lysis buffer (final con-
centration: 50 mM Tri-HCl pH 7.4, 150 mM NaCl, 1% Triton X, protease, and
phosphatase inhibitor). The lysate was incubated on ice for 30 min with gentle
shaking. Then the lysate was centrifuged at 16,000 rcf for 30 min at 4 °C. The
supernatant was collected as the Triton-soluble fraction. The pellet was washed
four times with PBS containing 1% Triton X and centrifuged at 16,000 rcf for 10
min at 4 °C. Then the pellet was resuspended and incubated in 50 µl PBS con-
taining 2% SDS, 1%Triton X, and protease and phosphatase inhibitor at 60 °C for 1
h. The samples were centrifuged again at 16,000 rcf for 30 min at 4 °C. The
supernatant was collected as the Triton-insoluble fraction. For Triton-soluble
fraction, we quantified the concentration by BCA assay and loaded 25 µg protein;
for Triton-insoluble fraction, we added 6x sample buffer and load 25 µl of samples.

Western blot. Sample concentration was determined by BCA (Pierce, MA, USA).
Then samples were boiled in 3× sample buffer at 95 °C for 10 min and briefly
centrifuged. In all, 30 µg protein samples were loaded into 4–12% gradient gels
(Invitrogen, CA, USA) and run at 120 V in 1× MOPS running buffer. Transfer was
done at 4 °C in transfer buffer with 10% methanol for 2 h at 90 V. The membrane
was blocked in LI-COR blocking buffer for 1 h and then overnight incubation with
primary antibody at 4 °C. Then the membrane was washed three times in TBST
buffer and incubated in fluorescence-conjugated secondary antibody (1:10000, LI-
COR, Germany) for 1 h. The membrane was washed three times in TBST buffer
with 0.01% SDS followed by imaging in LI-COR imaging system.

Quantification and statistical analysis. The data analysis was performed by
Bioconductor R 3.4.3. Images were processed by ImageJ. Data were represented as
mean ± SEM or mean ± 95% confidence interval (CI) as specified. Student’s t test
was used for between two-group comparisons. ANOVA and Tukey post hoc
comparison were applied in multi-group/factorial design. Fisher’s exact test was
used to examine whether two sets were significantly overlapped/enriched. BH-
corrected P < 0.05 was considered as statistically significant unless stated otherwise.
The details, including the N number, the statistic tests used and the p-values, are
indicated in each figure and figure legend.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The human SN expression profiles are downloaded from the gene expression omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo/) with accession number GSE8397, GSE7621,
GSE24378, GSE20292, GSE20141, GSE20163, GSE20164, GSE49036. RNA sequencing
data from Stmn2-knockdown mouse brains are deposited to GEO with accession number
GSE114840. The source data underlying Figs. 3a–c, e, 5b–f, 6a, c, 7b, c, f, h and
supplementary Figs. 4, 5c, e, 6a, b, d–g are provided as a Source Data file. All the other
data are contained in the article and its supplementary information or available upon
request.

Code availability
The R packages MEGENA and Metafor are available from https://cran.r-project.org/ and
the code for Bayesian network inference can be found through RIMBANet (https://icahn.
mssm.edu/research/genomics/about/resources).
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