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ABSTRACT: The integration of atomic-resolution experimental and
computational methods offers the potential for elucidating key aspects
of protein folding that are not revealed by either approach alone. Here,
we combine equilibrium NMR measurements of thermal unfolding and
long molecular dynamics simulations to investigate the folding of gpW,
a protein with two-state-like, fast folding dynamics and cooperative
equilibrium unfolding behavior. Experiments and simulations expose a
remarkably complex pattern of structural changes that occur at the
atomic level and from which the detailed network of residue−residue
couplings associated with cooperative folding emerges. Such
thermodynamic residue−residue couplings appear to be linked to the
order of mechanistically significant events that take place during the
folding process. Our results on gpW indicate that the methods employed in this study are likely to prove broadly applicable to the
fine analysis of folding mechanisms in fast folding proteins.

■ INTRODUCTION

Proteins fold into their biologically functional 3D structures by
forming cooperative networks of weak interactions that
compete against the entropy of the flexible polypeptide
chain.1 These complex interaction networks hold the key to
folding mechanisms2 and the rational design of new protein
folds.3 Folding interaction networks are, however, extremely
elusive. This is because proteins reside in their native or
unfolded states for long periods of time (up to days),4 but the
transitions between these two states, and thus the formation
and disassembly of the interaction network, seem to occur
almost instantaneously.5−7 Indeed, advanced analysis of single-
molecule experiments has recently shown that at least some
folding transitions take place over periods on the order of a few
microseconds,8,9 a time scale that is also equivalent to previous
empirical estimates of the folding speed limit.10 A compre-
hensive understanding of folding interaction networks would
thus entail the characterization of rare events in individual
protein molecules at an atomistic level of detail, and with sub-
microsecond resolution.
Both experiments and simulations have led to significant

advances in our understanding of the protein folding process,11

and their respective capabilities and limitations are such that a
combination of the two may lead to insights and cross-
validation that could not be obtained using either paradigm
alone. Experimental methods can reach atomic-level resolution

when investigating the millisecond time scale,12 but can access
sub-microsecond time scales only using coarse-grained
spectroscopic probes.13−15 Molecular dynamics (MD) simu-
lations, on the other hand, can generate continuous, atomisti-
cally detailed folding and unfolding trajectories,16,17 but are
computationally demanding, and rely on physical approxima-
tions whose range of applicability has not yet been fully
ascertained.
Here we use a combination of nuclear magnetic resonance

(NMR) experiments and long-time-scale MD simulations to
elucidate key elements of the folding process of the single-
domain protein gpW. GpW is a 62-residue entire gene product
that folds into an antiparallel α+β topology in microseconds.18

Its ultrafast folding−unfolding relaxation rate places gpW in the
fast exchange NMR regime over the relevant temperature
range, and makes it an attractive target for long MD
simulations. A combination of thermodynamic and kinetic
criteria suggests this moderate-sized domain folds over a low
free energy barrier.18 Moreover, gpW exhibits distinctly
sigmoidal equilibrium thermal unfolding with well-resolved
pre- and post-transition baselines18 that should facilitate the
accurate analysis of its unfolding thermodynamics at the atomic
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level.19 In experimental studies of the atom-by-atom thermal
unfolding behavior of gpW, we observe a multilayered process
in which the large-scale structural changes characterizing the
global, two-state-like unfolding transition are superimposed on
a more intricate set of atomic- and residue-level structural
changes. We observe a similar level of underlying complexity in
coordinated computational studies of the equilibrium unfolding
of gpW. The simulations thus support our experimental results
and are also consistent with previous computational studies
performed on other proteins.20,21 Moreover, from our
combined experimental and computational analysis, we infer
that the complex structural changes that we observe at the
residue level with both methods are intimately connected to the
protein interaction network that ultimately determines the
folding mechanism.

■ RESULTS AND DISCUSSION
Experimental Analysis of Protein Unfolding Atom by

Atom. NMR is a powerful tool for investigating protein
conformational changes with atomic resolution. NMR
relaxation dispersion methods, for example, render high-
resolution structural information on transient, low-populated
folding intermediate states (i.e., “invisible states”).22,23 In
principle, time resolution limits the application of these
methods to proteins with a somewhat slow folding rate
(<3000 s−1).24 Recently, this limit has been successfully pushed
forward to investigate unfolding fluctuations of native gpW at
very low temperature (273 K), taking advantage of the slow
down in gpW folding rate at this temperature.25 An alternative
approach comes from work on the one-state downhill folding

scenario.26 One-state downhill folders are single-domain
proteins that fold−unfold in microseconds by diffusing down
a barrier-less free energy surface at all experimental
conditions.27 In thermodynamic terms, these domains unfold
through a gradual, minimally cooperative unfolding process28,29

that results in a broad distribution of structure-specific
equilibrium denaturation behaviors.30 Such remarkable thermo-
dynamic features have been exploited to infer key aspects of the
folding interaction network from the cross-correlations among
hundreds of atomic unfolding curves obtained by NMR in
equilibrium denaturation experiments.31 However, one-state
downhill folding domains are not widespread, and, in principle,
their folding mechanisms could be different from those of other
proteins. The important question is whether the same NMR
approach can be extended to the more general case of folding
over free energy barriers in which the equilibrium unfolding
process is also distinctly more cooperative. This is an important
fundamental question because it has been generally assumed
that folding of small proteins follows a two-state mechanism,32

in which case all probes that effectively report on the integrity
of the native structure exhibit the same unfolding behavior and
there is no net gain in probing the process with atomic
resolution.28 In fact, the two-state assumption has been used as
justification for interpreting any deviations from the global
unfolding behavior that might be observable by NMR as arising
from processes unrelated to folding.32−35 Therefore, observing
unfolding heterogeneity by NMR that is systematically larger
than experimental uncertainty, yet fully consistent with the
global unfolding process, would provide important experimen-
tal evidence that protein folding cooperativity is, in general

Figure 1. Experimental NMR analysis of the equilibrium thermal unfolding of gpW at atomic resolution. (A) Superposition of the lowest-energy
structure from the NMR ensembles obtained at pH 3.5 (blue) and previously determined at pH 6.5 (cyan). (B) The global NMR thermal unfolding
behavior represented by the second component from the singular value decomposition (SVD) of the 180 CS (blue, left scale) is compared to the
unfolding curve measured at low resolution by circular dichroism (green, right scale). The inset shows the derivative of the curves. (C) The 15
different types of atomic unfolding behaviors obtained for gpW from cluster analysis. Clusters 1−8 have a single transition (2SL), clusters 9−13 have
two apparent transitions (3SL), and clusters 14 and 15 include curves with more complex patterns (CP). Each panel shows a representative
experimental CS curve as example (colored circles), the number of cluster elements, and the expected global behavior for reference (black curve).
The latter was calculated fixing the thermodynamic parameters to those of the two-state fit to the blue curve in panel B (Tm = 329 K and ΔH = 133
kJ/mol) and fitting the “native” and “unfolded” baselines for each probe.
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terms, finite and limited, as predicted by theory36 and often
observed in simulations.37

In the current study, we performed the NMR analysis of
gpW thermal unfolding at pH 3.5 to slow proton amide
exchange and thus ensure obtaining full chemical shift (CS)
assignments when the protein is unfolded at high temperature.
At pH 3.5 the thermal denaturation of gpW measured by far-
UV circular dichroism (CD), a low-resolution backbone-
sensitive technique, is sigmoidal and exhibits a rather sharp
transition. Analysis with the simplest two-state model (ignoring
changes in heat capacity, which are small for gpW18 and do not
result in any signs of cold denaturation at this pH) produces a
Tm = 329 K and ΔH = 135 kJ/mol. Relative to neutral pH, the
mildly acidic conditions used here decrease the denaturation
midpoint of gpW by about 11° but keep the unfolding enthalpy
essentially unchanged (Figure S1).18 The slightly lower stability
is convenient because it centers the unfolding process within
the experimental range (273−373 K) and makes the
determination of baselines more accurate.19 To check whether
the mildly acidic conditions induce structural changes in the
gpW native state, we determined the 3D structure at pH 3.5
(PDB: 2L6R) and compared it with that obtained previously at
neutral pH.38 The comparison between the lowest energy
structures for both conditions renders a backbone RMSD of 0.7
Å (Figure 1A), which is comparable to the variability between
pairs of structures within the pH 3.5 ensemble (Table S1).
Therefore, the structural changes induced by pH are minimal.
In addition, the slight destabilization observed by CD seems to
arise from an overall increase in net positive charge at this pH,
rather than from changes in specific interactions. This assertion
is supported by several observations. First, overall screening of
the electrostatic repulsions at pH 3.5 by addition of ∼1 M salt
results in complete recovery of the unfolding behavior observed
at neutral pH (Figure S1). Second, the aliphatic carbon CS
values for the side-chains of the 11 basic residues in gpW (7 R
and 4 K) are essentially identical at both pHs. The CS
insensitivity of the R and K side chains to the protonation
status of their acidic counterparts suggests the absence of
specific electrostatic interactions in the gpW native structure.
Third, we determined the pKa values for all the carboxylic
residues in gpW and the lone histidine using NMR (Figure S2).
The titration shows that all these residues have pKa values (4.5
± 0.14 for the five E in the sequence, 3.66 ± 0.15 for the three
D, and 6.7 for H) that are very close to the standard values of
the reference amino acids in unstructured peptides. The lack of
significant pKa shifts indicates that there is no significant
coupling between the charge status of those residues and the
folding process of gpW.
For the NMR analysis of thermal unfolding we used the 15N

amide, 13Cα and 13Cβ CS for the 62 residues in the protein (a
total of 180 atomic unfolding curves). Relative to protons, the
CS for these atoms offer far superior performance for the high-
resolution analysis of protein unfolding because they are easier
to interpret in structural terms, exhibit minimal temperature
dependence,39 and ring-current effects are less significant. The
NMR spectra recorded around the denaturation midpoint
(where changes in populations are maximal) did not show
significant line broadening, consistent with gpW being in the
fast NMR exchange regime. Interestingly, the CS denaturation
profiles proved to be very heterogeneous (all CS versus T data
are given in Table S2). A large set of the curves (102) was two-
state-like (2SL), thus showing single transitions, 35 showed two
apparent transitions (three-state-like, 3SL), and others showed

even more complex patterns (CP). Fitting the 2SL curves to a
two-state model rendered high variability in Tm and ΔH that
goes well beyond experimental uncertainty (σ(ΔH) = 62 kJ/
mol and σ(Tm) = 9.3 K relative to the 17 kJ/mol and 1.6 K that
are the respective median fitting errors at 68% confidence). The
variability in thermodynamic parameters observed for the 2SL
curves results in a distribution of native probabilities that
exhibits maximal heterogeneity at the denaturation midpoint.
This observation is qualitatively similar to what was originally
reported for the one-state downhill folder BBL.31 For gpW the
distribution of probabilities is comparatively much sharper, in
line with its distinctly sigmoidal global unfolding process. This
result confirms that the atomic heterogeneity is proportional to
the overall unfolding broadness of the protein, as has been
proposed before,31 and not an artifact from poorly defined high
or low temperature baselines. Three-state fits of the 3SL curves
also produced high variability (the parameters for all two-state
and three-state fits are shown in Tables S3 and S4). However,
the global unfolding obtained as the signal-weighted average of
all the CS data is a simple sigmoidal curve that overlaps
perfectly with the denaturation profile obtained by a low-
resolution backbone-sensitive technique such as CD (Figure
1B). This important control demonstrates that the observed
variability in CS represents the true gpW thermal unfolding,
which is simple in global terms but inherently complex at the
atomistic level.
Interestingly, the distribution of atomic unfolding behaviors

throughout the protein is seemingly random. For example,
grouping the 102 simplest curves (2SL) by atom type only
reveals weak trends: backbone-reporting probes (15N and
13Cα) unfold on average more cooperatively (higher ΔH) than
side-chain-sensitive 13Cβ, which tend to exhibit less cooperative
curves and also slightly higher Tm (Table S5). A more detailed
analysis using data-clustering tools40 produced 15 different
clusters (Figure 1C), each with its own distinctive properties
(Tables S6−S8). All these clusters contribute to the overall
gpW unfolding signal as they all contain significant numbers of
curves (three or more) and display comparable changes in CS
upon unfolding. The most characteristic one is cluster 5, which
is largest in size and reproduces the global unfolding behavior
closely. In fact, considered alone, cluster 5 could be construed
as solid evidence of two-state equilibrium unfolding behavior.
However, such an argument implies discarding ∼80% of the
curves and ∼71% of the total ΔCS signal. The elements of the
different clusters are spread around the gpW sequence without
revealing any obvious structural or topology-based pattern
(Figure 2). For example, elements from cluster 5 are found in
both α-helices, the β-hairpin, and the short loops connecting
them. What Figure 2 reveals, however, is that CS curves from
the same residue are often classified in the same or a similar
cluster, indicating that multiple atomic probes provide
consistent information on unfolding at the residue level.
Another general feature that emerges from Figure 2 is the large
concentration of CP curves on both tails, which is consistent
with looser coupling of the tails to the rest of the protein.
Overall, the entire CS data set provides a close look at atomistic
complexities of the gpW equilibrium unfolding process that are
difficult to obtain using other currently available experimental
methods, and which demonstrate that NMR can expose a great
deal of structural detail behind the rather sharp equilibrium
unfolding process of a barrier-crossing fast-folding protein. We
thus conclude that the atom-by-atom NMR approach is
extensible from the one-state downhill folding regime to a
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more general scenario, confirming experimentally what had
been proposed before by theory37 and providing an excellent
opportunity to compare experiments and simulations at the
atomic level.
Long-Time-Scale MD Simulations of gpW Folding and

Unfolding. MD simulations offer the potential for direct
examination of folding and unfolding trajectories at an atomic
level of detail.41 Until recently, however, even the longest such
simulations did not reach the time scale on which protein
folding takes place. In recent years, the development of fast
kinetic experiments42 has led to the discovery of many proteins
that approach the μs folding speed limit,26 while special-
purpose hardware has extended the reach of continuous, all-
atom, explicit-solvent MD simulations to the millisecond time
scale.43 These advances have allowed the execution of single
equilibrium simulations encompassing the repeated folding and
unfolding of a number of small proteins,16,17,44−46 shedding
light on various aspects of the folding process. Such
simulations, however, are based on imperfect physical models
(force fields) of the interatomic interactions that underlie the
dynamics of real biomolecular systems. The ability to compare

the results of gpW simulations with corresponding exper-
imental measurements is thus useful not only for developing a
deeper understanding of the process of protein folding, but for
assessing and improving the accuracy of current force fields.47

GpW is indeed a particularly suitable protein model for such
purposes, as it has been recently demonstrated by comparing, at
the chemical shift level, the properties of a partially unfolded
species detected by NMR relaxation dispersion25 and predicted
by coarse-grained simulations.48

In the work reported here, we performed a number of MD
simulations in parallel with the experiments described above.
Using Anton, a special-purpose supercomputer designed for
MD simulations,43 we performed (i) a 250 μs simulation of the
reversible (un)folding of gpW at 340 K (the approximate Tm in
the force field) to characterize the folding kinetics and (ii) four
independent ∼200 μs simulated tempering (ST) simulations to
calculate temperature-dependent properties equivalent to those
investigated experimentally by NMR. From the comparison
between the five runs, we could assess the simulation
convergence and the statistical errors of the calculated
quantities. All simulations were started from an extended
conformation, and transitions from disordered conformations
to an ensemble of structures consistent with the native state
(Cα-RMSD below 1 Å from the NMR structure) were
observed multiple times in each simulation. Visual inspection
of the Cα-RMSD time series for the 340 K simulation (Figure
3A) reveals a high degree of structural heterogeneity, strongly
suggesting that gpW samples several metastable states in
addition to the native and unfolded states. A kinetic-clustering
analysis16 is indeed consistent with the presence of several
metastable states that interconvert on the microsecond time
scale (Figure 3B). Near the denaturation midpoint, the native
state appears to be in fast equilibrium with a folding
intermediate (I2) in which the two helices and the native
hydrophobic core are well formed, but where the β-hairpin is
largely unstructured.
I2 is in slightly slower kinetic exchange with a more

unstructured state in which only helix 1 is formed (I1). The
cluster analysis identifies two additional, partly folded
ensembles that are stable on the microsecond time scale: one
in which the β-hairpin is formed but the helices are
disorganized (M1), and another in which helix 1 is formed
and interacts in non-native fashion with a partially formed helix
2 (M2). M1 and M2 can be considered misfolded kinetic traps,
and have populations of ∼15% at 340 K. This model is
consistent with a folding mechanism in which helix 1 is formed
early on the folding pathway, while the β-hairpin is the last
structural motif to consolidate.
From the ST simulations, we calculated the changes in

population of each metastable state as a function of
temperature (Figure 3C). The populations at 340 K extracted
from ST and the constant-temperature MD simulation (circles
in Figure 3C) agree to within 10%, with the exception of the
unfolded state, which is less populated in the latter. Given the
larger amount of data collected, the better convergence
properties of ST over MD simulations, and the good agreement
between the different ST simulations, this discrepancy (∼1 RT
error in relative free energy) is likely to reflect a larger statistical
error in the constant-temperature MD simulation. As expected,
the population of the fully disordered unfolded state (U)
increases steadily with temperature, and dominates at the
highest temperature. At low temperature, I2 and the native
ensemble are the most populated states, but there is some

Figure 2. Distribution of experimental unfolding patterns on gpW.
The elements of the 15 clusters obtained from the analysis of the 180
NMR CS curves are overlaid on a schematic representation of the gpW
native structure. The color code identifying each cluster is the same as
in Figure 1. The elements included in each cluster are shown in the
bottom table.
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structural heterogeneity with a substantial population of M2. I1
and M1 reach maximal population near the denaturation
midpoint. The relative thermal stability of the different
structural clusters reflects their relative order of appearance
along the folding pathway, similarly to what has been previously
observed for other fast-folding proteins,16,17,49 thus indicating
that useful mechanistic information can in this case be obtained
from thermal denaturation data.
Comparing Simulations and Experiments on a Global

and Local Scale. The structural ensemble obtained from the
MD simulations at 300 K conforms with the NOEs measured
experimentally at the same temperature (average violation 0.02
Å; only 2 NOE restraints are violated by more than 1.5 Å). The
native conformations in the simulations are thus very similar to
the experimental NMR structure (Figure 4A). Another
common test for simulations is to compare folding rates.50

We thus measured the folding-unfolding kinetics of gpW at pH
3.5 using nanosecond infrared T-jump experiments. The
folding relaxation of gpW could be well fit to a single
exponential decay for all temperatures. At the same temper-
ature of the standard MD simulation (340 K) the relaxation
rate measured experimentally is ∼1/(8.8 μs) (blue in Figure
4B), which is essentially identical to the relaxation rate
previously measured at neutral pH.18 For the simulations, we
used the number of helical residues as a proxy for the IR signal
and calculated its autocorrelation function over the 250 μs
equilibrium MD simulation (red in Figure 4B). The obtained
decay could not be properly fitted to a single exponential decay,
but could be well fitted to a double-exponential function with
rates of 1/(0.5 μs) and 1/(4.6 μs). The fast phase corresponds

to helix-melting and -forming events that seem to occur within
metastable states in the simulation, and it is thus not associated
with folding. The slow process, which accounts for most of the
amplitude and corresponds to the overall folding process in the
simulations, is in good agreement with the experimental
midpoint relaxation rate measured here at pH 3.5 (Figure
4B) and in a previous work at pH 6.18 The agreement further
improves if we consider the low water viscosity of the TIP3P
model, which typically results in roughly a 2-fold speedup of the
folding kinetics.51 From a coarse-grained viewpoint, the MD
simulations thus appear to provide an excellent description of
the global features of gpW folding.
In addition to customary comparisons of native structure and

global quantities like folding rate and melting temperature, the
combination of the NMR experiments (Figure 1) and the ST
simulations offer the opportunity for a more detailed
comparison between simulation and experiment with regard
to the thermodynamic and structural properties of gpW as a
function of temperature. To achieve this, we calculated the
average 15N NH, 13Cα, and 13Cβ CS for all the conformations
observed in the ST simulations at each temperature using both
CamShift52 and SPARTA+.53 Such average computed chemical
shifts are equivalent to the experimental values, which for a
protein in the fast NMR exchange regime are also population
averages. The first important observation is that individual
computed CS curves are also very heterogeneous. The cluster
analysis classified the data in 13 clusters with more than three
curves, which display significant differences in cooperativity and
denaturation midpoint (Figure S3). In general, the computed
data recapitulates the heterogeneity observed experimentally

Figure 3. gpW folding kinetics and thermodynamics from MD simulations. (A) Time series of the Cα-RMSD from the first structure of PDB entry
2L6Q obtained from a 250 μs equilibrium MD simulation at 340 K started from an extended conformation. (B) Markov model of the folding free-
energy surface obtained from a kinetic-cluster analysis of all the simulation trajectories combined. Helix 1 is shown in red and helix 2 in blue. The
rates of interconversion between clusters, estimated from the equilibrium MD simulation at 340 K, are also reported. (C) Population of the
metastable states identified in the cluster analysis as a function of temperature. Statistical errors for the cluster populations are estimated from
comparison of the two independent ST simulations. The cluster populations observed in the equilibrium MD simulation at 340 K are reported as
circles.
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with the exception of the most complex behaviors (CP curves).
Figure S3 also shows that the ensemble variability in CS for
each temperature is small (although it increases somewhat at
the lowest temperatures due to poorer sampling) relative to the
overall changes resulting from unfolding. As observed before
for the NMR experiments, the average unfolding behavior is a
simple sigmoidal (Figure 4C). However, direct comparison
reveals that the simulated unfolding is about 3 times broader
than its experimental counterpart, whereas the agreement in
denaturation temperature is good (within 7 K). The much
broader melting reflects a substantial underestimation of the
unfolding enthalpy in simulationsa phenomenon that
appears to be a general (though not yet completely
characterized) feature of current biomolecular force fields.54

When the simulated temperature scale is compressed
accordingly, however, the average CS curves overlay almost
perfectly (Figure 4C). The agreement with experiment is
essentially identical for data calculated with either CamShift or
SPARTA+.
The computed CS curves cannot be fitted to two- or three-

state models as accurately as the experiments because they have
higher data point fluctuations and a more poorly defined low
temperature baseline. As a way to surmount this limitation, we
classified the computed and experimental CS curves by protein
segments to compare the average unfolding properties of the
various secondary structure elements in gpW. In this analysis
the experimental data shows that the second β-strand, which
has no tertiary contacts beyond the hairpin,38 is intrinsically less

stable (midpoint ∼5 K below the global Tm). All other
segments have Tm values closer to the global process, with the
first β-strand exhibiting the lowest Tm among them and the
beginning of helix 2 the highest one (Figure 4D). At this level,
most of the atomic heterogeneity is thus averaged out,
indicating that the various secondary structure elements unfold
almost concertedly, with the exception of strand 2. The
simulations draw a slightly different picture in which there is
more variability among protein segments (Figure 4E). The
simulations do pick up the low stability of the second strand,
but extend it to the whole hairpin region (β1-β2 and L2).
Moreover, in the simulation helix 1 is more stable than helix 2.

Mapping the Folding Interaction Network of gpW. To
investigate the unfolding of gpW in more depth, we turned to
the analysis of residue−residue thermodynamic couplings. This
method was originally devised for inferring the interaction
network of one-state (global) downhill folding proteins from
equilibrium NMR unfolding experiments.31 The degree of
coupling between every pair of residues is thus obtained from
the similarities among the unfolding patterns of all the possible
CS-curve pairs (see the Methods section for details). A strong
coupling between two residues is interpreted as indicative of
concerted unfolding, whereas a weaker coupling implies
uncorrelated unfolding events (e.g., residues with very different
Tm).

31 Primary couplings are between residues interacting in
the native structure, and secondary couplings occur when the
two residues are indirectly connected through mutual
interactions with others. The approach is directly extensible

Figure 4. Comparing long-time-scale simulations of gpW folding with experiments. (A) Structural comparison showing the superposition of one
representative conformation of the gpW folded state from ST simulations (red) and the lowest-energy structure from the NMR ensemble at pH 3.5
(blue). (B) Folding kinetics. The experimental IR relaxation kinetics to a final T = 340 K is shown in blue, and its fit to a single exponential function
in cyan. The simulation kinetics is shown in red, its fit to a double exponential function in yellow, and the resulting amplitudes of the fast and slow
phases in gray. (C) Global equilibrium thermal unfolding. The average atomic unfolding signal is obtained from the singular value decomposition of
the 180 CS experimental or simulation curves, and then normalized by fitting to a two-state model. The red circles show the simulation curve and the
blue line the NMR experimental curve of Figure 1B. The temperature scale for the simulation (top) is compressed by a factor of 2.97 and shifted by
7 degrees relative to the experimental scale (bottom). (D) Experimental thermal unfolding by protein segment. The upper bar shows the color-
coded specific segments in gpW and the vertical lines the segment Tm. The inset is a blow up of the 328−331 K region. (E) Simulation thermal
unfolding by protein segment. The experimental temperature scale is shown on top for reference.
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to the NMR data of gpW because it is atomistically complex
(Figure 1, Table S2), and is also transferable to the simulations,
since we have computed CS thermal unfolding curves for all the
relevant atoms. Figure 5 shows the thermodynamic coupling
matrices resulting from the NMR experiments (left) and
simulations (right). Both the experimental and simulation-
based matrices exhibit a complex pattern of high (red),
intermediate (yellow), and low (blue) couplings, indicating that
at the residue level there still is significant variation in unfolding
behaviors.
As first step in this analysis, we take advantage of the MD

simulation results to better understand and test the mechanistic
connection between the thermodynamic coupling matrix and
the underlying folding interaction network. This is an
important issue that could not be examined before because
the NMR experimental data does not provide the structural
information about the folding mechanism that is readily
obtained from the simulated trajectories. Along these lines,
we find that the thermodynamic information encoded in the
simulated coupling matrix (Figure 5, right) agrees with the
mechanistic information obtained from the kinetic clustering of
the simulations (Figure 3B). Kinetic clustering shows that the
β-hairpin is flexible in the native state, and unstructured in all
other clusters (the only exception is M1, in which the hairpin is
the only formed structure). Consistently, the hairpin is virtually
uncoupled to everything else (Figure 5, right) and has the
lowest melting temperature (Figure 4E). Thus, the structural
element with lowest thermodynamic stability in the simulations

forms last during folding and is also the least coupled to other
protein regions in the matrix.
The two helices can be either formed or frayed in various

clusters, but when they are formed, they tend to be formed for
their full length (see I1, I2, and M2 in Figure 3), in agreement
with their strong local coupling (Figure 5, right). Helix 1, which
is better defined structurally than helix 2 in all clusters, exhibits
stronger secondary couplings. The presence of interactions
between the end of helix 1 and beginning of helix 2 in multiple
clusters (Native, I2, and to a lesser extent, I1) is consistent with
the strong interhelix coupling in the matrix, while the very
transient interactions between the protein ends are consistent
with their weak coupling observed in the matrix. Overall, the
simulation results provide compelling support for the utility of
residue−residue coupling matrices as an analytical tool for
probing protein folding interaction networks. Moreover, the
computed coupling matrix provides a picture of the folding
process in simulation, in which individual helices can form
independently of global folding, that is consistent with the
simulated IR relaxation profiles (Figure 4B) and the kinetic
clustering analysis (Figure 3B). This consistency further
supports the use of equilibrium denaturation CS measurements
as a way to obtain residue−residue coupling information and
infer details of folding mechanisms.
As second step, we examine the similarities and differences

between the experimental and simulated coupling matrices.
This exercise is highly instructive from the viewpoint of
evaluating and enhancing force field accuracy. Figure 5 shows
that the simulated and experimental matrices do indeed share

Figure 5. Mapping the folding interaction network of gpW from the residue−residue thermodynamic coupling matrix. Upper panels show the
experimental (left column) and simulation-based (right column) residue−residue thermodynamic coupling matrix (highest coupling in red, lowest in
dark blue), with native contacts identified using hollow black circles. The bottom right triangle shows the entire coupling matrix, while the upper left
triangle shows only primary couplings (interacting residues). The structural and sequence distribution of the overall degree of coupling (defined as
the sum of the couplings of a given residue to all other residues) is shown in the intermediate and bottom panels. Residues were classified in six levels
of coupling (from low to high: dark blue, light blue, cyan, yellow, orange, red) using data clustering tools.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.5b02324
J. Am. Chem. Soc. 2015, 137, 6506−6516

6512

http://dx.doi.org/10.1021/jacs.5b02324


their main features. As in the simulation-based coupling matrix,
for example, the experimental matrix identifies strong coupling
between the end of helix 1 and the loop and the beginning of
helix 2, as well as marginal coupling between the protein ends
and between the β-hairpin and the rest of the protein.
Moreover, high local coupling is found in the helical regions. At
the residue level the similarities are notable to the extent that
the simulations correctly capture the polarized distribution of
strongly and weakly coupled residues along the length of the
two helices and the hairpin (see the color patterns plotted on
the gpW structure; Figure 5 middle). Such similarities indicate
that the simulations reproduce the major structural and
mechanistic aspects of gpW (un)folding.
Certain differences between the experimental and simulation-

based coupling matrices emerge, however, when inspected in
more depth. In the experiment, the residues with high overall
coupling are more scattered throughout the sequence (Figure 5,
bottom) whereas in the simulation, coupling tends to
concentrate in the two helices (Figure , bottom), consistent
with the observation of a less cooperative unfolding process
(Figure 4D,E). In particular, the simulations do not capture a
critical structural node that includes the hinge connecting the
hairpin with helix 2 (L2, residues 35−41) and the middle of
helix 1 (H1M, residues 7−15). This node appears to be key for
the cooperative unfolding seen experimentally. For instance, L2
and H1M couple with the other hinge (residues 19−24) and
the beginning of helix 2 (residues 41−48) through primary
contacts. Strong secondary couplings (red-orange squares with
no contacts) then link both segments to the remainder of both
helices and to some residues in the first half of the hairpin, thus
expanding the network over most of the protein.
In summary, while the simulations and the NMR experi-

ments give consistent results with regard to the main aspects of
the folding process, with early formation of helices and late
formation of the hairpin, the simulated thermal unfolding
process is more decoupled at the level of secondary structure
elements than that demonstrated experimentally, providing a
structural basis for the decreased cooperativity observed in
simulations (Figures 3 and 4). We speculate that the higher
stability of isolated secondary structure elements in simulation
may result in a free energy surface containing more metastable
states than observed experimentally. A possible reason for this
discrepancy is that current force fields and water models tend
to produce unfolded states that are too collapsed,54,55 and this
collapse may lead to overstabilization of individual secondary
structure elements,56,57 making the folding transition less
cooperative.

■ CONCLUSIONS
Theory and simulations have suggested that complex folding
mechanisms may still result in global two-state kinetics,20,21,58,59

but obtaining experimental evidence for this type of conjecture
has been challenging, since it requires the use of a method that
provides a level of structural detail comparable to that of
atomistic simulations. The NMR experiments reported here
constitute a step in that direction, revealing that the apparently
simple and cooperative global unfolding behavior of the protein
gpW, which is in many ways consistent with two-state folding
(and thus in principle an all-or-none process), hides a far richer
process at the atomic level. The combination of experiments
and simulations demonstrates that analysis of such atomistic
details obtained from NMR data in terms of residue−residue
coupling matrices, a technique that was originally developed for

the investigation of one-state downhill folding mechanisms,31

provides important information related to the folding
interaction network and mechanism of gpW. Moreover, the
inherent features of gpW folding indicate that the experimental
determination of residue−residue coupling matrices by NMR
should be broadly applicable to fast folding proteins, even if
they fold by crossing a free energy barrier. Practically, the reach
of the method will be determined by the interplay between two
interrelated parameters. First, the folding rate of the protein
must be considerably faster than the chemical shift time scale
(i.e., rates higher than ∼1/(200 μs)) to ensure fast-exchange
NMR conditions. The second parameter is the intrinsic degree
of folding cooperativity, because above a certain threshold the
atomic heterogeneity might be indistinguishable from exper-
imental uncertainty.60 As the rate slows down, folding
cooperativity will concomitantly increase, and thus the NMR
analysis of sharper, more challenging unfolding transitions will
also encounter decreased resolution due to line broadening.
Nevertheless, there is nowadays an ample collection of single-
domain proteins that have been experimentally identified to
fold in microseconds and which contains examples from all
major structural classes. This NMR experimental procedure
thus emerges as a new approach to the characterization of
folding interaction networks and as a complement to MD
simulations in addressing the longstanding challenge of
characterizing the folding and unfolding of proteins with
atomic resolution.

■ METHODS
Protein Production. A sequence containing residues 1−62 of the

original gpW gene described by Davidson and co-workers61 was
subcloned into the expression vector pBAT. Both unlabeled and
uniformly 15N- and 13C-labeled gpW protein were produced using the
same procedures previously described.38

Circular Dichroism Spectroscopy. thermal unfolding experi-
ments monitored by far-UV circular dichroism were performed on a
Jasco J-815 spectropolarimeter equipped with Peltier thermal control
using a 1 mm path-length cuvette. The samples were prepared at a
protein concentration of 30 μM in 20 mM citrate buffer adjusted to
pH 3.5.

NMR analysis and structure determination. NMR samples of
13C,15N-labeled gpW were prepared in a Shigemi tube at 1 mM
concentration in 20 mM glycine buffer, 0.1 mM NaN3, pH 3.5, 5%
D2O/H2O and 100% D2O. Under these conditions our gpW construct
remained soluble and monomeric according to NMR line width values.
NMR experiments were acquired at 294 K in a Bruker Avance III 600
MHz spectrometer equipped with a triple resonance z-axial-gradient
probe. Sequence backbone chemical shift assignments were obtained
from the following experiments: [1H−15N] HSQC, HNCO,
HNCACB, and CBCA(CO)NH. Side chain 1H, 15N, and 13C
assignments were obtained from HBHA(CO)NH, H(CCO)NH,
C(CO)NH, and HCCH-TOCSY. NOE data were obtained from 3D
15N-HSQC-NOESY and 4D 13C-HMQC-NOESY using a mixing time
of 110 ms. All experiments were processed with NMRPipe62 and
analyzed with PIPP.63 For the structure determination of gpW,
experimental restraints derived from NOE cross-peaks, hydrogen bond
distances, and dihedral angles were obtained. Only unambiguous
interproton distance restraints were used, and errors of 25% of the
distances were applied to obtain lower and upper distance limits.
Hydrogen bond distance restraints (rNH−O = 1.9−2.5 Å, rN−O = 2.8−
3.4 Å) were defined according to the experimentally determined
secondary structure of the protein. The program TALOS+ was used to
obtain 94 ϕ and ψ backbone torsion angle constraints for those
residues with statistically significant predictions.64 Structure calcu-
lations were performed with the program X-PLOR-NIH 2.16.0 by
minimizing a target function that includes an harmonic potential for
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experimental distance restraints, a quadratic van der Waals repulsion
term for the nonbonded contacts, and a square potential for torsion
angles.65 Starting structures were calculated and heated to 3000 K and
cooled in 30 000 steps of 0.002 ps during simulated annealing. The
final ensemble of 20 NMR structures was selected based on lowest
energy and no restraint-violation criteria. These conformers had no
distance restraint violations and no dihedral angle violations greater
than 0.3 Å and 5°, respectively. Structures were validated using
PROCHECK-NMR and MolProbity,66,67 which show that the family
of 20 structures are of considerable high quality in terms of geometry
(92.6% of the residues populating the most favored regions of the
Ramachandran plot for the whole ensemble) and side chain packing.
Structures were analyzed with PyMOL(DeLano Scientific, San Carlos,
CA). Coordinates were deposited in the Protein Data Bank with
accession code 2L6R and chemical shifts were deposited in the
Biological Magnetic Resonance Bank (BMRB code 17322).
NMR pH Titration. We obtained the chemical shift values of the

side chain CO carbons of all Asp and Glu residues in gpW by
analyzing a series of H(CA)CO spectra, a 2D version of the HCACO
experiment.68 The 1Hε1 chemical shifts of the His15 were determined
from a series of [1H−13C] HSQC spectra.69 All the spectra were
recorded on an ∼1 mM 13C,15N-double labeled gpW sample, 0.1 mM
DSS in D2O at different pHs ranging from 1.5 to 8.1 (8.11, 7.16, 6.01,
5.09, 4.08, 3.57, 3.02, 1.98 and 1.53) and 294 K. NMR spectra were
analyzed with SPARKY.70 The pKa values were obtained by a
nonlinear least-squares fit of the experimental pH titration curves to
the following equation:
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where δ1 and δ2 are the chemical shift values at the lowest and highest
pH, respectively. Data fitting was done with Origin Pro 8.0
(OriginLab).
Equilibrium Thermal Unfolding of gpW by NMR. As a first

step, the reversibility of gpW thermal unfolding at the protein
concentrations required for multidimensional NMR experiments was
assessed using a NMR sample consisting of 1 mM 15N-labeled gpW in
20 mM glycine buffer, 0.1 mM NaN3, pH 3.5, 5% D2O/H2O. This
sample was heated up to 100 °C for a period of 2 h and then cooled
back down. The perfect cross-peaks superimposition of the two
[1H−15N] HSQC spectra recorded before and after heating, indicated
full reversibility in the relevant conditions. Equilibrium thermal
unfolding was investigated using multidimensional NMR experiments
to monitor the changes in 1H, 15N, and 13C chemical shifts in the 273−
371 K temperature range. For this purpose we used a Bruker 5 mm
TXI-probe with z-axis gradient able to stand up to 423 K and a BTO
temperature control unit. Accurate temperature calibration was carried
out monitoring the ethylene glycol CS at every experimental
temperature using a sample of ethylene glycol prepared in a regular
5 mm diameter NMR tube and using an air flow-rate of 535 L/h and
following the procedure described by Amman et al.71 Briefly, the neat
ethylene glycol sample was equilibrated for 30 min at each temperature
before acquiring the spectrum. Standard one-pulse 1D 1H NMR
experiments were used to monitor the changes in proton frequency of
−CH2− and −OH with temperature. These changes were converted
to temperature using equation: T(K) = 466.5 − 102.00 Δδ. For the
thermal unfolding experiments we employed a NMR sample at 1 mM
concentration of 13C,15N-labeled gpW in 20 mM glycine buffer, 0.1
mM NaN3, 0.01 DSS, pH 3.5, 5% D2O/H2O. In these experiments the
water resonance was used as spectral reference since the observation of
the standard DSS signal is precluded in multidimensional NMR
experiments because of isotope filtering. Thus, before recording the set
of multidimensional experiments, a 1D 1H NMR experiment was
recorded and employed to calibrate the position of the water signal
relative to DSS at each temperature. Pressurizable tubes manufactured
by New Era Enterprises (U.S.) with 0.77 mm thick glass were used to
minimize evaporation of the sample. We measured the pH of NMR
samples at the different experimental temperatures using a thermal
block and a pH-meter recalibrated at each temperature. We observed

that the pH of the samples was held constant at a value of 3.5 ± 0.1
over the whole temperature range. Protein backbone amide 15N, 1HN,
13Cα, and 13Cβ chemical shifts were assigned with the following set of
experiments: [1H−15N] HSQC, CBCA(CO)NH, and HNCACB.
GpW folds in fast exchange regime relative to the NMR chemical shift
time scale, and thus, each atom produces a single chemical shift
corresponding to the dynamically averaged conformational ensemble
at every condition. The ensemble average chemical shifts for all
relevant atoms were fully assigned in the 273−371 K temperature
range at fixed intervals of 5 K. At temperature conditions within the
unfolding transition region (slightly below and above the Tm) the
temperature interval for NMR experiments was reduced to 3 K to
increase the data density in the region of largest change in CS. All
experiments were processed with NMRPipe and analyzed with PIPP to
obtain accurate chemical shift determinations using a multilevel
contour averaging procedure. At pH 3.5 and high temperatures gpW
experienced slow proteolysis at specific positions in the primary
sequence involving glutamine residues. We thus monitored protein
integrity by comparing [1H−15N] HSQC spectra recorded before and
after every set of triple-resonance NMR experiments. At temperatures
higher than 345 K the gpW proteolysis rate was higher than 1/(5
days) so we used a freshly prepared sample for recording the suite of
triple resonance NMR experiments at each temperature above 345 K.

Fast-Folding Kinetics by Nanosecond Laser-Induced T-
Jump. folding-unfolding relaxation kinetics of gpW was measured
using a nanosecond laser-induced T-jump apparatus equipped with
infrared detection. Samples were prepared at 4 mg/mL concentration
in 20 mM deuterated glycine buffer, after multiple cycles of
liophilization and dilution in D2O to achieve complete deuteration
of the exchangeable amide protons. The buffer and sample were
adjusted to pD = 3.5, correcting for the isotope effect on the glass
electrode readout. The relaxation kinetics of gpW after a jump of ∼10
K to a final temperature of 328 K were recorded on a custom-built
infrared laser-induced temperature apparatus described previously.18

Briefly, the fundamental wavelength of a Nd:YAG laser (Continuum
Surelite I) operating at a repetition rate of 4 Hz is shifted, by passing
through a 1m path Raman cell (Lightage inc.) filled with a high
pressure mixture of H2 and Ar, to 1907 nm, resonant with the infrared
absorption of D2O. In this way pulses <10 ns with energy of up to 30
mJ were obtained, that induced a local temperature jump of about 10−
12° when focused onto the sample. The folding-unfolding relaxation
kinetics of gpW was observed using a quantum cascade laser (Daylight
Solutions) tuned to 1632 cm−1 to match the absorption of the α helix
signal within the gpW amide I band. The light transmitted from the
sample was recorded using a fast MCT detector (Kolmar
Technologies) coupled with an oscilloscope (Tektronix DPO4032).
Samples were held in a cell formed by two MgF2 windows separated
by a 50 μm Teflon spacer and thermostated at the proper base
temperature using two Peltier thermoelectric coolers (TE Technology
Inc.) in a custom-built sample holder. The transmission of D2O was
used as an internal thermometer to measure the amplitude of the
temperature jump.

MD Simulations. Molecular dynamics (MD) simulations of gpW
were initiated in an extended conformation. The 62-amino acids
sequence MVRQEELAAARAALHDLMTGKRVATVQKDG-
RRVEFTATSVSDLKKYIAELEVQTGMTQRRRG was solvated in a
cubic 60 × 60 × 60 Å3 box, containing 6345 water molecules and 15
mM NaCl. Asp, Glu, Arg, Lys, and His residues were treated as
charged. The CHARMM-h force field72,73 (see SOM) was used to
represent the system. The system was initially equilibrated at 340 K
and 1 bar in the NPT ensemble. Production runs were performed with
the Anton specialized hardware43 using a 2.5 fs time step. Bonds
involving hydrogen atoms were restrained to their equilibrium lengths
using the M-SHAKE algorithm.74 Nonbonded interactions were
truncated at 10 Å, and an Ewald method was used to describe the
long-range electrostatic interactions.75 Four simulated tempering76

simulations of 200 μs each, were performed in the NPT
ensemble.77−79 Two simulations used 18 temperature intervals
between 278 and 398 K, and two used 21 temperature intervals
between 278 and 438 K. Exchanges between temperatures were
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attempted every 20 ps of simulation. To gain additional kinetic
information, we also performed a 258 μs equilibrium MD simulation at
340 K in the NVT ensemble. A kinetic clustering analysis was used to
identify the most relevant metastable states on the free-energy surface
through a fit of the autocorrelation functions of 400 Cα−Cα contacts
on time scales ranging from 0.5 to 50 μs.16,45 In order to obtain
consistent clustering, this analysis was simultaneously performed on
the five trajectories combined. Chemical shift predictions were
performed using the CamShift52 and SPARTA+53 programs. Helical
residues for the analysis of the autocorrelation function were identified
according to the STRIDE definition,80 as implemented in VMD.
Analysis of Experimental CS Curves. as a first step, all obtained

experimental CS curves were classified in three groups according to
the unfolding behavior: (1) 102 curves were classified as 2-state-like
(2SL) curves because they had a distinctly sigmoidal trend
characterized by a single transition and a single peak in their
derivative; (2) 35 curves were classified as 3-state-like (3SL) because
they exhibited two apparent transitions and thus a bisigmoidal shape
and two peaks in their derivative; and (3) 43 curves did not fit any of
the other two categories (whether because they exhibited multiple
transitions or no obvious transition), and were thus included in the
complex-pattern (CP) group. The CS curves classified as 2SL and 3SL
were fitted to a thermodynamic two-state or a three-state unfolding
model equation, respectively, using the procedures described
previously.40

Cluster Analysis of CS Curves. The data set containing all of the
experimental CS curves was analyzed globally using data clustering
methods. CS curves belonging to the 2SL and 3SL groups were
clustered according to both the thermodynamic parameters obtained
in their fits (Tm and ΔH for 2SL and Tm1, Tm2, ΔH1, and ΔH2 for 3SL)
or according to the probability of the native state as a function of
temperature obtained from the two and three fits. Both methods
rendered equivalent results. CS curves included in the CP group were
clusterized according to their similarity after normalization of the
signal using the Z-score procedure.40 All clustering routines were
performed with the kmeans algorithm by running 10 000 trials to
guarantee convergence and selecting the solution with minimum
residuals. The 102 2SL curves were clustered into 12 clusters, out of
which 8 clusters had at least 3 elements, whereas the other 4 clusters
had only 1 or 2 elements. Clustering of the 35 3SL curves produced 5
clusters with at least 3 elements. CP curves were grouped in 10 clusters
by kmeans according to their zscored shape, out of which only 2
clusters had 3 elements or more. Using these procedures, a total of 15
characteristic clusters were identified with at least three elements
containing in total 132 atomic unfolding curves. The main cluster
properties are summarized in Tables S6−S8.
Residue−Residue Thermodynamic Coupling Matrices from

Experiment and Simulations. The thermodynamic coupling index
(TCI) for each pair of residues in a protein is calculated from the
pairwise comparison between all the CS curves of the first residue in
the pair with all the curves of the second residue. The thermodynamic
coupling index of residues x and y is then calculated by summing all
the possible pairwise comparisons of atomic folding curves as reported
in the following equation:
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where pm and pn are row vectors from a matrix including all the zscored
CS curves in the protein. The numerator thus corresponds to the
mean RMSD for all CS curves in the data set. Px,i and py,j are the
vectors from the same matrix that correspond to the CS curves of
residues x and y, respectively (i runs over all curves of residue x and j
over all curves of residue y). The TCI for residues x and y is positive
when the average Euclidean distance between all their cross-pairs is
smaller than the mean RMSD for all CS curves in the protein and
negative otherwise. The TCI matrix is constructed by repeating the
same procedure over all possible residue pairs. This procedure was
applied to both the experimental CS curves measured by NMR and

the synthetic CS curves computed with either CamShift52 or SPARTA
+53 from all the conformations observed at each temperature in the ST
simulations.
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(19) Naganathan, A. N.; Muñoz, V. Biochemistry 2008, 47, 6752.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.5b02324
J. Am. Chem. Soc. 2015, 137, 6506−6516

6515

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/jacs.5b02324
mailto:dealbae@cnb.csic.es
mailto:vmunoz@cnb.csic.es
http://dx.doi.org/10.1021/jacs.5b02324


(20) Voelz, V. A.; Bowman, G. R.; Beauchamp, K.; Pande, V. S. J. Am.
Chem. Soc. 2010, 132, 1526.
(21) Beauchamp, K. A.; R, M.; Y.-S, L.; Pande, V. S. Proc. Natl. Acad.
Sci. U.S.A. 2012, 109, 17807.
(22) Korzhnev, D. M.; Religa, T. L.; Banachewicz, W.; Fersht, A. R.;
Kay, L. E. Science 2010, 329, 1312.
(23) Bouvignies, G.; Vallurupalli, P.; Hansen, D. F.; Correia, B. E.;
Lange, O.; Bah, A.; Vernon, R. M.; Dahlquist, F. W.; Baker, D.; Kay, L.
E. Nature 2011, 477, 111.
(24) Hansen, D. F.; Vallurupalli, P.; Lundstrom, P.; Neudecker, P.;
Kay, L. E. J. Am. Chem. Soc. 2008, 130, 2667.
(25) Sanchez-Medina, C.; Sekhar, A.; Vallurupalli, P.; Cerminara, M.;
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