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HIGHLIGHTS

• We proposed sarcopenia diagnosis system using bio-signal for neuromuscular system.
• To acquire the bio-signal, we captured stimulated muscle contraction signal.
• The proposed system could facilitate sarcopenia diagnosis in stroke patients.
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ABSTRACT

In this paper, we propose an artificial intelligence (AI)-based sarcopenia diagnostic technique 
for stroke patients utilizing bio-signals from the neuromuscular system. Handgrip, skeletal 
muscle mass index, and gait speed are prerequisite components for sarcopenia diagnoses. 
However, measurement of these parameters is often challenging for most hemiplegic stroke 
patients. For these reasons, there is an imperative need to develop a sarcopenia diagnostic 
technique that requires minimal volitional participation but nevertheless still assesses the 
muscle changes related to sarcopenia. The proposed AI diagnostic technique collects motor 
unit responses from stroke patients in a resting state via stimulated muscle contraction 
signals (SMCSs) recorded from surface electromyography while applying electrical 
stimulation to the muscle. For this study, we extracted features from SMCS collected 
from stroke patients and trained our AI model for sarcopenia diagnosis. We validated the 
performance of the trained AI models for each gender against other diagnostic parameters. 
The accuracy of the AI sarcopenia model was 96%, and 95% for male and females, 
respectively. Through these results, we were able to provide preliminary proof that SMCS 
could be a potential surrogate biomarker to reflect sarcopenia in stroke patients.
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INTRODUCTION

Sarcopenia is a decline in muscle mass and strength due to aging, influenced by 
neuromuscular degeneration, hormonal changes, physical inactivity or nutritional deficits. 
While it primarily affects the elderly, it is also common among stroke patients. The reduced 
physical performance associated with sarcopenia may increase the risk of falls during 
rehabilitation exercises among stroke patients [1,2]. Moreover, sarcopenia can lead to various 
complications, making it a significant cause of deteriorating health [3,4]. Consequently, the 
survival rate of sarcopenia patients is notably lower than those without the condition [5-7]. 
Therefore, early sarcopenia diagnoses and implementation of preventive are essential.
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To diagnose sarcopenia, patients need to undergo evaluations of handgrip, skeletal muscle 
mass index (SMI), and gait speed [8,9]. However, conventional diagnostic methods for 
sarcopenia, particularly handgrip and gait speed assessments, may not be suitable for 
stroke patients with mobility issues (i.e., hemiplegic stroke patients). Stroke often results 
in unilateral motor impairment and may affect their ability to perform the handgrip test, 
which may pose technical difficulties in both performing and interpreting the results [10,11]. 
Therefore, stroke patients are at risk of sarcopenia, may also face difficulties in its diagnosis. 
Hence, there is a crucial need for a suitable sarcopenia diagnostic technique that takes into 
consideration the motor impairment.

Sarcopenia diagnosis requires experts at hospitals due to the need for 3 assessments, resulting 
in considerable time consumption. Additionally, the evaluation time is prolonged for 
stroke patients due to mobility limitations. Consequently, the medical costs associated with 
sarcopenia diagnosis are high. Regular monitoring of sarcopenia is vital for maintaining health, 
but it is challenging for stroke patients due to mobility issues and the necessity of experts 
and equipment. Therefore, these issues hinder the smooth diagnosis of sarcopenia in many 
patients, emphasizing the necessity of an easily accessible and convenient diagnostic technique.

To address these issues, we propose an artificial intelligence (AI)-based sarcopenia 
diagnostic technique utilizing bio-signals from the neuromuscular system. Sarcopenia 
causes neuromuscular system degeneration, affecting the state of motor units composed 
of motor neurons and muscle fibers [12,13]. Sarcopenia reduces the cross-sectional area 
(CSA) of myelin in motor neurons, affecting nerve conduction velocity, and decreases the 
CSA of muscle fibers. Thus, the degeneration of motor neurons and muscle fibers directly 
impacts physical performance. Obtaining information about motor neurons and muscle 
fibers is crucial for diagnosing sarcopenia, we attempted to collected bio-signals from the 
neuromuscular system using as set of various electrical stimulation frequencies defined as 
stimulated muscle contraction signals (SMCSs). Finally, our proposed system consists of a 
wearable device for measuring SMCS and algorithm for analysis. The algorithm includes an 
algorithm for extracting cepstrum coefficients from SMCS data collected by the wearable 
device and an AI-based sarcopenia classifier. Hence, we trained AI models to classify 
sarcopenia by collecting SMCS data from stroke patients, aiming to develop an effective 
sarcopenia diagnostic technique for stroke patients.

MATERIALS AND METHODS

Patient recruitment
To validate the performance of the proposed system, we analyzed preliminary results from a 
cohort study on stroke-induced sarcopenia, collected from 2 university-affiliated hospitals. 
This research received ethical approval from Clinical Research Ethics Committee from 
Bucheon St. Mary’s Hospital (Institutional Review Board [IRB] number: HC22ONDI0052) 
and St. Vincent’s Hospital (IRB number: VC22ONDI0185), and every participant or legal 
guardian signed informed consent before measurement.

Bio-signal collection
The overall block diagram of the proposed system is shown in Fig. 1. It consists of a 
wearable device for collecting bio-signals and algorithm for analyzing the bio-signals and 
diagnosing sarcopenia. The algorithm is divided into preprocessing, feature extraction, and 
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artificial intelligence classification model stages for analyzing SMCS. The wearable device is 
connected to the cradle shown in Fig. 2, and then transfers the collected signals to a mobile 
device via Bluetooth. All collected data through the device is stored on a cloud server.

SMCS recording system
The wearable device consists of 4 electrodes, as shown in Fig. 2. Two electrodes are for 
surface electromyography (sEMG) sensors, and the other 2 electrodes are for electrical 
stimulation. The wearable device is attached to the femoris quadriceps using a hydrogel pad 
connected through magnets as shown in Fig. 2. Using the wearable device, we stimulated 
the femoris quadriceps and recorded SMCS from both limbs. The electrical stimulation 
frequencies were collected for 8 seconds from 5 Hz to 30 Hz in increments of 5 Hz. As the 
electrical stimulation frequency increased, the interval between electrical stimulations 
decreased. Therefore, SMCS recorded during electrical stimulation frequencies higher 
than 35 Hz had intervals that were excessively short, making it impossible to analyze the 
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Fig. 1. Block diagram of the proposed sarcopenia classification technique. 
SMCS, stimulated muscle contraction signal; SVR, support vector machine regression.
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Fig. 2. Outline of stimulated muscle contraction signal recording system using the wearable device. 
EMG, electromyography.
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response signals of the neuromuscular system. For this reason, we used electrical stimulation 
frequencies up to 30 Hz.

Segmentation and feature extraction
To independently analyze the response signals of the neuromuscular system based on the 
electrical stimulation frequency, segmentation based on the electrical stimulation frequency 
was performed. During data collection, besides sEMG we recorded the timing of electrical 
stimulation. Segmentation on the data recorded aligns with the timing of stimulation.

Since we recorded long-term signals using the electrical stimulation frequency, SMCS 
exhibits strong periodicity. Therefore, when performing Fourier transform analysis on SMCS, 
fundamental frequency and harmonic frequency components are prominently visible in 
the frequency domain. These components arising from periodicity need to be separated 
and processed separately when extracting feature vectors as they have low relationship with 
sarcopenia. Hence, because cepstrum analysis method can separate fundamental frequency 
and harmonic frequency from other frequency components, we analyzed SMCS using cepstrum 
analysis [14,15]. We extracted a 200-dimensional complex cepstrum coefficients c from SMCS 
of both femoris quadriceps, and reconstructed a feature vector by averaging the coefficients 
of the left and right sides. However, as not all extracted features play a significant role in 
classifying sarcopenia, we employ a feature selection procedure to further improve the results.

To select meaningful features for sarcopenia, we composed input vectors with the best-
performing feature vectors in terms of classification performance. Additionally, since the 
structure of the neuromuscular system varies according to gender, we trained separate 
models for each gender. Consequently, the input vectors for each model were constructed 
differently. Ultimately, for the sarcopenia classification model for males, the feature vector 
consisted of c at 15 Hz, 20 Hz, and 25 Hz, while for females, the model used c at 20 Hz and 25 
Hz as the feature vector. Finally, the constructed feature vectors were utilized as input vectors 
for the models, selecting only meaningful features based on the area under the receiver 
operating characteristic (ROC) curve (AUC) in the training dataset. And, the input vector is 
concatenated with the height, body weight, and age.

Support vector machine regression (SVR)-based classification model
To classify sarcopenia, we trained a classification model based on SVR. The SVR minimizes 
overfitting issues even with small datasets, making it suitable for our study’s small dataset 
size. Additionally, SVR can utilize various nonlinear functions as kernels, enabling it to 
perform well on nonlinear datasets. For these reasons, we chose SVR to train our sarcopenia 
classification model. The features extracted in section ‘Segmentation and feature extraction’ 
were used as input vectors for the SVR model. To ensure a stable model, we performed 
normalization using the mean and standard deviation of the input vectors from the training 
dataset. The kernel function was set to a second-order polynomial function, and the kernel 
scale was automatically searched within the range of (0.001, 1,000), with values scaled 
logarithmically. And, we trained sarcopenia classification models for each gender based on 
SVR. When training the SVR model, we defined the target values of the model as 0 (without 
sarcopenia) or 1 (sarcopenia). Thus, the SVR model outputs values between 0 and 1. Finally, 
SVR predicted value between 0 and 1 is evaluated using different threshold for each gender to 
classify between sarcopenia and without sarcopenia.
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RESULTS

Subjects
In total, clinical assessments from 46 stroke patients were used for analysis, with 24 male and 
22 female participants. To obtain sarcopenia labels for each patient, we collected handgrip 
(Baseline Smedley Digital hand dynamometer model 12-0286; Fabrication Enterprises Inc., 
Elmsford, NY, USA) and SMI data that that were collected at 6 months post-stroke onset. To 
measure handgrip necessary for the diagnosis of sarcopenia, we used a hand dynamometer. 
Additionally, for measuring SMI, dual energy X-ray absorptiometry (DEXA) was employed, 
following the guidelines of the European Working Group on Sarcopenia in Older People 2 
(EWGSOP2) [16], where gait speed is used for diagnosing severe sarcopenia, we classified 
probable sarcopenia based on the EWGSOP2 guidelines. Finally, 26 patients (male: 14, 
female: 12) were classified as having sarcopenia. Of note, a few patients, despite showing SMI 
values indicative of nonsarcopenia, showed lower grip strength than the diagnostic criterion. 
However, they still showed significant differences in their grip strength value compared to the 
sarcopenic group. The clinical information of the enrolled patients is presented in Table 1.

Experimental configuration
We utilized a wearable device (exoPill, EXOSYSTEMS, Seongnam, Korea; Fig. 3A) and 
hydrogel pads (StiMus Electrode, HUREV Corp., Wonju, Korea; Fig. 3B), as shown in Fig. 3, 
to record SMCS. As described in section ‘SMCS recording system,’ SMCS was collected from 
both femoris quadriceps using the embedded sEMG in the wearable device.

We trained a model for classifying sarcopenia based on SVR. To validate the performance of 
the SVR model, we utilized leave-one-out cross-validation, where one data point was used 
as the test data while the rest were used as training data. Thus, each data point was used as 
a test data point once. As mentioned in section ‘Segmentation and feature extraction,’ we 
performed feature selection based on AUC on the training dataset. Depending on the type 
of feature, different criteria were used for feature selection. For male models, we selected 
features where c at 5 Hz was less than 0.35 or greater than 0.65, at 25 Hz was less than 0.30 or 
greater than 0.75, and at 30 Hz was less than 0.20 and greater than 0.80. For female models, 
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Table 1. Clinical information of the subjects enrolled
Variables Male (n = 24) Female (n = 22)

Non-sarcopenia (n = 10) Sarcopenia (n = 14) p value Non-sarcopenia (n = 10) Sarcopenia (n = 12) p value
Age (yr) 69.1 ± 3.1 79.1 ± 8.7 < 0.005 75.8 ± 7.1 80.5 ± 6.5 > 0.05
Height (cm) 168.2 ± 3.8 169.2 ± 5.2 > 0.05 151.2 ± 6.9 153.0 ± 5.6 > 0.05
Weight (kg) 70.3 ± 8.2 63.7 ± 11.2 > 0.05 58.7 ± 9.3 55.6 ± 8.1 > 0.05
SMI (kg/m2) 7.0 ± 0.5 5.7 ± 0.6 < 0.001 5.5 ± 0.6 4.5 ± 0.5 < 0.005
Non affected handgrip (kg) 27.7 ± 6.1 19.4 ± 6.1 < 0.05 15.1 ± 2.6 9.3 ± 4.1 < 0.05
Stroke type

Infraction 7 (70.0) 10 (71.4) - 7 (70.0) 10 (83.3) -
Hemorrhage 3 (30.0) 4 (28.6) - 3 (30.0) 2 (16.7) -

Affected side
Right 5 (50.0) 8 (57.1) - 5 (50.0) 7 (58.3) -
Left 5 (50.0) 6 (42.9) - 5 (50.0) 5 (41.7) -

Medical comorbidity
Diabetes mellitus 3 (30.0) 7 (50.0) - 3 (30.0) 6 (50.0) -
Hypertension 8 (80.0) 9 (64.3) - 9 (90.0) 10 (83.3) -
Tbc 0 (0.0) 0 (0.0) - 0 (0.0) 1 (8.3) -
Hepatitis 0 (0.0) 0 (0.0) - 0 (0.0) 0 (0.0) -

Values are presented as mean ± standard deviation or number (%). SMI is measured using dual energy X-ray absorptiometry.
SMI, skeletal muscle mass index.
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we selected features where c at 5 Hz was less than 0.35 or greater than 0.75, at 25 Hz was 
less than 0.35 or greater than 0.65, and at 30 Hz was less than 0.35 and greater than 0.75. 
Finally, as explained in section ‘Support vector machine regression (SVR)-based classification 
model,’ we diagnosed sarcopenia using thresholds. The thresholds for sarcopenia diagnosis 
models for males and females were set at 0.57 and 0.58, respectively.

Experimental results
We used complex cepstrum coefficients and body information (BI) such as body weight, 
height, and age as inputs for the SVR model. Since sarcopenia is more likely to occur with 
increasing age, age may have a significant impact on model training. Additionally, when 
sarcopenia occurs, muscle mass decreases, so body weight may also influence it. Therefore, 
we evaluated the performance by excluding complex cepstrum coefficients extracted 
from SMCS and using only BI as input to the SVR model. Furthermore, we validated the 
performance of models using only SMCS, as well as using both SMCS and BI. As described 
in section ‘Support vector machine regression (SVR)-based classification model,’ we trained 
SVR models separately by gender, and the performance of the models is summarized in 
Tables 2 and 3.
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A B

Fig. 3. Equipment for recording the stimulated muscle contraction signal. (A) Wearable device (exoPill), (B) 
hydrogel pads.

Table 2. Support vector machine regression-based sarcopenia classification model performance for male dataset
Input Precision Sensitivity Specificity Accuracy F-score AUC
BI 0.83 (0.68–0.98) 0.71 (0.53–0.89) 0.80 (0.64–0.96) 0.75 (0.58–0.92) 0.77 (0.60–0.94) 0.79 (0.60–0.98)
SMCS 0.93 (0.83–1.00) 1.00 (1.00–1.00) 0.90 (0.78–1.00) 0.96 (0.88–1.00) 0.97 (0.90–1.00) 0.97 (0.89–1.00)
SMCS + BI 0.93 (0.83–1.00) 1.00 (1.00–1.00) 0.90 (0.78–1.00) 0.96 (0.88–1.00) 0.97 (0.90–1.00) 0.97 (0.89–1.00)
Values are presented as 95% confidence interval.
AUC, area under the receiver operating characteristic curve; BI, body information; SMCS, stimulated muscle contraction signal.

Table 3. Support vector machine regression-based sarcopenia classification model performance for female dataset
Input Precision Sensitivity Specificity Accuracy F-score AUC
BI 0.72 (0.53–0.91) 0.67 (0.47–0.87) 0.70 (0.51–0.89) 0.68 (0.49–0.88) 0.70 (0.51–0.89) 0.60 (0.36–0.84)
SMCS 1.00 (1.00–1.00) 0.92 (0.81–1.00) 1.00 (1.00–1.00) 0.95 (0.86–1.00) 0.96 (0.88–1.00) 0.99 (0.94–1.00)
SMCS + BI 1.00 (1.00–1.00) 0.92 (0.81–1.00) 1.00 (1.00–1.00) 0.95 (0.86–1.00) 0.96 (0.88–1.00) 0.98 (0.92–1.00)
Values are presented as 95% confidence interval.
AUC, area under the receiver operating characteristic curve; BI, body information; SMCS, stimulated muscle contraction signal.
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For the sarcopenia classification model trained with the male dataset, when using only BI, 
precision, sensitivity, specificity, accuracy, and F-score were overall the lowest compared to 
other models. By contrast, the performance of the model when using only SMCS and when 
using both SMCS and BI was equivalent. For the sarcopenia classification model trained with 
the female dataset, using only BI resulted in the lowest diagnostic parameters. Particularly, 
sensitivity showed very poor performance. Moreover, the performance of the model when 
using only SMCS and when using both SMCS and BI was similar.

To evaluate the performance of the models, the achieved AUC as shown in Tables 2 and 3 
and the corresponding ROC curve to assess the performance of the algorithms are shown in 
Fig. 4. The ROC curve demonstrated desirable overall performance levels of the models. In 
the male model, the AUC of the ROC curve when using only BI as input showed the lowest 
performance level. By contrast the results obtained when using only SMCS and when using 
both SMCS and BI showed higher performance. For the female classification model, a similar 
trend was observed with the ROC curve when using only BI as the model input showed poor 
diagnostic parameters. Fig. 4, showed that the sole use of SMCS in the model showed good 
performance levels in sarcopenia diagnosis (AUC male: 0.97 [95% confidence interval {CI}, 
0.89–1.00], AUC female: 0.99 [95% CI, 0.94–1.00]).

DISCUSSION

For this study, we trained AI models to classify decreased muscle mass index and therefore 
probable sarcopenia by collecting SMCS data from stroke patients and assessed the 
diagnostic parameters. The diagnosis of sarcopenia was based on SMI and handgrip 
strength, with SMI measured through DEXA technique. Nonetheless we attempted to 
compare the classification performance of each parameter and the performance of the 
proposed technique, with separate verification undertaken for the SMI and handgrip 
values. The precision, sensitivity, specificity, accuracy, and F-scores for the SMCS were 
0.93, 1.00, 0.90, 0.93, and 0.97 for men and 1.00, 0.92, 1.00, 0.95, and 0.96 for women, 
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Fig. 4. Receiver operating characteristic curve of the sarcopenia classification model. (A) Model result for male dataset, (B) model result for female dataset. 
SMCS, stimulated muscle contraction signal; BI, body information.
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respectively. Consequently, the performance of the proposed AI models was overall higher 
than the classification performance of either the SMI or handgrip parameters. Based on our 
preliminary results, the proposed techniques may potentially classify sarcopenia with higher 
accuracy levels than using conventional methods such as DEXA and handgrip strength. This 
is of particular interest in consideration that some nonsarcopenic stroke patients were unable 
to fully exert voluntary muscle contraction of the non-hemiplegic hand with lower grip values 
that were out of proportion with their SMI values.

Previous studies [17,18] have indicated that preexisting sarcopenia may influence functional 
outcomes following a stroke. Although it is crucial to assess sarcopenia, technical limitations 
arise due to hemiparesis. In this study, traditional evaluations such as gait parameters or the 
chair raise test were not utilized. Some even failed to fully reach normal grip strength values 
despite normal SMI values. Our results have demonstrated that the SMCS can be employed as a 
potential parameter to address the current challenges in diagnosing sarcopenia. Additionally, 
results were compared to standard BI measures. Not only did the BI show lower diagnostic 
parameters with accuracy levels as low as 0.67, but showed different levels of accuracy between 
male and female. In contrast, the SMCS was easy to perform, required minimal volition from 
the patient and still showed high diagnostic properties in both genders.

Previous studies have used needle electromyography (EMG) to gather information about 
motor neurons [19-21]. However, the invasive nature of needle EMG makes it impractical for 
everyday applications. sEMG has been used as an alternative that records composite signals 
from multiple motor units [22,23]. The sEMG results can vary depending on the subject’s 
willingness, making it difficult to objectively evaluate the neuromuscular system [24]. To 
solve these problems, we have conducted research on compound muscle action potentials 
(CMAP) [25-28]. CMAP are motor neuron response signals recorded through EMG during 
electrical muscle stimulation. Especially, by recording CMAP using sEMG, response signals 
from stimulated motor neurons passing through the muscle fiber transverse tubules are 
recorded by sEMG sensors [29]. Therefore, we can obtain combined response signals from 
motor neurons and muscle fibers through CMAP.

Compared with conventional methods of assessment, the system proposed in this paper may 
allow for easy and convenient evaluations, alleviating related cost and time in sarcopenia. 
In addition, since stroke patients may not fully participate in grip strength assessment 
or gait speed, due to their motor weakness our new model addresses key issues that may 
help overcome diagnostic difficulties in sarcopenia diagnosis in stroke patients. One may 
hypothesize that this novel technique may provide clinical benefits and help to overcome the 
technical difficulties in sarcopenia diagnosis in stroke patients, however, further larger scale 
prospective studies are warranted.

Some limiting factors need to be considered. One primary limitation of our study on 
diagnosing sarcopenia through bio-signals of the neuromuscular system is the restricted 
range of electrical stimulation frequencies used. While we have limited the maximum 
frequency of electrical stimulation to 30 Hz to prevent excessively short intervals between 
stimulations, there are numerous lower frequencies below 30 Hz that were not explored. 
This limitation is significant because these unexplored frequencies could potentially hold 
critical information about the neuromuscular system’s response to sarcopenia. The decision 
to increase frequencies in 5 Hz increments, although practical from a data collection 
standpoint, may have further constrained our ability to capture subtle yet clinically relevant 
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changes at frequencies not examined. Future studies are necessary to explore these lower 
frequencies comprehensively, which could lead to more robust findings and improve the 
diagnostic accuracy of sarcopenia using bio-signals. Additionally, collecting comprehensive 
data across all possible frequencies in clinical settings presents logistical challenges, 
suggesting the need for innovative data collection methodologies or advanced simulation 
techniques to overcome these practical constraints. Second was the inconsistent BI results 
across gender. To assess the impact of using BI as input for the AI model on performance, 
we validated the performance when only BI was used as input for the AI model. In the 
experimental results, males showed an F-score of 0.77, while females showed an F-score 
of 0.70. To analyze the reasons for these differences, we calculated the Pearson correlation 
between the major parameter of sarcopenia diagnosis, SMI, and BI. And, the correlation 
between BMI and SMI measured by DEXA was 0.54 for males, whereas it was 0.31 for females' 
data. Additionally, the correlation between age and SMI was −0.17 for males and −0.24 for 
females. Since males' body weight and height have higher correlations with SMI compared to 
those of females, it is confirmed that the male model showed higher performance.

In this study, we introduced an AI-based technique for classifying sarcopenia using SMCS, a 
bio-signal indicative of neuromuscular system health. The degeneration of motor neurons 
and muscle fibers is a hallmark of sarcopenia, making their monitoring essential for accurate 
diagnosis. We utilized SMCS to capture response signals from these tissues, and upon 
testing, our AI model demonstrated high accuracy by analyzing feature vectors derived 
from these signals. Notably, our system's ease of use and convenience make it particularly 
beneficial for sarcopenia classification in stroke patients, who may encounter difficulties with 
mobility and hand grip measurements.
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