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Purpose: DEAD box protein 3 (DDX3) is an RNA helicase with oncogenic properties that 

shuttles between the cytoplasm and nucleus. The majority of DDX3 is found in the cytoplasm, 

but a subset of tumors has distinct nuclear DDX3 localization of yet unknown biological 

significance. This study aimed to evaluate the significance of and mechanisms behind nuclear 

DDX3 expression in colorectal and breast cancer.

Methods: Expression of nuclear DDX3 and the nuclear exporter chromosome region main-

tenance 1 (CRM1) was evaluated by immunohistochemistry in 304 colorectal and 292 breast 

cancer patient samples. Correlations between the subcellular localization of DDX3 and CRM1 

and the difference in overall survival between patients with and without nuclear DDX3 were 

studied. In addition, DDX3 mutants were created for in vitro evaluation of the mechanism 

behind nuclear retention of DDX3.

Results: DDX3 was present in the nucleus of 35% of colorectal and 48% of breast cancer 

patient samples and was particularly strong in the nucleolus. Nuclear DDX3 correlated with 

worse overall survival in both colorectal (hazard ratio [HR] 2.34, P,0.001) and breast cancer 

(HR 2.39, P=0.004) patients. Colorectal cancers with nuclear DDX3 expression more often 

had cytoplasmic expression of the nuclear exporter CRM1 (relative risk 1.67, P=0.04). In 

vitro analysis of DDX3 deletion mutants demonstrated that CRM1-mediated export was most 

dependent on the N-terminal nuclear export signal.

Conclusion: Overall, we conclude that nuclear DDX3 is partially CRM1-mediated and pre-

dicts worse survival in colorectal and breast cancer patients, putting it forward as a target for 

therapeutic intervention with DDX3 inhibitors under development in these cancer types.

Keywords: RNA helicase, DDX3X, nuclear export, CRM1

Introduction
DEAD box protein 3 (DDX3), also known as DDX3X, is a member of the DEAD box 

RNA helicase family of proteins. Like other family members, it has ATPase-dependent 

helicase activity, which allows for the unwinding of double-stranded RNA and restruc-

turing of complex secondary RNA structures.1 DDX3 has thus been associated with 

several steps of endogenous RNA metabolism, such as splicing,2,3 nuclear mRNA 

export,4,5 RNA interference,6,7 ribosomal assembly and translation initiation.5,8 Recent 

studies have also indicated a role for DDX3 in neoplastic transformation. Functional 

studies have shown that DDX3 has antiapoptotic properties,9–11 and is necessary for cell 

cycle progression12,13 and invasion.14,15 The tumor-enhancing role of cytoplasmic DDX3 

was corroborated by studies on DDX3 expression in patient cancer samples.6,13

DDX3 is known to shuttle between cytoplasm and nucleus,4 but in most human tissues 

and cell lines it is localized predominantly in the cytoplasm. We noticed that in a subgroup 

of colorectal and breast cancers, DDX3 can also be observed in the nucleus. It remains 
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to be elucidated what exact role DDX3 plays in the nucleus 

of cancer cells and how the subcellular localization of DDX3 

is regulated in these cells. It is known that DDX3 is exported 

out of the nucleus as part of mRNP complexes associated both 

with the tip-associated protein (TAP)-dependent bulk mRNA 

export pathway5,16 and the alternative chromosome region 

maintenance 1 (CRM1)-dependent pathway.4 However, the 

exact nature of the relation between DDX3 expression and 

expression of the nuclear exporter CRM1 requires further 

mechanistic exploration and validation in patient samples.

Apart from the biological relevance of understanding 

the nuclear role of DDX3 in cancer cells, identification of 

nuclear DDX3 as a prognostic and therapeutic biomarker 

could facilitate selection of patients who would benefit from 

adjuvant treatment, specifically with DDX3 inhibitors that 

are under development.12,17,18 In this study we, therefore, 

evaluated the correlation between nuclear DDX3 expression 

and survival in cohorts of breast and colorectal cancer patient 

samples. Because DDX3 is known to bind the nuclear exporter 

CRM1,4 we sought to determine whether nuclear retention 

of DDX3 can be explained by aberrant CRM1 expression. 

Finally, we carried out in vitro experiments to functionally 

validate mechanisms of nuclear DDX3 retention.

Materials and methods
Patient samples
Tissue microarrays (TMAs) with samples from 72 col-

orectal cancer patients from the Academic Medical Center, 

Amsterdam,19 292 colorectal cancers from Paderborn 

Germany13 and 315 breast cancers from the UMC Utrecht 

were used.20 All TMAs included multiple cores per patient. 

Missing cases were due to damaged or detached cores during 

cutting or staining, or due to cores not containing invasive 

carcinoma. Clinicopathological data were retrieved from 

the pathology report and patient files. The breast cancer 

cases in this cohort were classified into molecular subtypes 

as were described before.21,22 We used anonymous archival 

leftover pathology material. Therefore, no ethical approval or 

informed consent is required according to Dutch legislation,23 

as this use of redundant tissue for research purposes is part 

of the standard treatment agreement with patients in our 

hospitals.24 The medical research ethics committee of the 

UMC Utrecht confirmed that official approval of this study 

is not required (reference number WAG/mb/16/029330).

immunohistochemistry
Four µm thick sections were cut, mounted on Super-

Frost slides (Menzel & Glaeser, Brunswick, Germany), 

deparaffinized in xylene and rehydrated in decreasing ethanol 

dilutions. Endogenous peroxidase activity was blocked 

with 1.5% hydrogen peroxide buffer for 15 minutes and 

was followed by antigen retrieval by boiling for 20 minutes 

in 10 mM citrate buffer (pH 6.0) for DDX3 and ethylene-

diaminetetraacetic acid buffer (pH 9.0) for CRM1. Slides 

were subsequently incubated in a humidified chamber for 

1 hour with anti-DDX3 (1:1,000, pAb r647)25 or anti-CRM1 

(1:500, ab84375; Abcam, Cambridge, UK). After washing 

with phosphate-buffered saline, slides were incubated with 

poly-HRP-anti-mouse/rabbit/rat IgG (Brightvision; Immu-

nologic, Duiven, the Netherlands) as a secondary antibody 

for 30 minutes at room temperature. Peroxidase activity was 

developed with diaminobenzidine and hydrogen peroxide 

substrate solution for 10 minutes. The slides were lightly 

counterstained with hematoxylin and mounted. Appropriate 

positive and negative controls were used throughout.

Scoring was performed by consensus of two observers 

(P.v.D. and M.H.v.V. or G.B.). Although the intensity of 

nuclear DDX3 in cells was similar, the fraction of positive 

cells varied. Therefore, the percentage of DDX3-positive 

nuclei was scored. The optimal cutoff point was selected 

using the online tool cutoff finder, which helps to select a 

cutoff that maximizes the difference in survival between 

groups.26 Samples with $1% DDX3 staining were regarded 

positive. Almost all cells expressed cytoplasmic DDX3, but 

the intensity varied and was, therefore, scored semiquanti-

tatively as absent (0), low (1), moderate (2) or strong (3). 

Cases with score 0–2 were classified as having low DDX3 

expression and evaluated against cases with strong expres-

sion as before.13 Nuclear CRM1 was scored using a semi-

quantitative score that was previously described by Noske 

et al.27 The percentage of positive cells was scored as 0 (0%), 

1 (,10%), 2 (10%–50%), 3 (51%–80%) or 4 (.80%). The 

intensity of positive nuclei was scored on the same scale 

as cytoplasmic DDX3. An overall score was calculated by 

multiplying the two scores. Cases with a score of 9 and higher 

were considered to have high nuclear CRM1. Cytoplasmic 

CRM1 was scored as absent or present.

statistics
Clinicopathological characteristics were compared between 

tumors with and without nuclear DDX3. Discrete variables 

were compared by χ2 or Fisher’s exact test and relative 

risks (RRs) were calculated with 95% CI. The distribution 

of continuous variables was assessed graphically. Trans-

formation was performed where indicated. Student’s t-test 

and Mann–Whitney U-tests were calculated for normal and 
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non-normal distributed variables, respectively. Survival in 

patients with and without nuclear DDX3 was compared by 

plotting Kaplan–Meier curves and log-rank tests. Multivari-

ate analysis was performed by including all factors that were 

found predictive (P,0.1) in univariate analysis in a Cox-

proportional hazard model. Stepwise backward selection 

based on Akaike Information Criterion was used to select 

the final model. Effect modifiers were identified by includ-

ing multiplicative interaction terms into the model. P-values 

smaller than 0.05 were considered statistically significant. All 

statistical analyses were performed with R version 3.2.0.

cloning and transfections
A pEGFP-C1 vector containing a parental DDX3 construct 

(GenBank Accession: AF061337) N-terminally fused to a 

6xHis tag and EGFP sequence was used. An oligo contain-

ing three times the SV40 nuclear localization signal (NLS) 

sequence (5′-GATCCAAAAAAGAAGAGAAAGGTA-

3′, AA: DPKKKRKV) with flanking restriction sites was 

annealed and subcloned into the parental vector to create an 

NLS-EGFP-6HIS-DDX3 and an EGFP-NLS-6HIS-DDX3 

construct. The DDX3 deletion constructs were created by 

selective amplification of the parental DDX3 construct lack-

ing the deleted area with Phusion High-Fidelity Polymerase 

(New England Biosciences, Ipswich, MA, USA), followed 

by Dpn1 digestion of the bacterial backbone, gel purification, 

phosphorylation and religation. All constructs were verified 

by sequencing before usage.

HeLa cells were chosen for DDX3 localization as before.4 

The cell line was purchased from ATCC and STR-profiled in 

November 2015. 2×104 HeLa cells were plated in a 24-well 

plate. After 24 hours, the cells were transfected with 250 ng 

DDX3 construct, 50 ng H2B-mCherry construct and 1 µL 

TransIT-LT1 transfection reagent. After 12–16 hours, the 

cells were treated with 10 nM Leptomycin B (Sigma, St Louis, 

MO, USA) for 4 hours after which the number of DDX3-

positive nuclei per high-power field was counted and the cells 

were imaged with a confocal Zeiss 780FCS system.

Results
colorectal cancer patients with nuclear 
DDX3 have worse overall survival
DDX3 expression could be scored in 304 out of 364 colorec-

tal cancers, of which 34.9% had .1% nuclear DDX3. As 

shown in Figure 1, the percentage of cells with nuclear DDX3 

varied. Some tumors expressed nuclear DDX3 in all cells, 

sometimes cells with nuclear DDX3 lay dispersed among 

negative cells. Heterogeneity between different areas of a 

tumor (different cores) was also observed. DDX3 was some-

times expressed in the nucleus of plasma cells and fibroblasts 

as well. Only DDX3 in the nuclei of cancer cells was con-

sidered for this analysis. As shown in Table 1, tumors with 

nuclear DDX3 more often had a larger tumor size (P=0.006). 

Some tumors expressed DDX3 both in the cytoplasm and the 

nucleus. The presence of nuclear DDX3 correlated negatively 

with cytoplasmic DDX3 (RR 0.62, P=0.005), which was seen 

in 125/304 (41%) of cases (Figure 1B).

Patients with nuclear DDX3 expression had a significantly 

decreased 5-year overall survival rate of 51.2%, as compared 

to 73.7% in those without nuclear DDX3 (hazard ratio [HR] 

2.34, P=0.0005; Figure 1E). Other usual predictors of survival 

were tumor, node, metastasis (TNM) stage (P,0.001), differ-

entiation grade (P=0.040) and tumor size (P=0.004). Nuclear 

DDX3 expression was retained in a Cox-proportional hazards 

model with TNM stage (HR
adjusted

 1.69, P=0.057; Table S1). 

No significant association between high cytoplasmic DDX3 

and survival was observed in colorectal cancer patients (HR 

0.69, P=0.160; Figure S1).

nuclear DDX3 is associated with worse 
overall survival in breast cancer patients
To assess whether our finding that nuclear DDX3 cor-

relates with survival was also applicable to other tumors, 

we analyzed a cohort of 315 consecutive breast cancer 

cases. DDX3 expression could be evaluated in 292 breast 

cancer patients, of which 141 (48.3%) had nuclear DDX3 

(Figure 1C). As shown in Table 2, these patients more 

often exhibited ductal histology (P=0.006), higher grade 

(P=0.025), larger tumor size (P=0.046) and positive lymph 

nodes (P=0.003). In addition, a trend was observed for higher 

mitotic activity index (P=0.058). Nuclear localization of 

DDX3 did not correlate with cytoplasmic DDX3 expression 

in breast cancer patients (RR 0.91, P=0.493; Figure 1D). 

Cytoplasmic DDX3 expression in this breast cancer cohort 

will be discussed more elaborately in a separate report.

As seen in Figure 1F, similar to colon cancer patients, 

breast cancer patients with nuclear DDX3 had a worse 5-year 

survival rate (75%) than those without (90%; HR 2.39, 

P=0.004). Other variables that were significant predictors 

of poor survival were basal-like subtype (P=0.024), positive 

lymph node status (P=0.027), negative estrogen receptor 

(ER) status (P=0.019), negative progesterone receptor (PR) 

status (P=0.013) and age over 50 (P=0.017). Nuclear DDX3 

remained a significant predictor (HR
adjusted

 2.63, P=0.010) in a 

multivariate Cox-proportional hazards model with basal-like 

subtype, lymph node status and age (Table S2).
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The subcellular localization of the nuclear 
exporter crM1 correlates with DDX3 
localization
Because DDX3 is known to bind the nuclear exporter 

CRM1 we ascertained whether nuclear retention of DDX3 

could be explained by aberrant CRM1 expression (Figure 2). 

CRM1 expression was mainly observed in the nucleus. High 

nuclear CRM1 expression was observed in 18% of colorectal 

cancer and 27% of breast cancer cases. Cytoplasmic expres-

sion was observed as well, more commonly in breast (36%) 

than colorectal cancer (8%). As shown in Figure 2A–B and 

Table 3, nuclear DDX3 was significantly associated with 

the presence of cytoplasmic CRM1 in colorectal cancers 

(RR 1.67, P=0.040). In breast cancer, no significant cor-

relation between nuclear DDX3 and CRM1 expression was 

observed, suggesting that aberrant CRM1 expression could 

only partly explain nuclear DDX3 retention. However, a 

strong correlation between the intensity of cytoplasmic DDX3 

and CRM1 expression (Figure 2C and D) was observed: 

nuclear CRM1 was higher in tumors with high cytoplasmic 

DDX3 in both colorectal cancer (RR 1.77, P,0.001) and 

breast cancer cases (RR 1.75, P=0.003). Contrary to what 

was observed in colorectal cancer, a significant correlation 

between cytoplasmic CRM1 and high cytoplasmic DDX3 

was observed in breast cancer (RR 2.45, P,0.001).

nuclear DDX3 localization is due to 
decreased crM1-mediated export and 
increased import
To characterize the functional role of DDX3 in the nucleus, 

we made an attempt to mimic the nuclear DDX3 expression 

observed in patients in an in vitro setting. We generated 

Figure 1 nuclear DDX3 correlates with worse survival in colorectal and breast cancer patients.
Notes: example of (A) nuclear and (B) high cytoplasmic DDX3 expression in colorectal cancer samples. example of (C) nuclear and (D) high cytoplasmic DDX3 expression 
in breast cancer samples. (E) Kaplan–Meier plot showing overall survival in colorectal cancer patients with and without DDX3 expression in $1% of the nuclei. (F) Kaplan–
Meier plot showing overall survival in breast cancer patients with and without DDX3 expression in $1% of the nuclei.
Abbreviation: DDX3, DeaD box protein 3.
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a GFP-DDX3 fusion protein to study nucleocytoplasmic 

shuttling properties of DDX3 (Figure 3A). DDX3 is expressed 

primarily in the cytoplasm of HeLa cells (Figure 3B and C). 

Leptomycin B specifically inhibits CRM1 by covalent 

modification of Cys-529.28,29 When export of DDX3 by 

CRM1 was inhibited with leptomycin B, an increase in 

nuclear DDX3 was observed in 46% of cells, but the majority 

of DDX3 remained in the cytoplasm (Figure 3B and C).

Next we determined whether high nuclear DDX3 levels 

could potentially be explained by increased nuclear import of 

DDX3. We fused three tandem repeats of the SV40 NLS to 

the GFP-DDX3 construct (Figure 3A). Only a minor increase 

of nuclear DDX3 was observed in 20% of cells with the 

SV40 NLS, indicating that nuclear export of DDX3 is very 

efficient and not saturated. However, when export of the 

GFP-NLS-DDX3 construct was inhibited by leptomycin B, 

DDX3 localized strongly to the nucleus in 100% of cells, 

whereas cytoplasmic DDX3 was reduced to 25% of cells 

(Figure 3B and C). These data show that an increase in DDX3 

import in combination with reduced CRM1-mediated export 

can result in high nuclear DDX3 expression. Experiments 

with an NLS-GFP-DDX3 construct yielded similar results. 

Unfortunately, it was not possible to create a DDX3 construct 

that localized to the nucleus spontaneously without inhibition 

of CRM1. We were, therefore, unable to study functional 

effects of nuclear DDX3 in an isolated fashion. However, the 

created constructs can be used for proof-of-principle studies 

on regulation of the subcellular DDX3 localization.

DDX3 localizes to the nucleolus
High expression levels of DDX3 in the nucleus allowed for 

closer examination of the subnuclear expression pattern of 

DDX3. As can be observed in Figure 3C, DDX3 is expressed 

diffusely within the nucleus, but is often most intense in 

nucleoli. Nucleolar DDX3 was seen in 2%–6% of cells after 

addition of either an NLS or leptomycin B. When import was 

increased and export was inhibited simultaneously, 30% of 

cells had clear localization to the nucleolus. This expression 

Table 1 correlation between nuclear DDX3 and other clinicopathological variables in colorectal cancer patients

Total Nuclear DDX3 RR (95% CI) P-value

,1% $1%

Total, n (%) 304 (100) 198 (65) 106 (35)
Sex, n (%) 0.478
Male 169 (56) 113 (57) 56 (53) 1
Female 135 (44) 85 (43) 50 (47) 1.12 (0.82–1.52)
Age, median (IQR) 71 (15.3) 71 (15.8) 72 (14) 0.476*
TNM-stage, n (%) 0.100
1 22 (10) 18 (12) 4 (5) 1
2 98 (43) 67 (44) 31 (40) 1.74 (0.68–4.42)
3 80 (35) 51 (34) 29 (37) 1.99 (0.78–5.07)
4 30 (13) 15 (10) 15 (19) 2.75 (1.06–7.15)
Missing 74 47 27
Differentiation grade, n (%) 0.913
Well 16 (5) 11 (6) 5 (5) 1
Moderate 229 (76) 149 (76) 80 (76) 1.12 (0.53–2.36)
Poor 57 (19) 36 (18) 21 (20) 1.18 (0.53–2.63)
Missing 2 2 0
Tumor size (mm), mean (SD) 52 (23) 50 (23) 56 (22) 0.006**
Missing 17 12 5
Site of origin, n (%) 0.064
rectum 95 (31) 69 (35) 26 (25) 1
colon 209 (69) 129 (65) 80 (76) 1.4 (0.97–2.02)
Histology 0.880***
adenocarcinoma 276 (93) 179 (93) 97 (93) 1
Mucinous 21 (7) 13 (7) 8 (8) 1.08 (0.61–1.91)
Undifferentiated 1 (0) 1 (1) 0 (0) na
Missing 6 5 1
Cytoplasmic DDX3 0.005
low 179 (59) 105 (53) 74 (70) 1
high 125 (41) 93 (47) 32 (30) 0.62 (0.44–0.88)

Notes: P-value calculated by chi-square test unless otherwise indicated. *Mann–Whitney U-test; **student’s t-test; ***Fisher’s exact test.
Abbreviations: CI, confidence interval; DDX3, DEAD box protein 3; IQR, interquartile range; NA, not applicable; RR, relative risk; SD, standard deviation; TNM, tumor, 
node, metastasis.
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pattern resembled that observed in patient samples, although 

DDX3 expression also was strong at the nuclear membrane 

in those (Figure 1A and C).

Influence of CRM1 inhibition on 
subcellular localization of DDX3 mutants
CRM1 is known to export cargo from the nucleus by binding 

to a leucine-rich nuclear export signal,30 which is conserved 

in the first 21 amino acids of the Ded1/DDX3 subfamily of 

DEAD box RNA helicases.31 However, binding studies indi-

cated that CRM1 binding occurs between amino acid 260 and 

517 of DDX3.4 We evaluated whether deletion of either the 

N-terminal nuclear export signal (NES) domain or the 260–

517 region of DDX3 results in increased retention of DDX3 in 

the nucleus, and whether these proteins were still responsive 

to CRM1 inhibition. As shown in Figure 3, deletion of the 

Table 2 correlations between nuclear DDX3 and other clinicopathological variables in breast cancer patients

Total Nuclear DDX3 RR (95% CI) P-value

,1% $1%

Total, n (%) 292 (100) 151 (52) 141 (48)
Age, median (IQR) 58 (17) 60 (18) 56 (18) 0.252*
Histology, n (%) 0.006
Ductal 231 (81) 109 (74) 122 (88) 1
lobular 24 (8) 19 (13) 5 (4) 0.39 (0.18–0.87)
Medullary 31 (11) 19 (13) 12 (9) 0.73 (0.46–1.16)
Missing 6 4 2
Grade, n (%) 0.025
1 46 (17) 31 (22) 15 (11) 1
2 100 (36) 54 (38) 46 (34) 1.41 (0.88–2.25)
3 132 (48) 59 (41) 73 (55) 1.7 (1.09–2.64)
Missing 14 7 7
MAI, median (IQR) 13 (19) 11 (18) 15 (18) 0.058*
Missing 15 8 7
Tumor size (mm), mean (SD) 24 (15) 23 (13) 26 (16) 0.046**
Molecular subtype 0.904***
luminal a 224 (77) 117 (79) 107 (76) 1
luminal B 12 (4) 5 (3) 7 (5) 1.22 (0.74–2.00)
her2 10 (3) 5 (3) 5 (4) 1.05 (0.55–1.97)
Basal-like 44 (15) 22 (15) 22 (16) 1.05 (0.76–1.45)
Missing 2 2 0
Lymph node status 0.003
negative 124 (47) 73 (56) 50 (38) 1
Positive 140 (53) 57 (44) 83 (62) 1.46 (1.13–1.88)
Missing 29 21 8
ER 0.927
negative 59 (20) 30 (20) 29 (21) 1
Positive 231 (80) 119 (80) 112 (79) 0.99 (0.74–1.32)
Missing 2 2 0
PR 0.840
negative 98 (34) 51 (35) 47 (33) 1
Positive 191 (66) 97 (66) 94 (67) 1.03 (0.80–1.32)
Missing 3 3 0
HER2 0.552
negative 269 (92) 140 (93) 129 (92) 1
Positive 22 (8) 10 (7) 12 (9) 1.14 (0.76–1.70)
Missing 1 1 0
Cytoplasmic DDX3 0.493
low 194 (68) 98 (66) 96 (70) 1
high 93 (32) 51 (34) 42 (30) 0.91 (0.70–1.19)
Missing 5 2 3

Notes: P-value calculated by chi-square test, unless otherwise indicated. *Mann–Whitney U-test; **student’s t-test on log-transformed data; ***Fisher’s exact test.
Abbreviations: CI, confidence interval; DDX3, DEAD box protein 3; ER, estrogen receptor; Grade, Bloom and Richardson grading; IQR, interquartile range; MAI, mitotic 
activity index; Pr, progesterone receptor; rr, relative risk; sD, standard deviation.
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Figure 2 The subcellular localization of crM1 correlates with the subcellular location of DDX3.
Notes: example of how (A) cytoplasmic crM1 expression in a colorectal cancer correlates with (B) nuclear DDX3 expression in the same tumor. example of how (C) high 
nuclear crM1 expression correlates with (D) high cytoplasmic DDX3 expression. 40× magnification. Scale bars indicate 25 µm.
Abbreviations: crM1, chromosome region maintenance 1; DDX3, DeaD box protein 3.

Table 3 correlation between crM1 and nuclear DDX3 in colorectal and breast cancers

Nuclear DDX3 P-value Cytoplasmic DDX3 P-value

,1% $1% Low High

Colorectal cancer
cytoplasmic crM1

absent 180 (95%) 87 (88%) 0.037 157 (2%) 110 (93%) 0.657
Present 10 (5%) 12 (12%) 14 (8%) 8 (7%)
Missing 8 7 8 7

nuclear crM1
low 156 (82%) 81 (82%) 0.952 152 (89%) 85 (72%) ,0.001
high 34 (18%) 18 (18%) 19 (11%) 33 (28%)
Missing 8 7 8 7

Breast cancer
cytoplasmic crM1

absent 80 (67%) 70 (61%) 116 (75%) 33 (42%) ,0.001
Present 40 (33%) 44 (39%) 0.402 38 (25%) 45 (58%)
Missing 31 27 40 15

nuclear crM1
low 90 (75%) 82 (72%) 123 (80%) 48 (62%) 0.003
high 30 (25%) 32 (28%) 0.595 31 (20%) 30 (38%)
Missing 31 27 40 15

Note: P-value calculated by chi-square test.
Abbreviations: crM1, chromosome region maintenance 1; DDX3, DeaD box protein 3.
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first 21 amino acids containing the NES resulted in 46% of 

cells having DDX3 in the nucleus. No further increase was 

observed after leptomycin B treatment and the expression 

pattern was comparable to that of wild-type DDX3 after 

CRM1 inhibition, indicating that deletion of the N-terminal 

NES largely abrogates nuclear export by CRM1.

Deletion of amino acids 260–517 resulted in a speckled 

DDX3 nuclear expression pattern in almost all cells, but 

the intensity of DDX3 remained strongest in the cytoplasm. 

When CRM1 was inhibited this pattern shifted to all cells 

having intense nuclear DDX3 expression, whereas only 

7% of cells showed cytoplasmic DDX3 (Figure 3C). This 

indicates that although the 260–517 region has influence 

on the subcellular localization of DDX3, DDX3 localiza-

tion is still responsive to CRM1 inhibition after deletion 

of this region.

∆

∆

∆ ∆ ∆ ∆

∆ ∆

Figure 3 Influence of CRM1 inhibition on subcellular localization of DDX3 mutants.
Notes: (A) schematic overview of the DDX3 constructs. (B) Bar graphs showing the percentage of cells with DDX3 expression in the nucleus and cytoplasm in untreated 
and leptomycin B-treated hela cells (cells can have both nuclear and cytoplasmic DDX3). absence of error bars indicates that there was no variation, because 100% 
of transfected cells had DDX3 expression in that compartment. Bars represent mean percentage of positive cells of multiple microscopic fields with SD. (C) confocal 
fluorescent images showing the subcellular localization of GFP-DDX3, GFP-NLS-DDX3, GFP-DDX3∆1–21 and gFP-DDX3∆260–517 (green) before and after crM1 
inhibition with 10 nM leptomycin B in HeLa cells. Nuclei are visualized by co-transfection of a Histone2B-mCherry construct (red). Nucleoli can be identified in the merged 
brightfield image. 40× magnification. Arrows indicate nucleoli.
Abbreviations: CRM1, chromosome region maintenance 1; DDX3, DEAD box protein 3; GFP, green fluorescent protein; HIV-1, human immunodeficiency virus 1; HR, hazard 
ratio; IQR, interquartile range; NES, nuclear export signal; NLS, nuclear localization signal; RR, relative risk; SD, standard deviation; TAP, tip-associated protein; TMAs, tissue 
microarrays; WT, wild-type.
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Discussion
In this study we evaluated the relationship between nuclear 

DDX3 expression and survival in breast and colorectal 

cancer. We found the presence of nuclear DDX3 to be an 

independent predictor of worse survival in both colorectal and 

breast cancer. Mechanistically, in colorectal cancer nuclear 

DDX3 retention could in part be explained by dysregulation 

of the nuclear exporter CRM1, but no correlation between 

nuclear DDX3 and altered CRM1 expression could be 

observed in breast cancer. We functionally validated this 

finding in vitro by showing that inhibition of CRM1 with 

leptomycin B resulted in an increase in nuclear DDX3 levels. 

Analysis of the subcellular localization of DDX3 deletion 

mutants before and after CRM1 inhibition indicated that the 

N-terminal NES sequence of DDX3 is most important for 

this interaction. A much stronger increase in nuclear DDX3 

retention was observed after addition of an NLS in combina-

tion with CRM1 inhibition, suggesting that nuclear DDX3 

localization can also be regulated through nuclear import, 

by unknown mechanisms. Interestingly, we found DDX3 to 

strongly localize to the nucleolus in vitro, which resembled 

the expression pattern in patient samples.

DDX3 is an actively investigated molecule in cancer 

biology, but previous studies have focused on its cytoplas-

mic expression pattern in cancer cells.32 Understanding 

the role of nuclear DDX3 expression in tumors is relevant 

given DDX3’s function in RNA processing and its known 

nucleocytoplasmic shuttling capacities. DDX3 has been 

found to promote oncogenesis and DDX3 inhibitors are 

being developed for colorectal13 and breast cancers17 among 

other malignancies.12,18,33,34 In addition, DDX3 is essential 

for the nuclear export of the human immunodeficiency 

virus 1 (HIV-1) protein Rev and is, therefore, also a potential 

therapeutic target in the treatment of HIV infections.35,36 

Understanding the cellular mechanisms behind increased 

nuclear retention of DDX3 may facilitate the develop-

ment of therapies specifically targeting the export function 

of DDX3.37 In addition, nuclear DDX3 could serve as a 

prognostic and potentially therapeutic biomarker for select-

ing cancer patients that may benefit from treatment with 

DDX3 inhibitors.

This is the first study to describe prognostic value of 

DDX3 expression specifically in the nucleus. Several other 

studies have reported a correlation between cytoplasmic 

DDX3 and survival in breast and colorectal cancers.32 A study 

by Su et al found no significant difference in breast cancer 

patients with high and low cytoplasmic DDX3 expression38 

and reported a correlation between low cytoplasmic DDX3 

expression and worse survival in colorectal cancer patients. 

In our larger colorectal cancer cohort, patients with high 

cytoplasmic DDX3 also did slightly better (HR 0.69), but 

this was not statistically significant. Potential explanations 

for the observed differences are the use of different cutoffs 

for positivity and different antibodies. We previously found 

cytoplasmic DDX3 to be associated with nuclear beta-catenin 

expression in patient samples and to promote oncogenic 

Wnt signaling. Although most colorectal cancers are driven 

by genetic alterations in the Wnt-signaling pathway, only a 

subset of cancers shows strong nuclear beta-catenin expres-

sion. Interestingly, this subgroup of colorectal cancer patients 

has a relatively favorable prognosis,39 explaining how 

cytoplasmic DDX3 can be driving Wnt signaling, without 

being associated with worse overall survival. As DDX3 

spontaneously localizes to the nucleus only in a very small 

percentage of cells in vitro and we were unable to create 

a stable cell line overexpressing full-length DDX3 in the 

nucleus, it is very hard to decipher the exact role of DDX3 

in the nucleus on oncogenesis. However, the fact that the 

presence of DDX3 in the nucleus was associated with worse 

survival in two different cancer types indicates that cancers 

may benefit from high nuclear DDX3 levels as well.

When trying to understand a protein’s nuclear func-

tion, it is useful to know its location in the nucleus. High 

DDX3 expression was specifically seen in the nucleolus. 

This was previously observed after HIV-1 Tat and Rev 

overexpression40,41 and DDX3 was also identified in nucleolar 

extracts by proteomics.42 The nucleolus is the structural-

functional domain of the cell in which ribosomal biogen-

esis occurs. Prominent nucleoli have been recognized as a 

cytological hallmark of cancer as early as the 19th century,43 

but recently received renewed attention as evidence accu-

mulates that several onco- and tumor suppressor genes are 

directly involved in the regulation of ribosome production to 

meet the altered metabolic needs of cancer cells.44 Interest-

ingly, DDX3 is known to play a role in ribosomal assembly 

and translation initiation in the cytoplasm.45 Our observation 

that DDX3 localizes specifically to the nucleolus, and that 

this feature corresponds with worse prognosis, indicates that 

DDX3 may also play a role in pre-ribosomal assembly in the 

nucleolus. The presence of high nuclear DDX3 could reflect 

increased protein synthesis demands in cancers. A recent 

study identified essential genes in hematological malignan-

cies and found this group to be enriched in RNA processing 

genes including DDX3X. Many of these essential genes 
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localized to the nucleolus.46 Interestingly, the nucleolus is 

also increasingly recognized as a target for cancer therapy.47 

Further research is required to fully understand and character-

ize the function of DDX3 in this subcellular compartment.

With regard to the mechanism behind nuclear DDX3 

retention, we observed a correlation between cytoplasmic 

expression of CRM1 and nuclear DDX3 expression in col-

orectal cancer. This suggests that dysregulation of CRM1 

is one of the mechanisms of nuclear DDX3 expression. 

The binding site of DDX3 to CRM1 is a matter of debate. 

DDX3 has a classical N-terminal NES sequence that is 

conserved and required for CRM1 binding in the Saccharo-

myces cerevisiae homolog Ded1p48,49 and the Xenopus laevis 

homolog An3.31 However, Yedavalli et al observed binding 

between CRM1 and amino acids 260–517 of DDX3.4 Our 

analysis of DDX3 deletion mutants showed that deletion of 

both areas resulted in an increase in nuclear DDX3, but only 

the construct that lacked the NES lost its sensitivity to CRM1 

inhibition, indicating that this is the essential domain for 

CRM1-mediated export. A similar conclusion was recently 

made by Fröhlich et al, who found the N-terminal to be essen-

tial for DDX3 transportation out of the nucleus into cytoplas-

mic unspliced HIV-1 mRNA ribonucleoprotein complexes.50 

It is possible that the 260–517 region of DDX3 is necessary 

for binding other exporters of DDX3 like TAP.5

As cytoplasmic CRM1 expression was infrequent in 

colorectal cancer and did not correlate with nuclear DDX3 

in breast cancer, dysregulation of CRM1 is not likely the 

sole mechanism behind nuclear DDX3. When, in addition 

to nuclear export inhibition, we stimulated nuclear import 

by addition of an NLS, we observed a complete shift of all 

DDX3 in the cell to the nucleus, showing that increased 

import can also contribute to increased nuclear DDX3 levels. 

However, the mechanism behind nuclear import of DDX3 

remains unknown. DDX3 has a classical NLS sequence at 

amino acid 212,51 but it is also possible that DDX3 enters 

the nucleus as part of a complex. Future research on this 

topic is warranted.

Conclusion
Nuclear DDX3 expression predicts worse survival in 

breast and colorectal cancer. Mechanistically, this can 

be partly explained by altered expression of the nuclear 

exporter CRM1.
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Supplementary materials

Table S1 Univariate and multivariate cox-proportional hazard model of survival in colorectal cancer patients

Univariate Multivariate

HR (95% CI) P-value* HR (95% CI) P-value**

Nuclear DDX3
,1% 1 1
$1% 2.34 (1.43–3.85) ,0.001 1.69 (0.98–2.90) 0.057
TNM stage
1 1 1
2 2.9 (0.38–21.98) 2.56 (0.34–19.48) 0.364
3 7.82 (1.06–57.70) 7.15 (0.97–52.86) 0.054
4 44.34 (5.89–333.74) ,0.001 34.01 (4.45–260.15) ,0.001
Differentiation grade
Well 1 ns
Moderate 1.24 (0.38–4.00)
Poor 2.38 (0.71–8.00) 0.041
Tumor size
,40 mm 1 ns
40–60 mm 2.68 (1.28–5.63)
.60 mm 3.57 (1.61–7.89) 0.004

Notes: All variables significantly associated (P,0.1) in univariate analysis were entered into the multivariate cox-proportional hazards model. *P-value calculated by log-rank 
test. **P-value of coefficient.
Abbreviations: CI, confidence interval; DDX3, DEAD box protein 3; HR, hazard ratio; ns, no significant change in Akaike Information Criterion observed by stepwise 
backward selection and therefore not included in the final multivariate model; TNM, tumor, node, metastasis.

Figure S1 Kaplan–Meier plot depicting overall survival in high and low DDX3-expressing colorectal cancer samples.
Abbreviation: DDX3, DeaD box protein 3.
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Table S2 Univariate and multivariate cox-proportional hazard model of survival in breast cancer patients

Univariate Multivariate

HR (95% CI) P-value* HR (95% CI) P-value**

Nuclear DDX3
,1% 1 0.004 1 0.01
$1% 2.39 (1.29–4.43) 2.63 (1.26–5.51)
MAI
,12 1 0.071 ns
$12 1.78 (0.94–3.34)
Molecular subtype
non-basal-like 1 0.024 1 0.045
Basal-like 2.27 (1.18–4.40) 2.17 (1.02–4.61)
Lymph node status
negative 1 0.027 1 0.048
Positive 2.17 (1.08–4.39) 2.06 (1.01–4.23)
ER
negative 1 0.019
Positive 0.48 (0.26–0.90)
PR
negative 1 0.013
Positive 0.49 (0.27–0.87)
Age
,50 1 0.017 1 0.017
$50 2.94 (1.16–7.45) 3.55 (1.26–10.06)

Notes: All variables significantly associated (P,0.1) in univariate analysis were entered into the cox-proportional hazards model, except for er and Pr receptor status, 
because these are included in the molecular subtype algorithm. *P-value calculated by log-rank test. **P-value of coefficient.
Abbreviations: CI, confidence interval; DDX3, DEAD box protein 3; ER, estrogen receptor; HR, hazard ratio; MAI, mitotic activity index; ns, no significant change in Akaike 
Information Criterion observed by stepwise backward selection and therefore not included in the final multivariate model; PR, progesterone receptor.
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