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Abstract Despite vigorous studies, effective nonnucleoside
inhibitors of HIV-1 reverse transcriptase (NNRTIs) are still
in demand, not only due to toxicity and detrimental side ef-
fects of currently used drugs but also because of the emer-
gence of multidrug-resistant viral strains. In this contribution,
we present results of docking of 47 inhibitors to 107 allosteric
centers of HIV-1 reverse transcriptase. Based on the average
binding scores, we have constructed QSAR equations to elu-
cidate directions of further developments in the inhibitor de-
sign that come from this structural data.
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Introduction

According to the latest estimates from The Joint United
Nations Programme on HIV and AIDS, there were 36.7 mil-
lion people living with HIV in 2015, up from 33.3 million in
2010. Among them, 1.1 million died from AIDS-related
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illnesses [1, 2]. The currently licensed antiviral medications
include drugs falling into five main classes targeting different
steps in the HIV life cycle: reverse transcription (nucleoside/
nucleotide and non-nucleoside reverse transcriptase inhibi-
tors), assembly, budding, and maturation (protease inhibitors),
viral entry (fusion inhibitors and co-receptor antagonists), and
integration (integrase inhibitors). Standard first-line antiretro-
viral therapy (ART) for adults consists of three reverse tran-
scriptase inhibitors (two nucleosides plus nonnucleoside) or
two nucleoside reverse transcriptase inhibitors in combination
with an integrase inhibitor [3, 4]. Although ART has its lim-
itations, it has proved largely effective, particularly in the early
stages of the disease, reducing the mortality from AIDS and
turning the disease from lethal to chronic [5]. Because of the
rapid emergence of multidrug-resistant viral strains, toxicity,
and detrimental side effects caused by long-term drug treat-
ment [6], however, the discovery of new antiviral agents, in
particular those targeting HIV-1 reverse transcriptase, is a re-
search priority.

HIV-1 reverse transcriptase (RT) is an asymmetric het-
erodimeric enzyme composed of a catalytically active 66-
kDa subunit with three domains: polymerase (residues 1—
319), connection (residues 320-440) and RNase H (resi-
dues 441-560), and a catalytically inactive 51-kDa sub-
unit containing non-functional polymerase and connection
domains [7]. Nearly half of approved antiretroviral drugs
target the polymerase active site of RT or the allosteric
cavity located 10 A away [8]. Five of them are non-
nucleoside RT inhibitors that bind to the allosteric site,
called the non-nucleoside inhibitor binding pocket
(NNIBP), in a noncompetitive manner, resulting in limi-
tation of conformational flexibility required for efficient
DNA synthesis by RT [9]. Nevirapine (NVP), delavirdine
(DLV), and efavirenz (EFV) are first-generation non-nu-
cleoside reverse transcriptase inhibitors (NNRTIs) with

@ Springer


http://orcid.org/0000-0002-3091-8387
https://doi.org/10.1007/s00894-017-3489-3
mailto:piotr.paneth@p.lodz.pl
http://crossmark.crossref.org/dialog/?doi=10.1007/s00894-017-3489-3&domain=pdf

317 Page2of9

J Mol Model (2017) 23: 317

potent anti-HIV-1 activity, but their adverse effects, par-
ticularly those affecting the central nervous system and
hepatotoxicity, poor resistance profile, and low genetic
barriers for viral resistance, especially single mutants
K103N, Y181C, and double mutant K103N/Y181C, lim-
ited their clinical application [10]. The second-generation
NNRTIs etravirine (ETR) and rilpivirine (RPV) have been
approved by the Food and Drug Administration and
European Union in 2008 and 2011, respectively. Both
display a broad spectrum of activity against clinically rel-
evant HIV-1 mutant and wild-type (wt) HIV-1 strains at
low nanomolar concentrations. However, etravirine must
be given twice daily and is not recommended for initial
treatment of HIV infection because of insufficient data in
treatment-naive individuals whilst rilpivirine has subopti-
mal efficacy in patients with viral loads greater than
100,000 copies/ml or CD4 cell counts below 200
copies/ml at baseline because of higher virologic failure
rate. Moreover, their use in some settings is limited by
hypersensitivity reactions or other adverse effects. In ad-
dition, although these drugs have higher genetic barriers
to resistance than first-generation NNRTIs, drug resis-
tance still emerges, and K103N and E138K are the most
common mutations selected by ETV and RPV.
Importantly, when resistance to RPV is selected after vi-
rologic failure, cross-resistance to all nonnucleoside re-
verse transcriptase inhibitors is commonly observed
[11-21]. Therefore, there is a considerable need for new
drugs with anti-HIV-1 reverse transcriptase activity. To
address this problem, in this contribution we present re-
sults of docking of 47 inhibitors bound to 107 allosteric
centers of HIV-1 reverse transcriptase, i.e., all data avail-
able in the Protein Data Bank. Based on the average bind-
ing scores, we have constructed QSAR equations to elu-
cidate directions of further developments in the inhibitor
design that come from this structural data.

Methods

All structures of HIV-1 reverse transcriptase with ligand
bound in the allosteric site available in the Protein Data
Bank (www.rcsb.org) [22] have been used. These include
72 structures of the wild-type enzyme: 1bqm, 1c0t, 1dtq,
1dtt, 1fk9, lhpu, lhpz, likw, 1rt2, 1rt4, 1s6p, 1s9e, 1suq,
1sv5, 1tkt, 1tkx, 1tkz, 1tl1, 1tI13, 1vrt, 1vru, 2be2, 2hnd,
2jle, 2o0pp, 2rf2, 2rki, 2vgs, 2vg6, 2vg7, 2wom, 2won,
2ykm, 2ykn, 2yng, 2ynh, 2yni, 2zd1, 3dle,3dlg, 3drp,
3hvt, 3irx, 3is9, 3lak, 3lal, 3lam, 3lan, 31p0, 3lp1, 3mS8p,
3m8q, 3mec, 3mee, 3qip, 3qlh, 3qo9, 3v81, 3v81, 4b3q,
4glq, 4i2p, 4i2q, 4i7f, 4icl, 4ko0, 4puo, 4pwd, 4q0Db,
Scym, 5cyq, and 5 k14 out of which three structures
(4puo, 4pwd, and 4q0b) are tetramers with slightly
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different allosteric site architecture. For these three struc-
tures, binding of ligands to both sites has been studied.
Furthermore, 32 structures of mutated enzyme: 1bqn,
1fko, 1fkp, likv, 1jkh, 1jla, ljlc, 1jlg, 1lw0, 1lwc, 1lwe,
1lwf, Islt, 1slu, 1slv, 1slw, 1slx, 2hny, 2ic3 2opq. 2opr,
2o0ps, 2ynf, 2ze2, 3bgr, 3 dm2, 3dmj, 3dok, 3dol, 3med,
3meg, and 5fdl were studied bearing 12 types of muta-
tions with dominating mutations being K103N followed
by Y181C. The set included six double mutations and one
triple mutation.

In the above 107 structures, 48 ligands are present. They
represent a number of different classes of chemicals. By far
the most frequently studied (25 entries) ligand is NVP. Codes
and structures of the remaining ligands are collected in
Table 1. Out of compounds currently in clinical use, only
DLV is not present in the set, as it was crystallized in the
pocket of HIV-2 reverse transcriptase, which differs structur-
ally from the allosteric pocket of HIV-1 enzyme [23].
Furthermore, we have excluded from the studies QO9 ligand,
as it contains silicon atoms for which there is no parametriza-
tion. These ligands have been used in docking and subse-
quently in QSAR analysis.

Docking was performed using the FlexX program [24,
25], as implemented in the LeadIT software package [26].
The receptor was prepared using graphical interface of the
package. Both protein chains were selected, and the bind-
ing site was defined to include residues within a 6.5-A
radius around the native ligand. The library of ligands
was imported from the .mol2 file. Protonation states cor-
responding to aqueous solution were used. Soft docking
(allowing for volume overlap up to 100 A®) was per-
formed. For ligand base placement, the default hybrid
Enthalpy and Entropy strategy was used. The Clash
Factor was set to 0.6. Other parameters were kept at de-
fault. Scores of the top-ranked poses of each ligand were
averaged for a given enzyme structure.

QSAR analysis was performed in two different modes. In
both cases, the training set included 47 structures; the end-
point was the average docking score obtained from FlexX
calculations after exclusion of results for QO9, which as the
only one yielded positive values of the score function. The
size of the data set was too small to allow splitting it into
training and validation sets, so the internal leave-one-out
cross-validation approach was chosen instead.

In the first approach, based on classical descriptors, sev-
eral models were created using the Complete Topological
OSAR method and regression equation, created by feature
selection with Enhanced Replacement Method [ERM] as
implemented in SCIGRESS Suite software [27]. In the
second approach, QSAR [28] was based on molecular frag-
ments contribution. The common substructures were ex-
tracted from a training set, yielding a set of 96
substructure-count descriptors by means of an algorithm
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Table 1. Structures of ligands used in docking and QSAR
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Table 1. (continued)
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based on RECAP using ADMEWORKS ModelBuilder
[29, 30]. The substructures, present in less than three of
training structures, were removed by means of zero-test
with a threshold of 6%, leaving 39 substructure count de-
scriptors. Particle Swarm Optimization algorithm [31] was
employed for feature selection with a target of selecting 15
descriptors. After approximately 7000 iterations of 10,000
model population, the process was manually interrupted.
Eighteen of the most often used descriptors were selected.
The final model was created using leaps-and-bounds mul-
tiple linear regression model, a variation of backward step-
wise regression.

Results and discussion

All 47 ligands present in the PDB that are bound in the
allosteric cavity have been docked to all 107 structures
and averaged scores for a given ligand were obtained
separately for wild-type (wt) and for mutated enzyme (in-
dividual data provided in Table S1 in Supporting informa-
tion). The obtained poses have been inspected for correct
orientation within the allosteric cavity (for examples of
overlap with the native ligand see Figs. S1 and S2 in
the Supporting Information). The results are collected in
Table 2. Averaged binding scores have been compared for
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wt and mutated enzymes. The results are illustrated graph-
ically by Fig. 1. The strong linear correlation obtained
indicates that there is no significant difference between
binding in either form of the enzyme. Furthermore, as
illustrated by Fig. 2, a slight preference for binding in
the allosteric pocket of either wt enzyme or its mutated
form is random and does not correlate with the energy of
binding. The difference is symmetrically distributed be-
tween positive and negative values showing practically
no systematic preference of binding to either wild-type
or one of the mutated forms of the enzyme. Similarly,
we have found no correlation between the standard devi-
ation of the average binding score and the binding energy.
This observation indicates that activity against mutated
HIV-1 RT forms is not governed by the strength of bind-
ing. Allosteric ligands impair enzyme action by a wedge
mechanism, hindering domain mobility toward opening
and closing the access to the active site. However, final
allosteric site architecture is achieved upon ligand bind-
ing. In order to account for this flexibility and possible
clash between the protein and a ligand, we have used
large overlap volume (100 A%). Lack of systematic differ-
ence between binding to wt and mutated enzyme seems
thus to indicate that activity against mutants is connected
with the structural features of the ligand rather than their
binding energy. Interactions within the allosteric site are
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mostly associated with van der Waals forces and to a
lesser extend to hydrogen bonding [32]. As illustrated
by the most suited for mutant enzymes ligand, EFZ, its
success seems to come from hydrogen bonding to lysine
101 rather than lysine 103, which is the most frequent
mutation (see left panel of Fig. SI).

Based on the results obtained from docking, we have
performed QSAR studies. In order to understand the very
general structural features affecting the binding affinity,
we attempted two approaches to QSAR modeling, aiming

FlexX score =

for models containing descriptors that have clear “chemi-
cal interpretation” and can be easily interpreted to give
suggestions for new compound design. In the first ap-
proach, we have used “traditional” QSAR that involves
a library of descriptors as implemented in the
SCIGRESS Suite software.

Several models gave acceptable correlation coefficient,
while when only easily interpretable descriptors were
used the following equation turned out to be statistically
the best:

—2.035"double bond count—3.268"sec—amine count—2.570"cyano count+ (1)

6.83817e—05"nonpolar area®—16.375

with 7 equal to 0.8358; the degrees-of-freedom adjusted 7
equal to 0.8202; and the leave-one-out cross-validated * of
0.7819. The standard deviation in the error predicted by leave-

Table2  Averaged FlexX docking scores for all ligands docked to wild-
type (wt) and mutated HIV-1 reverse transcriptase structures

Ligand Wt Mutants Ligand Wt Mutants
1BT -29.6204  —28.397 HBY -15.3131 —15.8476
5DV —26.0268  —26.7804  IL5 -22.8162  —22.3174
ETR -259162  —259462 1Bl -30.237 —30.1946
AAP -21.9232  —22.1834 IET —23.7592 —23.892
AC —7.76298  —7.46046 JLJ —25.9829  —26.0958
ADB —28.3832  —27.8152  KBT —20.8254  —20.3803
BML 214917 -21.6483 KRL —26.6452  —27.3403
CXD —23.7968  —24.6019  KRP —22.0957  —21.5577
DIZ -17.6149  -18.316 KRV —22.5453  —21.8624
EFZ -10.9564 —12.5018 MRX  —22.6725 —23.6095
EUR —24.3326  —23.7894 NNB =20.011 —20.6353
FPT -21.6605  —21.6845 NNC -19.9938  —20.7152
FTC —19.1469  —20.3939  NNI =20.0292  —20.6486
G73 =29.227 —27.9006 NVE —4.71138  —2.61201
GFA —25.0896  —23.9547 NVP —18.6458  —18.1568
GWB  -17.1987 —17.7041 RPV —26.5865  —26.8525
GWE  —19.8398 —18.4964 TNK —20.0555  —18.6039
GWI -17.5208 —16.2361  TTI1 -16.2279  —15.5725
GWIJ -21.369 —19.5249  UCL -15.9025 —-15.3693
HI12 -16.2325  -16.396 UDR  -10.828 —11.5263
H16 —l16.161 —16.2805 WHU  —25.4155  —24.295
H18 -16.5799  -16.7963  YKN  —18.1383  —17.8257
H20 -17.8664  —17.9892 ZZE -17.2912  -17.5812
HBQ -19.7385  —20.696

one-out cross-validation is 2.5150. The F-ratio is 53.4646.
The probability that a greater F-ratio can be obtained by
chance alone is 0.0000. Thus, since the probability is less than
0.05, there is at least one significant descriptor in the model.
Partial F values (listed below) indicate relative importance of
each descriptor — the larger the value the more important is the
descriptor. Topological results are illustrated by Fig. 3.

The ranges of values for the descriptors in the training set
and obtained corresponding partial-F values (in parenthesis)
were:

* double bond count from 4 to 14, (80.156) - SCIGRESS
treats aromatic systems as having alternating double and
single bonds,

* sec-amine count from 0 to 3 (51.719),

e cyano count from 0 to 2 (21.880),

«  (nonpolar area)’ from 113,241 to 483,701 A% (121.969).

Since the objective is to have compounds with the lowest
(most negative) FlexX score, the model given by Eq. (1) sug-
gests that molecules should contain nitrile and secondary
amine groups, and the area of the molecule incapable of hy-
drogen bonding (either as a donor or an acceptor) should be as
small as possible.

The second attempt aimed at creating QSAR using
fragment contribution approach using common substruc-
tures present in the training set using ADMEWORKS
ModelBuilder. Due to size of the training set, the set of
six descriptors was chosen. As illustrated by Fig. 4, this
is the lowest number of descriptors that yields acceptable
statistically significant results. The set contained X-H
(hydrogen attached to any atom) substructure count de-
scriptor. For simpler mechanistic interpretation, the de-
scriptor was manually replaced with C-H count (hydro-
gens attached to carbon) to calculate the final model. The

@ Springer
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Fig. 1 Averaged FlexX score of
binding to mutants vs. binding to 35 30

wild-type enzyme

obtained results are presented in Fig. 5, while the final
statistical parameters of this model are collected in
Table 3.

The model cross-validation * of less than 70% does not
encourage its use for direct prediction of unknown com-
pounds. However, the sign of the linear regression equation’s
weight vector coefficients is a measure of the influence of a
given substructure contribution to activity. In particular, neg-
ative values indicate improvement in binding, while positive
values suggest that the corresponding substructures should be
eliminated or their presence minimized. The obtained results
are summarized in Table 4, where substructures with positive
contribution to binding are presented in bold, while those
which should be avoided are distinguished by italics.

As can be seen, the interpretation of results of the fragment-
based QSAR leads to similar conclusions, as the interpretation
of the topological QSAR — the presence of sec-amino and

Fig. 2 Signed difference in
averaged FlexX score between
binding to mutants vs. binding to
wild-type enzyme as a function of
binding score
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cyano groups is improving activity, while parts of purely
hydrocarbon-nature should be avoided.

Conclusions

Two main conclusions are drawn from the research presented
in this study:

1. HIV-1 reverse transcriptase (RT) has relatively low
fidelity — its error rate is evaluated to be in the range
of 107> per nucleotide addition [33, 34]. A high mu-
tation rate of the virus can result in emergence of
strains resistant to antiretroviral drugs. Our docking
results indicate that there is no systematic influence
of mutations on binding in the allosteric center. Thus,
it seems that structural features of the ligand are the
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Fig.3 Topological QSAR results
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Table 3  Statistical parameters of the substructure-based model

Basic statistics Training set

Number of samples 47 s 76.31
Number of parameters 6 Adjusted 7 72.76
Lack of fit (LOF) 478  Mean square error (MSE)  7.90
Cross-validation F-statistic 21.5

n-out 1 p value 0.000000

R2CV 60.585 Est. Std Dev. of Mdl Err ~ 2.81

Table 4 Results of the substructure-based QSAR model

Structure Normalized coefficient Count range in
training set

33)X-C=C-CN —2.053 0-1

(30) X2-NCON-X -1.577 0-1

(11) X-NH-X -1.273 04

(52) X—N-Ph(X)CN -1.092 0-1
(74)X-Cyclopropyl 1.440 0-1

(1) H-C 3.155 9-34

main source of the activity toward mutants rather than
the binding energy,

2. The interpretation of results of fragment-based QSAR
leads to similar conclusions as interpretation of the topo-
logical QSAR: the presence of sec-amino and cyano
groups is improving binding, while hydrocarbon frag-
ments should be avoided.
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