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Abstract: Unlike cytosolic proteins, membrane proteins (MPs) are embedded within the plasma
membrane and the lipid bilayer of intracellular organelles. MPs serve in various cellular processes
and account for over 65% of the current drug targets. The development of membrane mimetic
systems such as bicelles, short synthetic polymers or amphipols, and membrane scaffold proteins
(MSP)-based nanodiscs has facilitated the accommodation of synthetic lipids to stabilize MPs, yet
the preparation of these membrane mimetics remains detergent-dependent. Bio-inspired synthetic
polymers present an invaluable tool for excision and liberation of superstructures of MPs and their
surrounding annular lipid bilayer in the nanometric discoidal assemblies. In this article, we discuss
the significance of self-assembling process in design of biomimetic systems, review development of
multiple series of amphipathic polymers and the significance of these polymeric “belts” in biomedical
research in particular in unraveling the structures, dynamics and functions of several high-value
membrane protein targets.

Keywords: synthetic biology; heteropolymers; amphipathic; lipid bilayer; self-assembly; mem-
brane proteins

1. Biopolymers, an Inspiration for Designing Smart Surface-Active Polymers

Within the cells, self-assembly is characterized as spontaneous organization of homo or
hetero biomacromolucules (proteins, nucleic acids, lipids, carbohydrates) via non-covalent
intrinsic forces (i.e., dipole-dipole interactions, π-π stacking, electrostatic forces, hydrogen
bonding, metal–ligand interactions) which in turn results in fascinating supermolecular
structures and machineries that govern the autonomous and self-sustaining functions of
cells [1]. For years, the significance of biological self-assemblies was taken as granted, yet
emerge of biophysical and imaging technologies as well as remarkable advancements in
molecular biology opened novel perspectives on morphology, dynamics and functions of
precise [2] and higher-ordered nanostructures in cell, and inspired ambitious efforts to de-
sign and synthesize similar artificial assemblies that display diverse innovative utilizations
in biomedical research (Figure 1) [3,4].

Unlike proteins and nucleic acids, synthetic polymers are synthesized chemically by
polymerization of synthetic co-monomers through either chain-growth or step-growth
mechanisms. During chain-growth polymerization, an initiator triggers the formation of
radical or ionized forms of each unsaturated monomer that then leads to chain propagation
step in which monomers polymerize and repeatedly add to the length of polymers, finally
upon addition of terminator, chain growth ends (Figure 2A). The step-growth mechanism,
however, does not require any initiator or/and terminator since each monomer contains an
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active reaction site, and the condensation between monomers is followed by an elimination
reaction in which another molecule, namely water, is released (Figure 2B) [5].

Nanomaterials 2021, 11, x FOR PEER REVIEW 2 of 18 
 

 

 

Figure 1. Schematic view of diverse biopolymers in cells, and their resemblance to chemically syn-

thesized polymers that have been shown broad utilities in biomedical research. During the synthetic 

process of homo ad heteropolymers, optimizing the sequence, length and shape (linear vs. circular), 

backbone flexibility, stereochemistry, and homogeneity are crucially difficult to manage. 

Unlike proteins and nucleic acids, synthetic polymers are synthesized chemically by 

polymerization of synthetic co-monomers through either chain-growth or step-growth 

mechanisms. During chain-growth polymerization, an initiator triggers the formation of 

radical or ionized forms of each unsaturated monomer that then leads to chain propaga-

tion step in which monomers polymerize and repeatedly add to the length of polymers, 

finally upon addition of terminator, chain growth ends (Figure 2A). The step-growth 

mechanism, however, does not require any initiator or/and terminator since each mono-

mer contains an active reaction site, and the condensation between monomers is followed 

by an elimination reaction in which another molecule, namely water, is released (Figure 

2B) [5]. 

 

Figure 2. Random copolymerization of building blocks (cyan and pink circles) (A) via random chain growth and (B) step 

growth polymerization mechanisms. Asterisks represent the radical atoms. Initiator and terminator are, respectively, 

shown as in green and red. 

Figure 1. Schematic view of diverse biopolymers in cells, and their resemblance to chemically
synthesized polymers that have been shown broad utilities in biomedical research. During the
synthetic process of homo ad heteropolymers, optimizing the sequence, length and shape (linear vs.
circular), backbone flexibility, stereochemistry, and homogeneity are crucially difficult to manage.
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Figure 2. Random copolymerization of building blocks (cyan and pink circles) (A) via random chain growth and (B) step
growth polymerization mechanisms. Asterisks represent the radical atoms. Initiator and terminator are, respectively, shown
as in green and red.

Since the invention of synthetic rubber back in the 1930s, different sequence-customized
categories of copolymers, including alternating, random, block, grafted, periodic, gradient,
and copolymers have been evolved [6] (Figure 3), however none are barely comparable to
biopolymers (DNA, protein, peptides) with precisely tunable sequences of comonomers.
The physico-chemical characteristics of functional monomers, length of polymers, order (se-
quence) of comonomers along the polymer chains, as well as stereochemistry and flexibility
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of polymer backbone all contribute in the final behaviors of polymer molecules in solution
and modulate their inter and intra molecular forces that affect rheology, morphology and
surface-characteristics of polymers [7].
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Figure 3. General arrangement of comonomers in heretopolymers lead to seven major classes of
amphiphilic polymers.

Evolution of Amphipathic Polymers in Biological Systems

Possession of both lipophilic (apolar) and polar (hydrophilic) moieties in molecules
leads to different degree of amphipathicity. Such molecules range from small molecule
surfactants (i.e., chemical detergents) and biosurfactants (e.g., phospholipids). During
evolution, mother Nature has optimized amphipathicity of biopolymers like proteins
by incorporating variety of naturally available hydrophobic and hydrophilic building
blocks (e.g., amino acids) tailoring their functions, and modulating their self-assembly
and interactions with other components in the cells. Examples of such nanoscale multi-
component assemblies include (1) membrane proteins machineries incorporated within
phospholipid bilayers; (2) amphipathic apolipoprotein A–I (apoA1) as main constituents
(~70%) of high-density lipoprotein (HLD) particles which involve a soluble, polydisperse
population of lipid-protein complexes in the body responsible for transport of specific
lipids such as cholesterol ester and other small molecule metabolites [8–10]; (3) mixed
micelles of alpha and beta caseins in milk that incorporate with minerals and fat [11,12].

2. Natural Biopolymers as Tools for Spontaneous Reconstruction of
Biomembrane Assemblies
2.1. Protein-Based Approach

The nanometric discoidal membrane bilayer, or nanodisc, was first replicated from
full-length amphipathic apolipoprotein A–I (apoA1), the main constituent (~70%) of high-
density lipoprotein (HLD) particles, which involve a soluble, polydisperse population of
lipid-protein complexes in the body, responsible for transport of specific lipids such as
cholesterol ester and other small molecule metabolites [8,9]. The engineering of apoA1
proteins made possible the production of a library of amphipathic protein “belts” of various
sizes, which may be mixed with detergent-solubilized lipid-protein complexes [13–16].
In this process, upon removal of detergents from the mixture, the self-assembly process
initiates, and protein-lipid natural tendency force them into highly-uniform, nano-sized
lipid bilayer forms [17]. Finally, two copies of apoA1 proteins (helical membrane scaffold
proteins (MSPs)) encircle the entire complex [18–20].

The availability of MSPs (some tagged with hexa/octa histidine or FLAG tags) in
various sizes and the feasibility of manipulating the lipid-protein ratio enables scientists to
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design and build nanodiscs within a range of ~10–17 nm. Medium-sized MSP nanodiscs
(formed of MSP1D1 and MSP1E3) [21] can accommodate 140–340 lipid molecules, while
large ones (e.g., those composed of MSP2N2 with 16 helices) can accommodate up to
~650 lipids [22]. The thermal phase transition of the lipid bilayer differs slightly between
small and large discs, affecting the respective lipid packing (elasticity/flexibility in lateral
movements) and the possibility of expansion in discs of different sizes. However, small-
angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) analyses suggest
that the phase transition of lipids in MSP nanodiscs is significantly higher than that reported
for multilamellar lipid vesicles (MLV) and unilamellar vesicles (liposomes) [20,23–29].

Unprecedented range of membrane proteins (some with up to 24 transmembrane
helices) from various sources have been reconstituted into MSP discs, and both their
conformational dynamics and interactions have been studied by cryo-electron microscopy
(cryo-EM), solution-state nuclear magnetic resonance spectroscopy (NMR), and X-ray
crystallography. MSP nanodiscs provide a superior system for in vitro reconstitution
of membrane proteins to examine the role of lipid microdomain, and to observe the
conformational changes of membrane proteins. Despite all the advantages of MSPs and
their substantial impact on the field of membrane biology, this procedure is detergent-
dependent and hence, natural lipids may be lost during the initial purification steps [18].

Linking the carboxylic and amine termini of engineered variants of apolipoprotein A1
(ApoA1) via covalent peptide bonds leads to novel circulated forms of membrane scaffold
proteins that offer demonstrated advantages such as thermal stability and proteolytic resis-
tance [30]. The circulation process occurs through several strategies including intein-fusion
proteins, sortase transpeptidases, and chemical ligation. NW9, NW11, NW30, and NW50
are examples of nanoscale discs with approximately 8.5, 11, 15, 50 nm width, respectively.

2.2. DNA-Based Amphipathic Polymers

Nucleic acid-based polymers (NAP) such as REP 2055 and REP 2139 (composed
of alternating adenosine and cytidine, respectively, and phosphodiester linkages) have
shown to get engaged in hydrophobic interactions with exposed hydrophobic protein
surfaces, blocking the viral life cycle before and after entry to the cells, hence promising
anti-viral activity against hepatitis B and hepatitis D and HIV in a sequence-independent
yet size-dependent manner [31,32].

Nanoscale 3D DNA objects (known as DNA origami) are another variant of bio-
engineered systems with extensive applications in drug delivery, functional nanorobots
and molecular motors, and basic research such as membrane biochemistry [33,34]. Such
nano objects can be also used as scaffolding corrals for encapsulation of phospholipid
bilayer in large discoidal DNA nandodisc with about 45 and 70 nm diameter, which can be
also loaded with membrane proteins [35].

2.3. “Sweet” Sugar-Based Amphiphilic Polymers (SBAPs)

Naturally-occurring polysaccharides from different sources (e.g., starch from plant,
dextran from bacteria, heparin from animal source), and chemically modified polymer
scaffolds with glyco-conjugated moieties, and sugar-linked polymers constitute three
major classes of SBAPs, and have received tremendous attention as nanocarriers for de-
livery of genes, drugs, and proteins as well as diagnostic devises [36,37]. SBAPs take
various nano morphologies such as micelles, microgels, and nanoparticles [38] and are
considered as less-immunogenic and easily tunable and biodegradable. Synthetic SBAPs
are the results of either polymerization of glycosylated comonomers or various polymer
backbone can be conjugated with variety of sugar molecules forming polymers with spe-
cific physico-chemical properties such as varying degree of charge (positive, negative or
non-ionic) or hydrophobicity [39]. Chemically-modified inulin (high molecular weight
fructo-oligosaccharides (FOS) or fructans) with pentyl, benzyl, hexyl, have been shown to
effectively solubilized synthetic lipid bilayers composed of DMPC:DPMG (7:3) and form
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particles with ~10 nm hydrodynamic radius. These glycopolymers are remarkably tolerant
to up to 100 mM divalent metal ions, and fully soluble pH range 2.5–8 [40].

3. Synthetic Polymers for Reconstitution of Membrane Assemblies
3.1. Short Synthetic Amphipathic Polymers (Amphipols)

Amphipols comprise hydrophobic (short alkyls C8–C10) and hydrophilic (charged
groups, hydroxyl, glucose) moieties along the polymer chain and display a higher affinity
for irreversibly interaction with transmembrane proteins than with small hydrophobic
molecules such as lipids or ligands. Limited self-assembly (as defined by critical aggre-
gation concentration) of amphipols into globular particles with a well-defined diameter
may create a hydrophobic inner core suitable to incorporate membrane proteins. The
hydrophobic core does not resemble the lipid bilayer; unlike detergent, it limits the release
of lipids.

Amphipols are not adequately effective in liberating lipid-protein assemblies spon-
taneously. The preparation of the protein/amphipol complex is a multistep, detergent-
dependent procedure in which detergent is exchanged out and desired lipids plus am-
phipols are added to the naked membrane protein (devoid from natural lipids), which
may have undergone some conformation changes by this stage. However, amphipols offer
advantageous thermal stability to proteins and, due to their low aggregation concentration,
are cost-effective [41].

3.2. Long Amphipathic Polymers

Different classes of synthetic polymers been proven instrumental in membrane biology.
The first example of such polymers are composed of styrene and maleic anhydride (MAn),
the two hydrophobic building blocks of SMAn polymers, and the initial molar ratio of these
two comonomers in polymerization batch determines the final ratio of styrene: maleic
anhydride in final polymer chain. The anhydride form of SMA polymer (also known
as XIRAN resin) (SMAn) is heat and chemical resistant plastic with wide application
range for synthesis of automobile parts, plastic appliances, industrial dyes, and pigments.
Historically, TOTAL Cray Valley (Exton, PA, USA) and Polyscope (Geleen, The Netherlands)
were the two primary (yet not sole) suppliers of SMA copolymers, which respectively use
SMA and SZ prefixes in their catalogs. Malvern Cosmeceuticals. Ltd. (Malvern Hills, UK)
supplies SMA2000 under the commercial name of Lipodisq®.

Maleic anhydride is the only monomer that can be modified post-polymerization, and
this has expanded the application of SMAn polymers to biomedical sciences. Polymeric
drug delivery has benefited from non-covalent interaction of hydrophobic small molecule
drug candidates (such as zinc protoporphyrin, doxorubicin, and pirarubicin) to styrene-
maleic acid polymers in order to encapsulate these drugs into micellar constructions
with styrene moieties and drug molecules in interior and maleic acid pendant chains
in exterior (Figure 4) [42–45]. The segmental reorientation of styrene and polyanionic
maleic acids in SMA copolymer is crucial for its adsorption to hydrophobic ligands while
the whole particle remains soluble in aqueous. Such formulations could improve the
ultimate bioavailability and bio-efficacy of conjugated drug candidates and decrease their
gastrointestinal toxicity. The SMA micellar platform has also transformed the field of
membrane structural biology [46].
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In the absence of hydrophobic ligands, amphipathic SMA copolymer displays hyper
coiling behavior so that styrene groups engaged in water-insoluble core and carboxylic
acids stay on the surface. This increases the viscosity of solution in salt and pH-dependent
manner [43,47]. Notably, the flexibility of the backbone bonds determines the orientation of
styrene groups and favors the hydrophobic interactions. The dynamic secondary structures
in SMA polymer result in formation of two hydrophobic and hydrophilic active surfaces
(which highly resemble amphipathic helices of Apo-I proteins) that can associate with lipid
films and form nanometer-sized doughnut-shape particles dubbed Lipodisq [48]. Small-
beta barrel protein, PagP, and bacteriorhodopsin (bR) were the first proteins reconstituted
and characterized in nanodiscs of DMPC lipids and SMA polymers (also termed SMALP
particles) with a diameter of 10–20 nm [49] (Figure 5). Until recently, the specific biophysical
behavior of SMA polymers in the interface of membranes was not fully understood. In silico
approaches have already been utilized to simulate the behavior of dendrimers [50], polymer-
mediated fusion, micelle-lipid interfaces [51], and lipoprotein complexes [52]; therefore
molecular dynamic (MD) simulations have proved to be useful to shed light on molecular-
scale interaction of SMA and solubilization of biomembrane [53,54]. Coarse-grained (CG)
field molecular dynamics simulations and experimental data confirmed the self-aggregation
of polyanionic SMA copolymers in solution resulting in globular aggregates [55]. Due to
considerable affinity of polymer molecules to membrane (DDPC lipid molecules) that is
driven by primary interaction of styrenes with hydrophobic acyl chains, SMA polymers
spontaneously (within 20 msec of simulation) and cooperatively insert into adjacent lipid
bilayer, bend the membrane at the site of adsorption, then slowly penetrate to the lipid
bilayer and localize in the acyl chains of lipids apart from phosphate headgroups, hence
leaving styrene groups in perpendicular orientation to lipid acyl chains. While surrounding
the lipid bilayer, interestingly, SMA polymer is more stretched (showing higher gyration
radius) than free polymers in solution [50]. On the other hand, the encapsulation event
perturbs the membrane curvature (by forming a bulge) and planarity, and allows formation
of toroidal pores [56] so that water and water-soluble molecules such as fluorescein can
permeate inside (Figure 6A) Intriguingly, after encapsulation, the distribution of Na+ ions
undergo remarkable changes, as well, and that compensates the repulsion between anionic
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carboxyl moieties in the lipid-water interface. Small angle X-ray scattering (SAXS) analysis
unraveled the details of membrane (composed of either DMPC or POPC) fractionation
pathways by SMA 3:1 [55] in which, two−four times more SMA(3:1) is required for lipids in
the liquid crystalline phase than in the gel phase to get the lipid vesicles to form lipid-SMA
nanodiscs. Under this condition, mixed lipid/SMA(3:1) vesicles coexist with nanodiscs.
Above the saturation point, excessive SMA molecules form a belt around the lipid fractions.
Of note, temperature, lipid type, and type of SMA polymers play critical roles (Figure 6B).
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Nanomaterials 2021, 11, x FOR PEER REVIEW 7 of 18 
 

 

polymer is more stretched (showing higher gyration radius) than free polymers in solu-

tion [50]. On the other hand, the encapsulation event perturbs the membrane curvature 

(by forming a bulge) and planarity, and allows formation of toroidal pores [56] so that 

water and water-soluble molecules such as fluorescein can permeate inside (Figure 6A) 

Intriguingly, after encapsulation, the distribution of Na+ ions undergo remarkable 

changes, as well, and that compensates the repulsion between anionic carboxyl moieties 

in the lipid-water interface. Small angle X-ray scattering (SAXS) analysis unraveled the 

details of membrane (composed of either DMPC or POPC) fractionation pathways by 

SMA 3:1 [55] in which, two−four times more SMA(3:1) is required for lipids in the liquid 

crystalline phase than in the gel phase to get the lipid vesicles to form lipid-SMA nano-

discs. Under this condition, mixed lipid/SMA(3:1) vesicles coexist with nanodiscs. Above 

the saturation point, excessive SMA molecules form a belt around the lipid fractions. Of 

note, temperature, lipid type, and type of SMA polymers play critical roles (Figure 6B). 

 

Figure 5. Adsorption, and hydrophobic interaction of styrene moieties (or their hydrophophobic counterparts in other 

membrane solubilizing polymers such as DIBMA) with acyl chains of phospholipids in lipid bilayer leads to fragmentation 

the membrane and formation of nanoscale entities called polymer-lipid particles (i.e., SMALP, DIBMALP, etc.). 

 

Figure 6. (A) SMA polymers form pores in supported lipid bilayer (shown in blue). The same process has been observed 

in the cells, making them permeable to water and small water-soluble fluorescent molecules (B) Schematic view of how 

encapsulation event perturbs the membrane and leads to membrane fragmentation and formation of discs. 
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in the cells, making them permeable to water and small water-soluble fluorescent molecules (B) Schematic view of how
encapsulation event perturbs the membrane and leads to membrane fragmentation and formation of discs.

Furthermore, MD models suggest that relative abundance and the sequence of maleic
acid and styrene moieties in the polymer chains may slightly change the behavior of poly-
mers in interaction with model DMPC lipid membrane. For instance, polymers with 2:1
ratio of styrene (S) to maleic acid (MA) completely disaggregate once they integrate with bi-
layer, whereas SMA polymer with 3:1 ratio of S:MA (comprising a highly ordered sequence
of SSS-MA) show higher number of adsorption sites with membrane and maintain their
tangled configuration upon insertion into lipid bilayer. Polymers’ net charge (one charge
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per MA), length (≥1.4 kDa), and sequential polydispersity (SSS ≥ 3) are among the crucial
factors that influence the formation and stability of nanodiscs [54].

A relatively universal protocol has been established for SMA-based purification of
membrane proteins that are mainly overexpressed in various host organisms and often
contain different purification tags [57]. This procedure involves the isolation of mem-
branes and their incubation with SMA polymers in neutral (preferably alkaline) buffers
supplemented with glycerol (5–10 v/v%). Depending on the biophysical and biochemi-
cal properties of target proteins, experimental conditions such as temperature, pH, ionic
strength, concentration (and type) of SMA polymer and the purification tag are recom-
mended to be finely optimized. These factors, collectively, influence polymer-polymer,
polymer-lipid, protein-polymer interactions, which may compromise the yield, purity,
activity of final purified target protein, and thus the downstream analyses. Not to mention
that different polymers have shown to display differential preference for solubilization of
specific types of lipids in biomembranes derived from prokaryotes and eukaryotes [58].
As demonstrated by multiple lines of research, the lipid composition of polymer-based
nanodiscs is inevitably susceptible to change through inter-particle collision. Variations in
ionic strength, the mass ratio of lipid to polymer and the type of amphipathic polymers,
together, control the collision rate and may limit the kinetics of lipid exchange.

Experimental data shows that SMA2:1 (SMA2000) and 3:1 (SMA3000, SZ25010) with
an average molecular mass of 7.5–10 kDa can be equally effective in direct purification of
membrane proteins from bacterial membrane and spinach chloroplast thylakoids [59,60].
On the contrary, SMA 1:1 (SMA1000), SMA2021, SMA10235, SMA17352, and SZ09008,
SZ09006, SZ40005, SZ42010, SZ33030, SZ28065, SZ28110, and SZ2625 were not as useful.
Unexpectedly, SMA1440 (1.4:1) displays a remarkable potential for the solubilization of
the thylakoid membrane. This perhaps challenges the images that MD simulation models
present and call for more pragmatic approaches to opt for the most proper choice of SMA
for each target membrane protein.

Despite all the advantages that SMALP technology has offered, there are paramount
drawbacks that hinder the utility of this technique for the full spectrum of membrane proteins.

Ionic strength and pH (external factors) and abundance of carboxyl groups of MA
monomers (pka1~4 and pKa2~9) regulate the overall charge of SMA polymers. These factors
are detrimental to formation of secondary structures along the polymer chain and, therefore,
to polymer solubility in solution and solubilization of lipid membrane by SMA [61]. In line
with this, polyvalent cations (such as magnesium and calcium) and acidic pH compromise
the solubility of SMA and limit the utilization of SMA polymers for purification of metal-
dependent membrane proteins (e.g., ATP-binding cassette transporter and ATPases) and
those which required acidic pH (≤6) for their optimal function (e.g., KcsA potassium
channel and lysosomal membrane proteins) [62]. On the other hand, since hydrophobic
interactions and self-assembling processes are the driving force for the formation of SMALP
nanoparticles, it is not surprising that poly styrene patches of polymers (i.e., higher S:MA
ratio) can non-specifically adsorb to hydrophobic patches of proteins (instead of acyl chains
of lipids). Likewise, electrostatic interactions with positively charged patches of proteins
and polyanionic SMA polymers could negatively impact the folding and function of target
proteins. Reportedly, improving batch polydispersity and sequential randomness of SMA
polymer could enhance the yield of purification and facilitate the downstream application
of isolated nanodiscs via high-resolution techniques such as cryo-EM. Not to mention that
aromatic phenyl groups of styrene interfere with far-ultraviolet (UV) spectroscopic analysis
of membrane proteins. As such, this approach has undergone many developments to fully
optimize the chemical formulation of SMA.

3.3. Derivatization of Amphipathic Polymers

Most of the chemical variations in styrene-maleic anhydride polymers came possible
through maleic anhydride residues that offer an excellent nucleophilic center. A list of
chemicals can be used to convert MAn moieties to their maleamic acid and/or maleimide
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forms post-functionalization. This approach will reduce the number of carboxylic acids and
hence may shift the pKa of polymer macromolecules. Chemicals like Ethanolamine [63],
quaternary amines [64], tertiary amines[65], and diamines (e.g., diamino ethyl) [66] have
be used for this purpose. Dehydration reaction, on the other hand, adds even more op-
portunities to increase the variation of active SMA polymers. It is worth mentioning
that none of these reactions should neither compromise the solubility of resulting SMA
polymers nor slow down their ability to solubilize lipid bilayer. The final products of
each synthesis reaction should be verified by analytical methods such as 13C NMR, FT-IR,
mass spectrometry (MS), and the ability to form nanodiscs of lipid-proteins, as well as size
distribution of these particles, should be examined by transmission electron microscopy,
light scattering (dynamic light scattering (DLS), static light scattering (SLS)). Generally,
the new variants of SMA tend to form larger particles and, due to low abundance of
carboxylic groups, have a wider range of pH tolerance and lower sensitively to divalent
cations. However, regardless of the type of polymerization reaction utilized for synthesis
of parent polymer and the nature of sidechains, the backbone to which such modifications
are applied makes a dramatic difference in the results. For instance, use of low molecular
weight parent SMAn polymers, 1.6 kDa random copolymer, and 1.3 kDa RAFT (reversible
addition-fragmentation chain transfer) polymer), invariably leads to the most optimal
products. Unlike conventional random polymerization, RAFT polymerization results in
narrower molecular weight distribution, more control over polymer composition and archi-
tecture [67]. Small polymers possibly function more like detergents [62,64]. Para and meta
Methyl stilbene-MA (STMA) [68] and styrene-acrylic acid (AASTY) copolymers [69] are aro-
matic polymers that recently introduced as superior alternatives to SMA. These polymers
contain 1 to 1 ratio of comonomers, and they feature exemplary alternation in co-monomer
sequence (i.e., sequential polydispersity) along polymer chains and batch polydispersity.

Further, some chemical modifications could expand the application of nanodiscs
for drug discovery; one intriguing example is SMA-SH, which is originated from the
reactivity of cysteamine with maleic anhydride groups of SMA2000, and contains free
thiol groups that can consequently receive thiol-reactive fluorescent probes such as A487
and Atto647N [70]. Some of the sidechain modifications are truly inspirations of nat-
ural phospholipid headgroups, zSMA contains zwitterionic phosphatidylcholine (PC)
groups grafted to low molecular weight RAFT-polymerized SMAn [62]. The undesired
nonspecific interaction between styrenes and protein targets as well as its interference with
spectrophotometric techniques (CD, UV-vis, fluorescence) could be alleviated mainly by
some chemical modifications, yet this process is so challenging that in many cases, one
chooses to build a new polymer by starting a new polymerization reaction using modified
styrene residues.

In some cases, non-aromatic (aliphatic) amphipathic polymers have shown to be
remarkably effective alternatives for aromatic counterparts. Poly diIsoButylene-alt-maleic
Acid (DIBMA/Sokalan® CP9 from BASF, Germany) with negative net charge [71] and
polymethacrylate (PMA) with positive net charge [72] random copolymer are, respectively,
formed by polymerization of diIsobutylene and maleic anhydride comonomers, and butyl
methacrylate and cationic methacroylcholine chloride comonomers. DIBMA and PMA
can solubilize lipid membranes, and are resistant to changes in pH, perhaps with similar
mechanism as SMA. These two polymers are reasonably tolerant to higher concentration
of Ca+2 cations. DIBMA interacts with acyl chains of phospholipids through the alkyl
sidechains, and show minor effect on lipid packing order, and as demonstrated, DIBMA-
based nanodiscs (DIBMALPs) show the least collisional lipid transfer [73]. The major pitfall
with non-aromatic amphiphilic polymers might involves the significantly low yield of
purification of membrane proteins directly extracted from native membranes.

In summary, the current literature suggests the superior popularity of SMA (par-
ticularly SMA2:1 and SMA3:1) in addressing fundamental biological questions. The
SMALP/DIBMALP-based purification preserves native lipid molecules that surround
membrane proteins, offering tremendous opportunity to not only study the lipid composi-
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tion around a target membrane protein yet also addressing the pivotal roles of lipids in
conformational and functional cycles via biophysical tools such as high-resolution X-ray
crystallography (especially lipid cubic phase), cryo-electron microscopy (EM), and low-
resolution SAXS and SANS, Electron paramagnetic resonance spectroscopy (EPR), and
FRET. Previous reports convey considerable underlying efforts to obtain atomic-resolution
structures of membrane proteins in nanodiscs for the rational design of novel therapeutics,
for instance G-protein-coupled receptors (GPCR) family [74], which account for over 30%
of human proteome (some involve in lipid transport) and represent the most challenging
drug discovery targets [75]. Some promising examples of such efforts are as follows:

Cryo-electron microscopy of membrane protein-lipid complexes in SMALP nanodiscs
displays a state-of-the-art imaging technology for observing the natural lipid bilayer around
and buried inside the protein core. Further, the electron density of regulatory and structural
lipids can be detected and modeled into the high-resolution EM map of the structure.

Alternative complex III (ACIII) involves a multi-subunit complex of membrane pro-
teins and plays critical roles in the respiratory and photosynthetic chains of many bacteria.
Despite functional analogy with their counterpart cytochrome bc1 complex, the ACIII and
bc1 complexes do not share any structural similarity. The crystal structure of bc1 complex
(from bovine heart mitochondria) was first resolved in the 1990s at 2.3 Å resolution in
detergent micelles and depleted from their natural lipid molecules [76]. The Gennise lab in
2018 purified and resolved the structure of a functionally active ACIII complex bound to
cytochrome c from Flavobacterium Johnsonian [77]. The complex contains all 10 subunits
(ActA, ActB, ActC, ActD, ActE, and ActF) and associated cofactors (i.e., [3Fe–4S] cluster, a
[4Fe–4S] cluster and six haem c units) in SMALP nanodisc made from SZ25010 and SZ30010
polymers. The EM map shows an unprecedentedly interesting arrangement of subunits.
For instance, two subunits bind to lipid bilayer through post-translational modification
(N-terminal triacylation of cysteine residues). Also, it displays a thin density of lipid and
SMA polymer around a complex. This density was further used to model phosphatidyl
ethanolamine (PE) lipid molecules to the structure. The catalytic cycle of the complex is
attributed to a core assembly of ActC and ActB that is involved in oxidation of quinol,
a haem c assembly consisting of ActA and ActE that directs electrons from ActB to the
terminal electron acceptor. The role of transmembrane ActD and ActF subunits remains to
be unveiled (Figure 7B).

Another example of a high-resolution image of a multimeric membrane protein em-
bedded within lipid molecules comes from SMA2000-solubilized multidrug efflux protein,
AcrB, which contains a hydrophobic core that binds to dyes, and lipophilic antibiotics
and even commercial detergents. AcrB protects Gram-negative bacteria against these
hazards and therefore causes antimicrobial resistance [78]. AcrB has been an attractive
target for biochemists since 2002 when its first asymmetric trimer structure was resolved in
n-Dodecyl-B-D-Maltoside (DDM) micelles [79–81]. SMA- solubilized AcrB particles have
a diameter of 12 nm, of which 9 nm accounts for the width of trimeric protein itself. The
cryo-EM density map shows that central cavity of trimer is occupied with 21 low-density
lipid molecules (packed in a two layer-triangle) as well as seven annular less-ordered
“belt” lipids representing the upper and lower leaflets of bilayer (Figure 7A). Interestingly,
due to 3.2 Å resolution of the structure, the thickness of lipid phase (the Z coordinates
of phosphate headgroups) and the contact points (through hydrogen bonds) between
lipid headgroups and amino acids of each subunit (for instance sidechain of arginine and
backbone nitrogen of glycine) were quite distinguishable, and that revealed the strikingly
asymmetric nature of these interactions, which, in turn, can be attributed to regulatory
role of lipids in functional cycles of AcrB. Notably, the architecture and orientation of
lipids toward periplasmic (outer leaflet) and cytosolic face appear differently, i.e., outer
leaflet lipids shape a loosely packed with curved-shape alkyl chain while those in the
inner surface are straight and relatively densely packed. This observation could imply
the regulatory role of lipids in conformational changes associated with trimer to keep the
central hydrophobic pore in open or closed states. Such high-resolution images of the
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intimate interaction between a membrane protein and lipid bilayer were also reported in
2005 for two-dimensional (2D) crystals of aquaporin in DMPC synthetic lipids [82,83].
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the interfaces (PDB 5ITC).

Another millstone in high-resolution structural determination of mammalian mem-
brane proteins using SMA2000-based “native discs” is KimA (previously known as a potas-
sium channel) from Bacillus subtilis in 3.7 Ǻ model with inward-facing occluded homod-
imers (Figure 7C) (PDB 6S3K, EMD 10092). In vivo and in vitro (in proteolipososmes) trans-
port assays confirm that a proton gradient is required for K+ transport, and H+ transport
is K+ dependent, which suggest that KimA is in fact a proton/K+ symporter.

The functional cycles of Glycine receptor (GlyR), a member of Cys-loop or pentameric
ligand-gated channel (pLGIC) neurotransmitter receptors, has been purified in the presence
of agonist and partial agonists taurine and [84] γ-amino butyric acid GABA [85]. Previous
structural data mainly involved full agonist, antagonist, and modulator in detergent-
purified truncated forms of GlyR which lacked the M3/M4 cytoplasmic loop. Following
SMA-based purification of full-length GlyR and further reconstitution in brain lipids, to
elucidate the conformational landscape of GlyR especially pre-open states which were pre-
viously uncaptured conformational states along the receptor reaction pathway (Figure 7E).
A very recent 2.97-Å resolution cryo-EM model of trimeric plant ion channel BdSLAC1 and
its post-translational modification (phosphorylation) dependent-activation profile were
characterized in relatively more stable SMALP particles and identified size lipid densities
(three central and three peripheral) from outer leaflet for each protomer (with anindepen-
dent pore) that is composed of 10 transmembrane helices arranged in five pairs of helical
hairpins while TM1, 3, 5, 7, and 9 form the central channel pore with ~6 Å diameter [86].
Due to the flexibility of N- and C-terminal segments, these regions are not included in the
current atomic model (EMD-31197).

DIBMA polymers (from either random polymerization or RAFT synthesis) have also
been promising in resolving capturing the dynamics of high value protein targets such as
MscS-like ion channels notably mechanosensitive ion channel Ynal in an open-like and
close-like conformations (PDB 6RLD, EMD 4990) (Figure 7D), in which the backbone of
two missing N-terminal transmembrane helices (TM-N1 and TM-N2) could be observed
(modeled) [87].
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Using lipid cubic phase crystallography, the crystal structure of SMA—solubilized bacte-
riorhodopsin was resolved at 3.2 Ǻ resolution in synthetic monoolein lipids (Figure 7F) [88,89].
One significant advantage of lipid cubic phase (LCP) is the fact that it does not require
highly pure protein samples. Besides, neutral synthetic lipids such as monoacylglycerol
(mesophase) substitute the complex natural lipids during reconstitution steps. Although
in meso crystallography is not specifically designed for membrane proteins, it provides
snapshots of target membrane protein in the synthetic lipid bilayer [90,91].

Natural and synthetic copolymers have been extensively popular in the field of mem-
brane proteins initially in designing optimal detergents and recently used for designing the
concept of nanodiscoidal bilayers. As new developments in this field continues to emerge,
the need for The SMALP platform enables us to obtain equally informative snapshots
from surroundings of membrane proteins; however, it requires more improvement to a
need for engineering the amphipathic polymers for formation of larger nanodiscs. Other
analytical approaches such as EPR [92], Fluorescence-based methods (FRET/BRET) [93],
surface plasmon resonance (SPR) [94], SAXS, and NMR have been utilized to shed light
on lipid dependent protein-protein interaction in the lipid bilayer, receptor oligomeriza-
tions/regulation and lipid-dependent oligomerization of essential peripheral membrane
proteins (such as α-synuclein and Amyloid precursor protein (APP) peptides) [72,88], in
polymer-based nanodiscs. The size and lipid composition of nanodiscs are well-controlled
during the preparation of LUV vesicles. Moreover, both protein or lipid molecules can
be labeled either before or after encapsulation into nanodiscs using antibodies or proper
synthetic labels. Since nonspecific interaction between SMA polymers and proteins remains
a primary concern, the full activity of post-assembled nanodiscs must be confirmed.

In principle, polymer-based nanodiscs have a broad range of applicability for virtually
any biomedically-relevant membrane protein targets in human physiology and pathology.
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