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Abstract: Graphene in its pristine form has demonstrated a gas detection ability in an inert carrier
gas. For practical use in ambient atmosphere, its sensor properties should be enhanced with
functionalisation by defects and dopants, or by decoration with nanophases of metals or/and metal
oxides. Excellent sensor behaviour was found for two types of single layer graphenes: grown by
chemical vapour deposition (CVD) and transferred onto oxidized silicon (Si/SiO2/CVDG), and the
epitaxial graphene grown on SiC (SiC/EG). Both graphene samples were functionalised using a
pulsed laser deposited (PLD) thin V2O5 layer of average thickness ≈ 0.6 nm. According to the Raman
spectra, the SiC/EG has a remarkable resistance against structural damage under the laser deposition
conditions. By contrast, the PLD process readily induces defects in CVD graphene. Both sensors
showed remarkable and selective sensing of NH3 gas in terms of response amplitude and speed,
as well as recovery rate. SiC/EG showed a response that was an order of magnitude larger as
compared to similarly functionalised CVDG sensor (295% vs. 31% for 100 ppm NH3). The adsorption
site properties are assigned to deposited V2O5 nanophase, being similar for both sensors, rather than
(defect) graphene itself. The substantially larger response of SiC/EG sensor is probably the result of
the smaller initial free charge carrier doping in EG.

Keywords: ammonia; CVD graphene; epitaxial graphene on SiC; gas sensor; pulsed laser deposition;
selectivity; single layer graphene; UV light activation; vanadium (V) oxide

1. Introduction

Graphene, as an atomically thin (semi)conducting material, is a promising sensor platform for
monitoring key environmental pollutants, such as NOx, NH3, SO2, CO, H2S, O3, volatile organic
compounds (VOCs), etc. The extraordinary sensitivity of graphene conductance down to a single
adsorbed molecule has been demonstrated in the inert gas atmosphere [1]. Graphene has the great
potential for device miniaturisation, low-power operation at the room temperature, and low production
cost. Achieving good sensing properties under real atmospheric conditions with high background
concentration of oxygen and water vapour has remained a challenge. A large amount of research deals
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with the improvement of graphene-based gas sensors, in particular their sensitivity, selectivity, stability,
and speed of response and recovery. These requirements to any viable sensor can be memorized as a
“4-S” principle. Selective enhancement of gas adsorption, and therefore, sensor properties, is possible
via the introduction of defects or dopants into the graphene lattice [2,3]. Alternatively, precious
metals [4–6] and semiconducting metal oxides [6–9] in the form of nanoparticles or thin layers were
grown on the graphene with the aim to improve its gas sensing characteristics.

For graphene functionalisation, pulsed laser deposition (PLD) is recommended as a highly
versatile thin-film deposition technique with a relatively well-controlled synthesis process. It is
possible to evaporate practically any solid with a focused laser pulse, thus providing the broadest
possible selection of materials for various applications [10]. By changing the inert gas background
pressure, the kinetic energy of particles is tuned between 0.1 and 1000 eV. The amount of deposited
material, starting from only about 1/100th of a monolayer per laser pulse, is also worth mentioning as
a benefit of PLD.

A single-layer, chemical vapour deposited (CVD) graphene, modified with PLD of ZrO2 and
Ag nanostructured coatings shows substantially improved sensing of NO2 [6]. High sensitivity with
respect to highly oxidizing, free radical NO2 gas is nearly universal. Both CVD graphene transferred
to insulating substrate [11] and epitaxial graphene on SiC [12,13] are capable of detecting NO2 gas
down to a few ppb in synthetic air, and thus applicable as NO2 environmental sensors.

Proper functionalisation is needed for selectivity towards less reactive polluting gases. Vanadium
(V) oxide is known to be an efficient NH3 adsorber, widely used for catalytic removal of NOx from
exhaust gases in the reactions with sacrificial NH3 [14]. Indeed, a sub-nanometer layer of V2O5,
deposited using PLD, renders the CVD graphene a sensitive and selective ammonia gas sensor [15].

The present study will address further important aspects of NH3 sensing. Bearing in mind
commercially applicable sensors, the properties of graphene, their substrates, and connecting electrode
materials, among other features, should be considered. Miniature sensors can be made by transferring
the CVD graphene sheet onto functional sensor platforms, equipped with a built-in microheater or
embedded light source for better control of operating conditions. Epitaxial graphene on SiC could
also be valuable due to a simpler manufacturing process. Moreover, SiC/EG has a higher sensitivity
to chemical doping because the intrinsic carrier concentration is less [16]. In this work, the two
graphenes of very different origin will be considered in parallel. First, functionalisation of CVD
graphene and epitaxial graphene grown on SiC substrate with a few layers of laser deposited V2O5 is
carried out. Raman spectroscopy is applied to reveal the effect of PLD on defect creation in graphene.
The influence of functionalisation on NH3 gas sensing properties is studied by comparing pristine
and V2O5 deposited graphenes. Second, the gas response measurements are performed in the dark
and under ultraviolet light exposure. Also, the dependence of sensor response characteristics on
varying humidity level is investigated. Responses of both types of graphene sensors to other polluting
gases NO2, CO, SO2 and O3 were tested for comparison in order to assess selectivity. Sensor response
and recovery curves are approximated to double exponential functions. Tentative mechanisms of
elementary processes are proposed based on phenomenological, biphasic kinetics.

A short version of this paper has appeared in conference proceedings [17].

2. Materials and Methods

Chemical vapour deposited (CVD) graphene (CVDG) was grown on a commercial, 25-µm-thick
polycrystalline copper foil in a home-built CVD reactor. The graphene film was transferred onto a
Si/SiO2 substrate carrying Au (60 nm) electrodes, deposited through a shadow mask via magnetron
sputtering (Figure 1a). The graphene growth and transfer process is already thoroughly described
in [15].
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Figure 1. Photographs of gas sensor devices based on (a) PLD-functionalised CVD 
graphene on a Si/SiO2 substrate, and (b) epitaxial graphene on a SiC substrate. Gaps 
between the electrodes are 1 × 4 mm2 and 1 × 2 mm2 for CVD and epitaxial graphene, 
respectively. The CVD graphene sheet on top of electrodes appears as a darker pink area in 
(a) due to slightly different reflection properties. The areas of laser deposition of V2O5 are 
marked with dashed lines. 

In the PLD process, which is specified in [15], a ceramic V2O5 target was ablated using a KrF 
excimer laser at wavelength 248 nm and laser pulse energy density of 5.0 J/cm2 in the presence of  
5 × 10−2 mbar of O2. A total of 120 laser pulses was used for V2O5 layer deposition. Sensor substrates 
were kept at the room temperature during deposition. For comparison, another V2O5 layer was 
deposited onto a fused quartz substrate while keeping the experimental conditions exactly the same 
so that in the following, the mass thickness of deposited layer can be evaluated in the x-ray fluorescence 
(XRF) measurement. 

The CVD graphene was probed using a micro-Raman spectroscopic system (Renishaw, inVia, 
Gloucestershire, UK) at the excitation wavelength of 514 nm, with a spot diameter of ≈1 µm and 
incident radiant power of 1 mW. In case of epitaxial SiC graphene 17 mW of 532 nm laser light was 
focussed to a spot with diameter of ≈0.9 µm. For the V2O5 decorated epitaxial graphene sample, the 
laser power was reduced to 1 mW in order to diminish the risk of surface damage. The Raman 
spectrum of graphene on SiC was obtained after subtracting a reference Raman spectrum of pure 
carrier material 4H-SiC (0001) from the graphene spectrum. 

The amount of vanadium in the deposited layer was assessed with X-ray fluorescence method, 
and the oxidation state of deposited vanadium was determined by X-ray photoelectron spectroscopy, 
as described earlier [15]. 

Gas sensitivity was measured at room temperature in a 7 cm3 stainless steel sample chamber, 
equipped with a gas mixing system, which is more thoroughly described in [19]. The voltage applied 
to the electrodes was either 100 mV or 500 mV in the cases of CVD graphene and epitaxial graphene 
samples, respectively. The neat gases or mixtures used in our measurements were N2, O2, CO/N2, 
NO2/N2, SO2/N2, O2/N2 and NH3/N2, all 99.999% pure. All used gases and mixtures were of certified 
composition from AGA (The Linde Group, Estonian branch, Tallinn, Estonia). A gas mixture of 10% 
O2 + 90% N2 was flown through a UV lamp ozoniser for O3 production, and the resulting O3 
concentration was monitored using an ozone analyser (model 430, Teledyne API, San Diego, CA, USA). 
The gas flow through the sample chamber was kept constant at 200 sccm. The nominal relative humidity 
of the testing gas was regulated between 0 and 50% during the measurements. During the 
experiments with UV light excitation, the 365 nm light intensity on the sample was ≈15 mW/cm2. 

3. Results 

3.1. Characterization of Sensor Material Structure and Composition 

Figure 1. Photographs of gas sensor devices based on (a) PLD-functionalised CVD graphene on a
Si/SiO2 substrate, and (b) epitaxial graphene on a SiC substrate. Gaps between the electrodes are
1 × 4 mm2 and 1 × 2 mm2 for CVD and epitaxial graphene, respectively. The CVD graphene sheet
on top of electrodes appears as a darker pink area in (a) due to slightly different reflection properties.
The areas of laser deposition of V2O5 are marked with dashed lines.

Large area epitaxial graphene (EG) was grown using a sublimation method on Si-terminated
4H-SiC (0001) substrates at 2000 ◦C in argon gas at a pressure of 1 bar [18]. Au (200 nm) contact pads
were made using DC-sputtering on top of SiC/EG substrate.

In the PLD process, which is specified in [15], a ceramic V2O5 target was ablated using a KrF
excimer laser at wavelength 248 nm and laser pulse energy density of 5.0 J/cm2 in the presence of
5 × 10−2 mbar of O2. A total of 120 laser pulses was used for V2O5 layer deposition. Sensor substrates
were kept at the room temperature during deposition. For comparison, another V2O5 layer was
deposited onto a fused quartz substrate while keeping the experimental conditions exactly the same so
that in the following, the mass thickness of deposited layer can be evaluated in the x-ray fluorescence
(XRF) measurement.

The CVD graphene was probed using a micro-Raman spectroscopic system (Renishaw, inVia,
Gloucestershire, UK) at the excitation wavelength of 514 nm, with a spot diameter of ≈1 µm and
incident radiant power of 1 mW. In case of epitaxial SiC graphene 17 mW of 532 nm laser light was
focussed to a spot with diameter of ≈0.9 µm. For the V2O5 decorated epitaxial graphene sample,
the laser power was reduced to 1 mW in order to diminish the risk of surface damage. The Raman
spectrum of graphene on SiC was obtained after subtracting a reference Raman spectrum of pure
carrier material 4H-SiC (0001) from the graphene spectrum.

The amount of vanadium in the deposited layer was assessed with X-ray fluorescence method,
and the oxidation state of deposited vanadium was determined by X-ray photoelectron spectroscopy,
as described earlier [15].

Gas sensitivity was measured at room temperature in a 7 cm3 stainless steel sample chamber,
equipped with a gas mixing system, which is more thoroughly described in [19]. The voltage applied
to the electrodes was either 100 mV or 500 mV in the cases of CVD graphene and epitaxial graphene
samples, respectively. The neat gases or mixtures used in our measurements were N2, O2, CO/N2,
NO2/N2, SO2/N2, O2/N2 and NH3/N2, all 99.999% pure. All used gases and mixtures were of
certified composition from AGA (The Linde Group, Estonian branch, Tallinn, Estonia). A gas mixture
of 10% O2 + 90% N2 was flown through a UV lamp ozoniser for O3 production, and the resulting
O3 concentration was monitored using an ozone analyser (model 430, Teledyne API, San Diego, CA,
USA). The gas flow through the sample chamber was kept constant at 200 sccm. The nominal relative
humidity of the testing gas was regulated between 0 and 50% during the measurements. During the
experiments with UV light excitation, the 365 nm light intensity on the sample was ≈15 mW/cm2.
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3. Results

3.1. Characterization of Sensor Material Structure and Composition

Scanning electron microscope (SEM) images are displayed in Figure 2 for CVD and epitaxial
graphene surfaces before and after the PLD of V2O5. The features appearing darker in the SEM of
CVD graphene (Figure 2a,b) are typical for transferred CVD graphene. It seems that graphene follows
the uneven surface topography of polycrystalline Cu foil used in the synthesis; some of the details
are possibly wrinkles formed during the graphene transfer. The surface of pristine epitaxial graphene
sample in Figure 2c is typical for graphene grown on a nominally single crystalline, on-axis, 4H-SiC
substrate. It is characterized by wide terraces, which are due to the step-bunching of the SiC substrate
surface that occurs during the high temperature growth [20]. Laser deposited nanostructured material
could be distinguished in the SEM pictures of CVD (Figure 2b) and epitaxial (Figure 2d) graphene
samples as numerous irregular dots and patches.
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The Raman scattering cross section of graphene was remarkably large, owing to phenomena 
related to resonance enhancement, and was highly useful for structure characterisation. In the case 
of CVD graphene, the thick supporting material Si/SiO2 contributed surprisingly little to scattering 
intensity, so that the graphene spectrum could easily be separated. Figure 3a displays a typical Raman 
spectrum of pristine CVD graphene, recorded in the gap between the electrodes of the gas sensor 
setup. The G and 2D band peaks at ≈1590 cm−1 and ≈2690 cm−1, and have full-width at half-maximum 
(FWHM) of 11 cm−1 and 29 cm−1, respectively. These parameters, together with the 2D to G peak 
intensity ratio of approximately one to three, corresponded to a single layer of graphene [21]. Missing 
the defect-related D peak, usually located at ≈1350 cm−1, is an indication of low defect density in the 
pristine CVD graphene sample [21,22]. However, following PLD of V2O5 onto graphene, prominent 
defect-related D and D´ bands emerged in the Raman spectrum, and, at the same time, the G and 2D 
bands decreased in height (see Figure 3a). 

Figure 3b compares Raman spectra for the as-grown epitaxial graphene (SiC/EG) and the same 
decorated with V2O5. The scattering onset beginning at about 1280 cm−1 and extending into the G-peak 
region originates from the interfacial “buffer” layer between the graphene and SiC substrate, and 

Figure 2. SEM images of pristine and PLD-treated graphene surfaces: (a) pristine CVD graphene,
(b) CVD graphene functionalised with V2O5, (c) pristine epitaxial graphene on SiC and (d) the same
functionalised with V2O5.

The Raman scattering cross section of graphene was remarkably large, owing to phenomena
related to resonance enhancement, and was highly useful for structure characterisation. In the case
of CVD graphene, the thick supporting material Si/SiO2 contributed surprisingly little to scattering
intensity, so that the graphene spectrum could easily be separated. Figure 3a displays a typical Raman
spectrum of pristine CVD graphene, recorded in the gap between the electrodes of the gas sensor setup.
The G and 2D band peaks at ≈1590 cm−1 and ≈2690 cm−1, and have full-width at half-maximum
(FWHM) of 11 cm−1 and 29 cm−1, respectively. These parameters, together with the 2D to G peak
intensity ratio of approximately one to three, corresponded to a single layer of graphene [21]. Missing
the defect-related D peak, usually located at ≈1350 cm−1, is an indication of low defect density in the
pristine CVD graphene sample [21,22]. However, following PLD of V2O5 onto graphene, prominent
defect-related D and D´ bands emerged in the Raman spectrum, and, at the same time, the G and 2D
bands decreased in height (see Figure 3a).
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Figure 3b compares Raman spectra for the as-grown epitaxial graphene (SiC/EG) and the same
decorated with V2O5. The scattering onset beginning at about 1280 cm−1 and extending into the
G-peak region originates from the interfacial “buffer” layer between the graphene and SiC substrate,
and despite overlap with the expected D peak, is not related to defects [23]. Since these features
extended up to the position of the G peak, they also gave rise to an apparent increase in G peak
intensity, so that the G line appeared to have a higher intensity than the 2D band, even for monolayer
graphene on SiC [8].

Remarkably, for EG on a SiC substrate, the typical Raman peaks indicated that graphene remained
intact after the standard PLD treatment. The only noticeable difference between the spectra was higher
signal to noise ratio in SiC/EG/V2O5 due to the lower laser power used, and a slight narrowing and
blue-shift of the G and 2D peaks, which can originate from several factors influencing the Raman bands
of SiC/EG. Mechanical strain was the major cause affecting the positions of characteristic epitaxial
graphene Raman peaks [24], compared to exfoliated graphene. Strain inhomogeneity is recognized
for causing variations of peak positions and widths, even in the Raman spectra taken from the same
sample [25,26]. Change in graphene doping levels as a result of graphene-substrate interaction is
known to influence the positions and widths of G and 2D bands of SiC/EG samples [24,27]. Charge
transfer can also take place during graphene functionalisation with V2O5. The FWHM of the 2D peak
in SiC/EG with V2O5 was 34.5 cm−1, which is characteristic for monolayer graphene.
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Figure 3. (a) Typical Raman spectra of CVD graphene in sensor device, recorded between the electrodes
before and after laser deposition of V2O5: strong defect related peaks D and D’ emerge after deposition
of V2O5. (b) Raman spectra of SiC/EG before and after deposition of V2O5. Lower signal to noise ratio
in the lower trace was due to diminished laser power by a factor of 17. Defect related peaks D and D’
were not created noticeably in case of SiC/EG/V2O5.

The laser ablation plasma species have a broad kinetic energy distribution. A noticeable portion
of these particles may have energy sufficient for creating point defects as a result of removal of C
atoms from the graphene lattice (20 to 100 eV) [28]. As a consequence of laser deposition of V2O5 onto
CVD graphene, the Raman lines assignable to point defects or imperfect graphene edges emerged
in the spectrum (Figure 3a). However, according to the Raman spectra depicted in Figure 3b, there
were no noticeable defect related lines, and thus no considerable increase of defectiveness in the
SiC/EG/V2O5 sample.

The Raman spectrum of graphene and graphene related systems was fairly sensitive to
structural disorder. The ratio of the D and G peaks ID/IG characterizes disorder induced by point
defects [22,29,30]. However, the relationship between ID/IG and average distance between the point
defects LD is non-monotonic and switches from a I(D)/I(G) ∝ LD

2 type of dependence to a I(D)/I(G)
∝ 1/LD

2 type at around LD ≈ 4 nm [30]. Because of the increased width of the G and D´ peaks of
spectrum in Figure 3a, it is safe to conclude that we were in the region where LD < 4 nm. From
the ratio ID/IG = 2.88, obtained from Figure 3a, the formulae given by Ferrari et al. [22] yields the
average distance between point defects as being LD ≈ 2.3 nm, and the defect density nD of graphene as
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≈6.1 × 1012 cm−2. Therefore, the initially pristine CVD graphene with very low defect density suffers
damage during the PLD process, acquiring a high level of structural disorder. By contrast, according
to Raman analysis, the PLD process did not noticeably increase the defectiveness of the epitaxial
graphene sample. The conclusions about the influence of PLD reached on the basis of Raman spectra
were supported by the electrical conductivity of samples. The conductivity of the CVD graphene
sample, which had the Raman spectrum depicted in Figure 3a, decreased by 4 times after the PLD
process, plausibly because of the decreased charge carrier mobility of the defective graphene lattice.
The conductivity of the epitaxial graphene sample was unchanged after the PLD, which implies much
less of a destructive influence.

The amount and oxidation state of vanadium deposited with exactly the same PLD procedure
was investigated in our previous work by means of X-ray fluorescence (XRF) and X-ray photoelectron
spectroscopy (XPS) [15]. In accordance with the vanadium XPS spectrum and the measured mass
thickness of deposited V, the material deposited on graphene was predominately V2O5 with an average
thickness of about 0.6 nm.

3.2. The Role of Sensor Functionalisation

All sensor measurements in this work were done at room temperature (293–298 K), mainly
under continuous excitation with ultraviolet (UV) light (λ = 365 nm), except for several experiments
performed without UV exposure for comparison. The influence of graphene functionalisation on the
response to NH3 gas is illustrated for CVD and epitaxial graphene sensors in Figure 4. The response
is defined as a relative change of conductance G: S = (G − G0)/G0, where G0 is the conductance in
synthetic air.
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Figure 4. Electric conduction response of sensors based on V2O5 functionalised (a) CVD graphene
on Si/SiO2, and (b) EG on SiC, to varying NH3 concentrations at the room temperature. Results for
pristine graphene are shown as a reference. Permanent UV light was on during the measurements,
except for a single dark run shown for comparison. Relative humidity was 20%. All time intervals of
gas exposure and recovery are 900 s.

The conductivity of CVD graphene and epitaxial graphene sensors changes to the opposite
direction after introducing NH3 into the test chamber. This was in accordance with the most prominent
difference between Si/SiO2/CVDG and SiC/EG given their doping pattern in terms of majority
charge carriers, p and n, respectively. In general, CVD graphene exhibits p-type conductivity and gas
response at normal atmospheric conditions, primarily because of chemical doping by adsorbed oxygen
and water molecules [31,32], and possibly, due to interaction with ≡Si–O–H groups on the oxidised
silicon substrate. In the case of epitaxial graphene grown on the Si face of 4H-SiC (0001), however,
electrons are most often the major carriers, because of charge transfer from the SiC substrate [33,34].
Bearing in mind that NH3 acts as a hole acceptor (electron donor) with respect to pristine graphene [1],
the conductivity of CVD graphene is expected to decrease, and that of epitaxial graphene to increase,
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in accordance with observations. A different behaviour of EG without UV light (see the red curve in
Figure 4b) is discussed in the next Section 3.3.

The electrical response dynamics of a 2D chemiresistor follows the kinetics of adsorption and
chemical processes taking place on the surface. In general, the time dependent gas response to NH3

and the subsequent recovery curves can be suitably fitted with double exponential functions that give
much better approximation than single exponentials:

G(t) = G0 + A1

[
1 − e

−(t−t0)
t1

]
+ A2

[
1 − e

−(t−t0)
t2

]
, (1)

in Equation (1), G0 is the initial conductance and G(t) is the conductance at time t; and t0 is the
initial moment of time, when the respective stepwise change in gas composition is introduced.
The time-independent coefficients A1 and A2 are amplitudes of conductance change. Characteristic
times t1 and t2 are inverse first-order rate constants for adsorption and desorption kinetics of gas
molecules for pristine or V2O5 functionalised graphene [35].

In principle, a single exponential response corresponds to a single type of adsorption site
available for molecules in the surface of graphene sensor. In contrast, the double exponential response
(Equation (1)) would describe the situation where two sites with different adsorption and desorption
rate constants exist [35]. In addition, double-exponential response and recovery kinetics may originate
from competitive adsorption of different gas species, besides NH3. For instance, H2O and O2 are
known to readily adsorb on graphene surface and influence the electrical properties of graphene [31,32].

Baseline of the sensor signal (that is, conductivity in synthetic air at some definite relative humidity
level) is extremely stable. However, after exposing the sensor to some analyte gas, signal recovery
to the baseline can take quite a long time, even when UV light excitation is used. This can be seen
in Figure 4, where the sensor signal does not relax completely back to the baseline before the next
NH3 gas injection. This was because the signal relaxation was not exponential but tended to be
double-exponential, whereas one of the exponents had quite a large time constant. The reasons behind
this slow recovery can be several and depend on the exact mechanism behind the sensor response:
high desorption energy barrier of NH3 molecule, or slow re-oxidation of V2O4 to V2O5, or some slow
charge balancing processes between graphene and substrate etc.

A slow response and recovery of the graphene-based gas senor signal is quite common in the
literature [1,3,4,8]. It depends on the practical task at hand, but generally, the fast sensor response and
recovery is preferred in applications. However, preliminary experiments in our lab have shown that
there can be certain graphene/functionalising material combinations in which case the gas responses
and recoveries can be considerably faster. In addition, using short heat pulses during sensor work or
doping with precious metals and nanoparticles are other possibilities to speed up the processes.

The results depicted in Figure 4 and Tables 1 and 2 clearly show that, as compared to the pristine
sensors, the response to NH3 was considerably improved after functionalisation using PLD. The relative
response amplitudes to 8 ppm NH3, under UV light excitation, increased from 5 to 22%, and from
50 to 160% for CVDG and EG samples, respectively. Further, much faster characteristic response
times were measured on both types of sensors (Table 1 lines 1 and 4, Table 2 lines 1 and 4), but the
improvement of response and recovery dynamics was more drastic for the CVDG sensor. The increase
of the gas response amplitude probably arose from increased density of energetically favourable
adsorption sites or/and increased charge transfer between the graphene/V2O5 system and NH3

adsorbate molecules [15]. Such an improvement can arise from the strong adsorption ability of NH3

on V2O5 and possible redox reactions on the surface of V2O5 [36,37]. Similarly, fairly good NH3 gas
sensing properties of semiconducting V2O5 thin films have been demonstrated by Huotari et al. [38].
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Table 1. Bi-exponential fitting parameters of functionalised CVD graphene sensor response and
recovery curves at 8 ppm NH3, as shown in Figures 4 and 5, with Equation (1). The coefficients t1 and
t2 are time constants in the exponential functions. Response amplitude (A1 + A2)/G0 is shown in %.
RH stands for relative humidity.

CVD Graphene on Si/SiO2 Response Recovery
Line No. Sample/Conditions t1 (s) t2 (s) Response (%) t1 (s) t2 (s)

1 Pristine, UV, RH20 79 1887 −4.7 1607 -
2 V2O5, no UV, RH20 25 363 −18 47 466
3 V2O5, UV, RH0 23 329 −16 43 640
4 V2O5, UV, RH20 21 226 −22 41 427
5 V2O5, UV, RH50 19 158 −25 62 478

Table 2. Bi-exponential fitting parameters of functionalised epitaxial graphene sensor response and
recovery curves at 8 ppm NH3, shown in Figures 4 and 5, with Equation (1). The coefficients t1 and
t2 are time constants in exponential functions. Response amplitude (A1 + A2)/G0 is shown in %. RH
stands for relative humidity.

Epitaxial Graphene on SiC Response Recovery
Line No. Sample/Conditions t1 (s) t2 (s) Response (%) t1 (s) t2 (s)

1 Pristine, UV, RH20 143 695 50 658 -
2 V2O5, no UV, RH20 16 443 −39 56 610
3 V2O5, UV, RH0 23 474 131 41 496
4 V2O5, UV, RH20 19 271 160 30 392
5 V2O5, UV, RH50 26 182 216 57 440

3.3. Effect of UV Excitation

Simultaneous exposure to UV light can enhance the sensing performance of graphene-based gas
sensors drastically. By using UV irradiation, a considerably quicker response to tested gases, and
also a faster recovery of the signal, has been reported [11,19,39]. This effect is likely a consequence
of cleaning the surface from interfering or passivating gases. The results have been rationalised as
photoinduced desorption of oxygen and water molecules, thereby vacating additional adsorption
sites on graphene for the target gas. The effect of adsorption activation can be seen in the case of a
CVD graphene sensor at lower gas concentrations where the response time and response amplitude
improve considerably under UV light illumination (Figure 4a and Table 1). The recovery time of the
CVDG sensor also shortened to some extent due to increased desorption.

In case of the EG sensor, the effect of UV light was particularly drastic, as the response to NH3 gas
without UV light was characteristic of a p-type sensor (i.e., the conductivity decreased upon adding
NH3), whilst it changed to the n-type response under the UV light. Previously, a switch from an n- to
p-type response has been observed for epitaxial graphene gas sensors under increasing concentrations
of NO2 [40]. The effect was explained in terms of withdrawal of electrons from EG by adsorption of
electron-accepting molecular dopant NO2, which results in a lower concentration of free electrons,
making the holes a major charge carrier. Besides water vapour and O2, which act as p-type dopants
when adsorbing onto graphene in the ambient air [31,32], there may be yet undetermined adsorbing
gases capable of strongly p-doping both the transferred CVD graphene and epitaxial graphene on
SiC [41,42]. Therefore, the p-type response of an EG sensor sample is probably caused by adsorbed
water vapour, O2 and other molecules, which can chemically p-dope graphene and cause n- to p-type
switching of pristine graphene, as well as the EG/SiC/V2O5 system. As discussed before, the EG
functionalisation with V2O5 did not influence the conductivity and defectiveness of epitaxial graphene
samples, and is, therefore, probably not accompanied by a major change in electronic properties
(mobility and concentration of charge carriers) of epitaxial graphene. Under the UV light exposure,
the photo-activated desorption of molecules responsible for p-doping results in epitaxial graphene
exhibiting n-type conductivity.
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3.4. Influence of Humidity

In order to clarify the possible effect of varying humidity level on NH3 gas sensing properties,
the measurements were carried out under variable relative humidity (RH%) levels of RH0, RH20 and
RH50. The results are depicted in Figure 5. Clearly, the response time and amplitude improved with
the increasing humidity level for both CVD and epitaxial graphene sensors. Under RH50, as compared
to RH0 conditions, the characteristic response time t2 at 8 ppm NH3 decreased by 2.1 and 2.6 times for
CVDG and EG sensors, respectively. At the same time, the response amplitude increased from 16% to
25% for CVDG, and from 131% to 216% for EG sensor. This clearly implies an important role of H2O in
the NH3 adsorption mechanism on the surface of sensing layer.
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Figure 5. Influence of humidity content on gas responses of sensors based on V2O5 functionalised
(a) CVD graphene on Si/SiO2, and (b) EG on SiC to varying NH3 concentrations at the room
temperature. Permanent UV light was on during the measurements; the time intervals of gas exposure
and recovery were 900 s.

The adsorption of ammonia on V2O5 has been thoroughly investigated to improve the catalytic
reduction of NO2 in the presence of NH3, an important technology for detoxification of internal
combustion engines exhausts. Two strongly bound species are typically observed as a result of the
reaction of NH3 with V2O5 adsorption sites: one with the surface OH group (Brønsted acid site),
forming a positively charged NH4

+, and the other with the oxygen vacancy (Lewis acid site), forming
a species, which is denoted as “coordinated NH3” [43]. Although a theoretical study conducted by
Yin et al. [44] indicates that adsorption of NH3 takes place at both sites, adsorption at the Brønsted site
is probably energetically more favourable than adsorption at Lewis site. According to Lin et al. [45],
the number of Brønsted surface sites on V2O5 is directly related to the presence of water vapor. As a
consequence of increasing H2O concentration in the system, a number of Lewis adsorption sites are
converted to Brønsted sites (surface OH groups) by H2O adsorption on Lewis sites [45]. Therefore,
a faster and larger response under humid measuring conditions of functionalised graphene sensor
indicates the favourable role of Brønsted-type adsorption sites over the Lewis-type sites in V2O5.

3.5. Langmuir Model Fitting of Sensor Response

In Figure 6, the stationary relative response of graphene sensors functionalised with V2O5 is
plotted against NH3 concentration between 0.1 and 100 ppm. The response to NH3 gas in this
concentration range was between 0.14 and 0.43 for the CVDG sensor and between 0.80 and 3.63
for the EG sensor. The dependence of responses on NH3 concentration followed a Langmuir-type
ratiometric function. However, it turned out that stationary responses could not be fitted with a
single-site Langmuir adsorption model, but closely followed a two-site Langmuir model [35]:

Sx =
Gx − G0

G0
= α1

x · b1

1 + x · b1
+ α2

x · b2

1 + x · b2
, (2)
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where b1 and b2 are the affinity constants, and α1 and α2 are transduction coefficients, according to the
simplified transducer function model for CVD graphene oxygen sensor in [35]. Of course, Equation (2)
presumes that transduction coefficients do not depend on the surface coverage, i.e., the change of
carrier density and mobility per unit change of coverage does not depend on coverage itself, assuming
no screening effects or interactions between adsorbates [35]. The Langmuir function is applicable
in the case of a homogenous surface with a single type of adsorption site with a definite adsorption
energy. In this case, only the first half of Equation (2) is needed to describe the system. If one assumes
the existence of two sites for gas adsorption with different energetic parameters, the model leads
to Equation (2), which was used for fitting the experimental data. Fitting of data points in Figure 6
yielded the following values of parameters for the CVDG sensor: α1 = 0.26 (±0.023), α2 = 0.19 (±0.024),
b1 = 9.8 (±3.0) 1/ppm, b2 = 0.071 (±0.037) 1/ppm; and the following parameters for the EG sensor:
α1 = 1.5 (±0.15), α2 = 2.6 (±0.21), b1 = 9.9 (±3.6) 1/ppm, b2 = 0.041 (±0.013) 1/ppm.

Here, two important aspects are to be noted:

(a) The transduction coefficients α1 and α2 were both much smaller in case of the CVD graphene
sensor, which means either a smaller influence of gas adsorption on the conductivity, or a lower
concentration of total active adsorption sites.

(b) The values of corresponding affinity constants b1 and b2 were very close for both types of graphene
sensors, which mean that rate constants for adsorption and desorption were similar for both
types of functionalised graphene.

The point (a) is discussed further below. The last deduction is also clearly evident from data in
Tables 1 and 2 where it can be seen that characteristic times for the response and recovery were nearly
the same for functionalised graphene sensors. This means that the type of defects and their adsorption
energies were almost the same in the case of functionalised CVD and epitaxial graphene. In addition,
the ratios α1/α2 amounted to 1.4 and 0.58 for CVDG and EG sensors, respectively, which means that
the proportion of high affinity sites was considerably higher in the case of the CVD graphene or that
their influence on the sensor’s conductivity was proportionally lower in the case of the EG sensor.
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3.6. Sensor Selectivity

In sensors built on a single layer graphene and other graphene-related materials, the sensitivity to
strongly oxidizing NO2 gas is generally much higher than that to other gases from the list of important
gaseous pollutants. Strong binding and large charge transfer undoubtedly accompany NO2 molecule
adsorption on either pristine, highly defective, or doped graphene [2,3]. Still, theoretical considerations
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indicate that the reducing NH3 molecule can also interact strongly with defects or dopants in graphene,
and this is confirmed to a certain extent by experimental evidence [3].

The responses of our CVD and epitaxial graphene sensor devices to several polluting gases
are compared in Figure 7. We have already shown previously [15] that single layer CVD graphene
functionalised with laser deposited V2O5 was considerably more selective to NH3 gas, rather than to
NO2. PLD functionalisation of CVD graphene with Ag or ZrO2, in the contrary, resulted in a higher
selective response towards NO2 gas [15]. The same tendency is also seen in Figure 7. Compared to the
pristine sensors of both types of graphene, the response to NH3 gas increased considerably through
functionalisation, and at the same time, the response to NO2 gas diminished, as in the case of EG,
or increased only slightly, as in the case of CVDG.

The functionalisation with V2O5 also enhanced the response to CO and SO2 gases for both types
of sensors. Reactions to O3 and NO2 gases were quite similar, which was expected, as both molecules
are strongly oxidizing, with electron affinity (EA) of 2.1028 eV and 2.273 eV [46], respectively.
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4. Discussion

Pulsed laser deposition (PLD) was used to create a sub-nanometer V2O5 layer on graphene
samples, either synthesized using chemical vapour deposition (CVD graphene) and transferred to
Si/SiO2, or epitaxial graphene on a SiC substrate. Raman analysis showed that the defectiveness of
CVD graphene increased drastically following PLD, which is an expected result of bombardment with
a high energy PLD plasma species. By contrast, the defect concentration of epitaxial graphene is not
affected by an identical PLD process, which implies considerable resilience against defect creation.
This finding is in accordance with the fact that the electrical conductivity of the SiC/EG sample did
not change after the PLD of V2O5, while the conductivity of CVD graphene was substantially reduced.

As a possible explanation, we refer to self-healing phenomenon, i.e., reknitting of holes in the
graphene during annealing at elevated temperatures [47], or even at room temperature under scanning
electron beam [48]. Chen et al. [47] reported the partial recovery of Raman peaks and conductivity of
the damaged graphene after annealing at 300 ◦C. We have also noticed partial recovery of the structure
and conductivity of PLD treated CVD graphene samples after keeping them in vacuum at 150 ◦C.
By contrast, at room temperature, the healing process is unlikely, resulting in severe defect creation in
case of CVD graphene on Si/SiO2 substrate subject to PLD plasma.
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Since the self-healing does not occur at 295 K, the negligible deterioration of structure and
conductivity in the epitaxial graphene could rather mean considerably higher energy threshold for
defect creation. The substrate supporting graphene can play a major role under a flux of highly
energetic particles (≈1 MeV), in which case the majority of defects found in graphene are created
using the backscattered ions or sputtered atoms from the substrate [49]. For impinging particles
having considerably lower energy (up to 10 keV), the indirect defect creation mechanism may still
predominate over direct damage in the case of supported graphene [50]. The damage threshold energy
was much higher for supported graphene, as compared to suspended graphene [49,50].

Bearing in mind a much tighter graphene-to-support contact, resilience to plasma treatment of
SiC/EG can be understood. The transition layer between the sp2 graphene and the sp3 bulk material
in SiC/EG is covalently bound to SiC substrate and serves as a template during epitaxial growth
of graphene on the Si face of SiC [20]. Thus, every atom of growing graphene is in an optimal
position, and the graphene closely follows the substrate surface topography. On the other hand, CVDG
transferred onto the Si/SiO2 surface can be quasi-suspended, with the van der Waals contact area
probably much less than 100%. In other words, the potential for C atoms in epi-graphene has a much
deeper minimum. Thus, in qualitative terms, SiC/EG is more durable under the bombardment with
high velocity particles, owing to the stronger bond of the graphene sheet with the underling substrate.

A large enhancement of response to the reducing NH3 gas was achieved for both types of
graphene sensors as a result of laser-deposited, thin V2O5 functionalising layer. The magnitude of
the relative response of SiC/EG/V2O5 sensor was particularly noteworthy, for instance, amounting
to 310% for 40 ppm NH3 at 50% relative humidity. The stationary gas response to the lowest NH3

concentration that could be tested, 0.1 ppm, was 14% and 80% at 20% relative humidity for CVDG and
SiC/EG, respectively.

Perfect graphene is relatively inert with respect to chemisorption due to the negligible amount of
dangling bonds and a lack of charged atoms on the surface [2,3]. Pristine graphene samples always
contain, often unidentified, dopant atoms, defects and organic residues left from the polymer film.
Some of these species may even be beneficial when considering the gas adsorption ability. The defects or
dopant atoms in the graphene lattice, or atom clusters on graphene surface, can promote adsorption of
gaseous pollutants. The effect of adsorption on electric characteristics is also modified [7,51]. Some gas
sensitivity, usually in conjunction with very slow sensor recovery at room temperature, is characteristic
of pristine graphene, indicating the presence of binding sites with high adsorption energy, occurring at
a low density in CVD [3], epitaxial [4], and exfoliated graphene [1]. During functionalisation using PLD,
a high number of point defects is formed by bombardment with high energy atoms in the case of CVD
graphene. More importantly, the system is modified by adding functionalising oxide material [6,15].
Basing on results shown in Figure 4 and data in Tables 1 and 2, an increased response and faster
dynamics was obvious for functionalised sensors. Functionalised graphene has a higher density of gas
adsorption sites with suitable binding energies, resulting in a larger and faster sensor response.

The response dependence on NH3 concentration is well approximated using a two-site Langmuir
model, which yielded two affinity constants b1 and b2, with a difference by two orders of magnitude in
both graphenes. However, the corresponding affinities were similar in both instances, showing
that CVDG/V2O5 and SiC/EG/V2O5 sensors have sites with similar adsorption energies, i.e.,
the adsorption sites belonged to the functionalising V2O5 layer, and did not depend on the type
of the graphene. The comparable NH3 adsorption affinities of both types of graphene would produce
similar responses and recovery times of sensors (Tables 1 and 2).

We were able to advance only tentative explanations about the elementary mechanisms, based
on NH3 adsorption and conversion processes on V2O5 surface that are quite extensively covered in
the literature on heterogeneous catalysis (see, for example, [36,37]). Among our main findings is the
biphasic response kinetics and the amplitude enhancement in the presence of humidity. The possible
surface redox reactions taking place in case of graphene/V2O5 sensor were previously discussed
in [15]. Broadly speaking, V5+ was perhaps reduced to V4+ by ammonia and the polaron thus formed
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migrated in the V2O5 lattice and finally reached graphene. The experiments potentially allowing one
to distinguish between different mechanisms of graphene conductivity change, as well as to establish
the chemical reactions between NH3 and O2 on the surface are in progress.

As can be observed form the measurement results in Figures 5 and 7, both pristine and
functionalised epitaxial graphene gas sensors had nearly ten times higher relative response to NH3

gas than the corresponding CVD graphene sensors. This was reflected in the transduction coefficients
α1 and α2 in the Langmuir model (Equation (2)), which were both much smaller in the case of CVD
graphene. The major part of the more sensitive nature of EG was most probably related to the particular
feature of gas sensing mechanism of the graphene. It was found by Schedin et al. [1] that charge
transfer is the main mechanism of gas sensitivity in the case of exfoliated graphene sheet placed
on top of the Si/SiO2 substrate, e.g., the gas adsorption solely modified the concentration of free
charge carriers in graphene without changing their mobility. If we assume the same for our sensors,
then the change of carrier mobility, caused by the NH3 adsorption was smaller than the effect of carrier
concentration, and the gas response amplitude S is determined by a relative change of charge carrier
numbers ∆n/n0 [35]:

S =
G − G0

G0
=

ñ · ∆θ

n0
, (3)

where ∆θ is the fractional coverage change for the adsorbed species, n0 is the carrier concentration in
the absence of adsorbate gas, and the constant ñ characterises the change of carrier density per unit
change of coverage.

The amount of charge transferred per unit change of coverage (i.e., density of adsorption sites
and charge transferred per site) was similar for both types of graphene sensors. It follows that
the lower initial concentration of carriers n0 of the graphene would correspond to a stronger gas
response, and vice versa. In sensors used in this work, the conductivity of pristine CVD graphene
was about 15 times higher than that for epitaxial graphene. Given that typical carrier mobility is not
very different for pristine samples of CVDG and EG, 1000–3000 and ≈1000 cm2·V−1·s−1, respectively,
the charge carrier density in CVDG should be about one order of magnitude higher than that in EG.
This conclusion is well supported by the literature data on the typical electronic doping levels of
SiC/EG and Si/SiO2/CVDG.

Both epitaxial graphene grown on Si-terminated 4H-SiC (0001) and CVD graphene transferred
to Si/SiO2 are typically highly doped, owing to interactions with the underlying substrate or surface
adsorbates, i.e., water, oxygen and other adsorbate molecules [41,42]. Room temperature charge carrier
concentration, due to doping effects are typically near 1012 cm−2 in the case of SiC/EG [41,52,53] and
near 1013 cm−2 in the case of Si/SiO2/CVDG [42]. Since adsorption sites seem to be energetically
similar for both types of sensors, the difference in the response magnitudes to NH3 (by an order of
magnitude) probably arose as a result of the lower initial doping level of SiC/EG. In other words,
the Fermi energy level being closer to the Dirac point allowed for higher sensitivity to chemical doping,
induced by adsorbing NH3 molecules. The proximity of the Fermi level to a Dirac point in SiC/EG
was supported by the fact that under UV light, which is capable of removing the major atmospheric
dopants, the response of EG-based sensors switched from p- to n-type.

5. Conclusions

The functionalisation of CVD-grown and epitaxial graphene with V2O5 enhanced the response
and improved the selectivity of chemiresistive sensors with respect to ammonia. The analysis of sensor
kinetics implied the presence of similar adsorption sites in both kinds on functionalised graphenes,
indicating that the deposited V2O5 nanophase was a predominating NH3 receptor. The difference in
the magnitudes of relative gas response was a result of different charge carrier type and concentration
of graphene samples. Epitaxial graphene on SiC was remarkably resistant to PLD plasma. The signals
of sensors on SiC/EG platform were larger, faster and more reversible than those for CVD graphene.
However, the transferability of CVD graphene onto almost any surface could be of great value.
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Graphene is almost ideally suited as a signal transducer material in conductive sensors.
Since pristine graphene is a relatively weak and non-specific adsorbent, the progress will essentially
depend on the quality of receptor function created by means of functionalisation. Only time
will tell whether graphene is superior to other categories of thin conductors, such as nanoSMOX
(semiconducting metal oxides) and TMD (transition metal dichalcogenides) [54–56].
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